The environmental and agronomic impacts of γ-PGA on agricultural soils

Jie Li, Lei Zhang1,2,3, Xueming Yang3, Decai Gao1,2, Lingli Wang1, Zhanbo Wei1 and Yuanliang Shi1.

1Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China (E-mail: jieli@iae.ac.cn); 2University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049, China; 3Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario N0R 1G0, Canada

To demonstrate the responses of plant (Pakchoi) and soil to poly-γ-glutamic acid (γ-PGA) is essential to better understand the pathways of the promotional effect of γ-PGA on plant growth. In this study, the effects of γ-PGA on soil nutrient availability, plant nutrient uptake ability, plant metabolism and its distribution in a plant-soil system were tested using labeled γ-PGA synthesized from 13C\textsubscript{1}-15N-L-glutamic acid (L-Glu). γ-PGA significantly improved plant uptake of nitrogen (N), phosphorus (P), and potassium (K) and hence increased plant biomass. γ-PGA greatly strengthened the plant nutrient uptake capacity through enhancing both root biomass and activity. γ-PGA affected carbon (C) and N metabolism in plant, which was evidenced with increased soluble sugar contents and decreased nitrate and free amino acids contents. About 26.5\% of the γ-PGA-N uptake during the first 24 h, after γ-PGA application, was in the form of intact organic molecular. At plant harvest, 29.7\% and 59.4\% of γ-PGA-15N was recovered in plant and soil, respectively, with a 5.64\% of plant N nutrition being derived from γ-PGA-N. The improved plant nutrient uptake capacity and soil nutrient availability by γ-PGA may partly explain the promotional effect of γ-PGA, however, the underlying reason may be closely related to L-Glu.