Kretsch et al.

Towards the high-resolution mapping and isolation of virus resistance/tolerance genes derived from *H. bulbosum*

<u>Julia Kretsch</u>¹, Dragan Perovic¹, Antje Habekuß¹, Viktor Korzun², Klaus Oldach², Neele Wendler², Hélène Pidon³, Nils Stein³ and Frank Ordon¹

¹ Julius Kühn Institute, Institute for Resistance Research and Stress Tolerance, Quedlinburg

² KWS LOCHOW GMBH, Bergen

³ Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben

E-mail of corresponding author: julia.kretsch@julius-kuehn.de

Hordeum bulbosum is the only member in the secondary genepool of barley (H. vulgare) and hence owns a great genetic potential for barley breeding. This species holds resistances against many pathogens, for example against Barley mild mosaic virus/Barley yellow mosaic virus (BaMMV/BaYMV) or Barley yellow dwarf virus (BYDV). Both diseases cause high yield losses in barley. Furthermore, the control the of aphid-transmitted BYDV is becoming difficult due to governmental regulations concerning insecticides and the use of chemicals to control BaMMV/BaYMV, transferred by the soil-borne protist Polymyxa graminis, is not possible. Thus, breeding for resistance is the only possibility to protect barley against these diseases.

Different H. bulbosum introgression lines carry resistance against BaMMV/BaYMV (*Rym16^{Hb}*) and *Ryd₂₀₃₅₁₁^{Hb}* for tolerance against BYDV on chromosome 2HL. DH lines carrying an introgression containing *Rym16^{Hb}* or *Ryd_{203S11}^{Hb}* were identified and characterized using molecular markers. Blasting sequences of these markers against the barley reference sequence allowed anchoring the introgression to the physical map and a size of the introgression fragment of 4.2 Mb for the *Ryd*₂₀₃₅₁₁^{Hb} locus and 3 Mb for the $Rym16^{Hb}$ locus was calculated. Right now, F₂ populations carrying Ryd_{203S11}^{Hb} or $Rym16^{Hb}$ are genotyped by using co-dominant flanking markers to construct a high resolution mapping population. The recombination rate within the introgression was found to be approximately 0.5 %, which is lower than the intraspecific recombination rate within in the barley genome, most likely caused by the incomplete homology between the genome of *H. vulgare* and *H. bulbosum*.

As a basis for isolating the respective genes via a map-based cloning approach, recombinant plants will be selfed, phenotyped and saturated with markers using Exome capture, GBS and Illumina 50K data. A non-gridded BAC library will be utilized to construct a physical map of the target region of Ryd_{203511}^{Hb} . This map will help to identify candidate genes located in the *H. bulbosum* introgression fragment. In addition, a genotype-specific resistance of $Rym16^{Hb}$ will be examined by using resistance gene enrichment sequencing (RenSeq).

The authors thank the German Federal Ministry of Food and Agriculture (BMEL) for funding this project (FKZ 2818201515).