Isotope studies in rock phosphates

Miyuki Maekawa1, Roland Bol2, Yajie Sun2, Liankai Zhang1, Silvia Haneklaus1 and Ewald Schnug1

1Institute for Crop and Soil Science, Julius Kühn-Institut, Federal Research Institute for Cultivated Plants, Bundesallee 50, Braunschweig, Germany (E-mail: miyuki.maekawa@julius-kuehn.de); 2Forschungszentrum Jülich IBG-3, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

Isotope studies comprise tracer experiments and the determination of isotope ratios in fertilizers. So, it is for instance possible to discriminate crops in relation to soil characteristics and fertilizer type which have been labeled with the 34S isotope by calculating δ^{34}S after measuring the ratio of stable 34S/32S isotope masses. The determination of the 87Sr/86Sr ratio proved to be suitable to distinguish phosphates bound in phosphorites from those in carbonatites. Such discrimination delivers further information about the contamination with heavy metals or rare earth elements which can be beneficiated and taken as raw material for industrial purposes. A major obstacle in fertilizer research is that the effective, long-term utilization of phosphate cannot be determined empirically as P is anisotopic with only one stable isotope, 31P so that fractionation studies are not feasible. Radioactive P tracers cannot be employed either as the half-live time of 33P is with only 25.3 days and that of 32P 14.3 days too short for long-term experiments. Accordingly, the geological origin of rock phosphates cannot be determined by stable P isotope ratios. Here, the δ^{18}O and activity ratio of 234U/238U are used to monitor provenances. It is the objective of this study to outline the current status of isotopic studies in rock phosphates, to summarize the significance of these data and to depict future analytical options in order to enable a proper attribution of the origin of rock phosphates and to follow up fluxes of contaminants in the environment.