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Abstract 
The plum psyllid Cacopsylla pruni is a univoltine herbivore, specialized on Prunus and coniferous tree 

species. During their lifetime, plum psyllids are alternating twice between their deciduous and ev-

ergreen hosts. For reproduction, C. pruni adults migrate to stone fruit orchards in spring, where 

they lay their eggs exclusively on several Prunus species. Adults of the old generation die after mating 

and oviposition. Young adults emerge from egg to adults during April, May and June. After several 

days the young adults (called emigrants) emigrate to conifers in higher regions until they remigrate 

(remigrants) to Prunus orchards in the next spring.  

Plum psyllids transmit the Phytoplasma ‘Candidatus Phytoplasma prunorum’ and are there-

fore of significant importance for fruit growers. In host plants, the wall-less bacterium is restricted 

to the phloem and causes the European Stone Fruit Yellows (ESFY). Psyllids acquire the bacteria 

during feeding on the phloem of infected Prunus trees. After multiplication of the phytoplasma 

inside the vector, plum psyllids transmit the disease to non-infected Prunus trees by salivary excre-

tion during feeding. C. pruni is distributed all over Europe and bordering areas. ESFY is one of the 

most serious plant diseases in European fruit production, causing severe plant damage leading to 

a poor harvest and high economic losses. Peaches (Prunus persica), apricots (Prunus armeniaca) and 

Japanese plums (Prunus salicina) are worst affected by typical symptoms, such as reduced dormancy, 

chlorotic leaf roll and premature ripening of the fruits. Trees of these species suffer severely from 

the infections, decline and finally die. Commonly indigenous Prunus species, such as blackthorn 

(Prunus spinosa) und wild plums (Prunus cerasifera, Prunus insititia) show more tolerance towards ESFY 

infections. Likewise, most of the cultivated varieties of European plums (Prunus domestica) do not 

develop severe symptoms. 

To date no effective control agents or cures for phytoplasma diseases are available. The 

control of vector insects is an alternative strategy. Psyllid behavior could be manipulated with in-

fochemicals and prevent C. pruni from feeding and oviposition on stone fruit crops and thus reduce 

the number of new infections. In this thesis I investigated the impact of plant-borne volatiles and 

phloem chemistry on the behavior of C. pruni as yet barely anything is known about the biology 

and chemical ecology of plum psyllids.  

The field monitoring presented in this thesis proved a preference of C. pruni for some 

Prunus species over others. P. insititia was identified as a favored host of C. pruni, in contrast very 

low numbers of plum psyllids were detected on P. insititia trees, which was therefore categorized as 

a non-preferred host for C. pruni. In the studies of this thesis, I compared the volatile organic 

compounds and the phloem sap composition of these two Prunus species and Conifers, to identify 

signals that were important for host plant preference of C. pruni. I demonstrated the detection of 
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volatile compounds characteristic for Prunus trees as well as characteristic coniferous host volatiles 

of female plum psyllid antenna by electroantennography. Olfactometer tests revealed that this pref-

erence is not only based on olfactory cues. Additionally, gustatory cues seem to play a major role 

in host acceptance and preference. C. pruni nymphs showed greater development success on pre-

ferred wild plum species (P. insititia) compared to nymphs on non-preferred peach trees (P. persica). 

Next to effects on psyllid development, I detected differences in the phloem composition of both 

plant species.  

My research on the feeding behavior of plum psyllids on coniferous diets revealed that 

although C. pruni nymphs showed feeding on conifer needles, they are not able to develop on co-

nifers. In contrast, adult plum psyllids survived longer on spruce (Picea abies) and silver fir (Abies 

alba) than without food supply. I concluded that adult C. pruni need evergreen tree species as re-

source of water and nutrition during overwintering.  

Furthermore, I investigated the impact of ‘Ca. P. prunorum’ infections of Prunus trees on 

the interaction between vector insects and their host plants. For this purpose, I recorded the feed-

ing behaviour of C. pruni nymphs on infected and non-infected P. insititia and P. persica trees by 

electropenetrography. Interestingly, the average duration each nymph spend with the ingestion of 

xylem was shorter on infected than on non-infected Prunus trees. I found no influence on the 

average duration of phloem phases per nymph due to the infection status of both Prunus species. 

Chemical analysis of the phloem centrifugates showed that the chemical composition of trees in-

fected with ‘Ca. P. prunorum’ was indistinguishable from the composition of non-infected Prunus 

trees. In accordance, the development of C. pruni nymphs was not influenced by the infection of 

host plants.  

The knowledge obtained in this thesis is essential for the development of innovative and 

selective control strategies against C. pruni based on semiochemicals, such as push-pull and attract-

and-kill strategies. Further breeding programs of resistant Prunus cultivars should take the findings 

of this work into account.  
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Zusammenfassung 
Der Pflaumenblattsauger, Cacopsylla pruni ist eine univoltine Insektenart, welche sich mit ihren spe-

zialisierten Mundwerkzeugen stechend-saugend vom Phloem ihrer Wirtspflanzen ernährt. Wäh-

rend ihres Lebens alternieren Pflaumenblattsauger zwischen laubtragenden Prunus-Bäumen und 

immergrünen Koniferen. Zu Beginn des Frühjahrs fliegen die adulten Blattsauger in Steinobstan-

lagen, wo sie ihre Eier bevorzugt auf bestimmte Prunus-Arten ablegen. Nach der Paarung und der 

Eiablage sterben die Individuen der alten Generation (Remigrants). Die nächste Generation entwi-

ckelt sich von April bis Juni. Die jungen Adulten (Emigrants) bleiben noch einige Tage auf den 

Steinobstbäumen, bevor sie auf Nadelbäume in höheren Lagen abwandern. Dort verbleiben sie bis 

zum nächsten Frühjahr, in welchem sie zwecks Reproduktion wieder zurück zum Steinobst wan-

dern.  

Das Verbreitungsgebiet des Pflaumenblattsaugers erstreckt sich über Europa und angren-

zende Gebiete. Von Relevanz für den Obstanbau ist C. pruni hauptsächlich wegen seiner Fähigkeit, 

das Phytoplasma ‘Candidatus Phytoplasma prunorum’ zu übertragen. Dabei handelt es sich um ein 

zellwandloses Bakterium, welches in seinen Wirtspflanzen ausschließlich im Phloem verbreitet ist. 

Wenn die Pflaumenblattsauger an infizierten Prunus-Bäumen saugen, nehmen sie die Phytoplasmen 

aus dem Phloem auf. Nachdem sich die Bakterien in den Insekten vermehrt haben, können sie 

über den Speichel der Blattsauger auf gesunde Prunus-Bäume übertragen werden. ‘Ca. P. prunorum’ 

ruft die sog. Europäische Steinobstvergilbung (European Stone Fruit Yellows, ESFY) hervor. Da-

bei handelt es sich um eine der bedeutendsten Pflanzenkrankheiten im Europäischen Obstanbau, 

welche zu massiven Ernteausfällen und wirtschaftlichen Einbußen führt. Von den typischen Symp-

tomen, wie dem verfrühten Austrieb, dem chlorotischen Blattrollen und der Notreifung der 

Früchte, sind vor allem für den Anbau kultivierte Sorten von Pfirsichen (Prunus persica), Aprikosen 

(Prunus armeniaca) und Japanischen Pflaumen (Prunus salicina) betroffen. In diesen Arten führt die 

Infektion innerhalb weniger Jahre zum Absterben der Bäume. Heimische Arten wie Schlehen 

(Prunus spinosa) und wilde Pflaumen (Prunus cerasifera, Prunus insititia) zeigen meist keine schwerwie-

genden Symptome, ebenso die meisten kultivierten Sorten von Pflaumen (Prunus domestica).  

Bis heute gibt es keine Maßnahmen zur Bekämpfung von Phytoplasmosen. Eine Alterna-

tive stellt die Regulation der Vektorinsekten dar. Mit Hilfe sogenannter Infochemikalien könnte 

das Verhalten der Blattsauger so manipuliert werden, dass diese aus den Steinobstanlagen fernge-

halten werden. Dadurch kann die Anzahl der Neuinfektionen mit ESFY gemindert werden. Da 

bisher nur wenig über die Biologie und Ökologie des Pflaumenblattsaugers bekannt ist, habe ich in 

der vorliegenden Arbeit den Einfluss von pflanzenbürtigen Duft- und Inhaltsstoffen auf das Ver-

halten und die Fitness von C. pruni untersucht.  
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Anhand von Feldstudien zum Vorkommen von C. pruni in verschiedenen Prunus-Arten 

identifizierte ich welche Wirtspflanzen von C. pruni bevorzugt besiedelt werden. Dadurch konnte 

ich P. insititia als eine der bevorzugten Prunus-Arten einstufen. Im Gegensatz dazu wurden nur 

wenige Pflaumenblattsauger auf P. persica Bäumen gefunden. In den Studien zur Wirts-Präferenz 

von C. pruni der vorliegenden Arbeit wurden die Duft- und Inhaltsstoffe dieser beiden Prunus-Arten 

und Koniferen verglichen, um den Einfluss von olfaktorischen und gustatorischen Reizen auf das 

Verhalten der Pflaumenblattsauger zu beurteilen. Mit der Aufzeichnung von Elektroantennogram-

men konnte ich zeigen, dass Pflaumenblattsauger Weibchen sowohl volatile Substanzen aus dem 

Duft von Prunus-Bäumen als auch typische Nadelbaumdüfte wahrnehmen können. An Hand von 

Olfaktometerversuchen mit C. pruni konnte ich jedoch die Bevorzugung bestimmter Wirtspflanzen 

nicht allein auf olfaktorische Reize zurückführen. Daher untersuchte ich ebenfalls den Einfluss der 

Pflanzeninhaltstoffe auf C. pruni. In einer Entwicklungsstudie konnte ich beweisen, dass sich 

C. pruni Nymphen besser auf der präferierten wilden Pflaumenart P. insititia, als auf der weniger

bevorzugten kultivierten Pfirsichsorte P. persica cv. South Haven entwickeln können. Die Entwick-

lungsunterschiede korrelieren mit den Ergebnissen meiner Untersuchung zur Zusammensetzung

des Phloemsaftes beider Prunus-Arten. Für die Präferenz von bestimmten Wirtspflanzen scheinen

gustatorische Reize für C. pruni wichtiger zu sein als olfaktorische Signale.

Dass die Zusammensetzung des Pflanzensaftes eine wichtige Rolle für C. pruni spielt, 

konnte ich durch weitere Entwicklungsstudien an Koniferen bestätigen. Es zeigte sich, dass sich 

C. pruni Nymphen nicht auf Nadelbäumen entwickeln können, auch wenn sie Pflanzensaft von

Koniferen aufnehmen. Adulte C. pruni hingegen überleben signifikant länger auf Nadelbäumen als

ohne Nahrungsquelle. Woraus ich schließe, dass sie die immergrünen Nadelbäume als Wasser- und

Nährstoffquellen im Winter benötigen und daher auf den Wirtswechsel angewiesen sind.

Des Weiteren wurde in der vorliegenden Arbeit untersucht, ob sich eine Infektion mit 

‘Ca. P. prunorum’ auf die Interaktion zwischen den Vektorinsekten und ihren Wirtspflanzen aus-

wirkt. Zu diesem Zweck wurde das Saugverhalten der Nymphen an ESFY-infizierten und nicht-

infizierten P. insititia und P. persica Bäumen mittels Elektropenetrographie untersucht. Dabei zeigte 

sich, dass sich die Infektion der Prunus-Pflanzen nur auf die mittlere Dauer der Aufnahme von 

Xylemsaft auswirkt. C. pruni-Nymphen saugten durchschnittlich weniger am Xylem von infizierten 

Prunus-Bäumen. Die durchschnittliche Dauer der Saugaktivität im Phloem der Wirtspflanzen wurde 

nicht durch die Infektion beeinflusst. Zusätzlich analysierte ich den Inhalt des Phloems. Dabei war 

es nicht möglich, dessen chemische Zusammensetzung auf Grund der ‘Ca. P. prunorum’ Infektion 

zu unterscheiden. In Übereinstimmung mit diesen Ergebnissen wirkte sich die Infektion der Wirts-

pflanzen nicht auf die Entwicklungsgeschwindigkeit von C. pruni-Nymphen aus.  
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Die in dieser Arbeit neu gewonnen Erkenntnisse zur chemischen Kommunikation von 

C. pruni bilden die Grundlage für die Entwicklung von innovativen und selektiven Bekämpfungs-

methoden, basierend auf Semiochemikalien, wie Push-Pull-Systeme und Attract-and-Kill-Strate-

gien. Zudem sollten die Ergebnisse bei der Züchtung von resistenten Prunus Sorten berücksichtigt

werden.
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1. Introduction 

1.1. Psyllids 

General  

Psyllids or jumping plant lice belong to the order of Hempiptera. Today eight psyllid families are 

classified, which consist of about 3850 species distributed nearly all over the world (Burckhardt 

and Ouvrard, 2012; Hodkinson, 2009). Around 400 species are known to occur in Europe (Jarausch 

et al., 2019a). Some species in the genus Cacopsylla in the Psyllidae family colonize Rosacea species 

cultivated for fruit production and cause economical damage, in the main affecting apple, pear and 

stone fruits (Hodkinson, 2009; Jarausch et al., 2019a).  

Life history 

The lifecycle of psyllids consists of an egg-stage and five nymphal instars (Fig. 1c, d). Unwinged 

nymphs are dorsoventrally flattened and mobile (Ossiannilsson, 1992). In European Cacopsylla spe-

cies two different life-history strategies have evolved. Some species, such as the pear psyllids 

Cacopsylla pyri and Cacopsylla pyricola, are polyvoltine, producing up to five overlapping generations 

annually and hibernate on deciduous Rosacea species (Hodkinson, 2009; Lauterer, 1999). In con-

trast, related species are univoltine and migrate between divergent plant species (Fig. 3). Best-

known examples are Cacopsylla picta, Cacopsylla melanoneura and Cacopsylla pruni. These species repro-

duce on plants belonging the rose family, but the newly emerged adults (called emigrants) leave the 

trees after some days to weeks and migrate to conifers in higher regions (Hodkinson, 2009; Ossi-

annilsson, 1992; Thébaud et al., 2009). In early spring, the same individuals remigrate (remigrants) 

to rosaceous trees for mating and oviposition (Gallinger et al., 2019a; Labonne and Lichou, 2004; 

Mayer et al., 2011). Even though such a host alternation enables insects to avoid unfavorable en-

vironmental conditions and offers new options, migration flights are costly (Rankin, 1992). Next 

to energy costs for the flight, it commonly includes reproductive costs. In addition, migration be-

havior carries further risks, as well as the challenge of finding suitable hosts over distance (Rankin, 

1992).  Until today reasons and mechanisms of the host alternation of European psyllid species are 

under-investigated. 

Phloem feeding 

Insects are selective feeders. Besides the specialization to host ranges, resource specialization is a 

common concept in herbivorus insects. Feeding on specific plant parts and specialized feeding 

mechanisms can be classified in different feeding-guilds (Novotny et al., 2010). Psyllids are phy-

tophagous hemipterans. The nymphs and the adults feed with their piercing-sucking mouthparts 

on the phloem sap of plants (Price et al., 2011; Schoonhoven et al., 2005). Therefore, psyllids as 

other phloem-feeders have to face the challenge of utilization of phloem content for nutrition. The 
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main function of the phloem tissue is the long-distance translocation of photoassimilates from 

source to sink organs in plants (Patrick, 2013). Commonly carbon is translocated in the form of 

sucrose, raffinose or sugar alcohols, such as sorbitol, mannitol or dulcitol (Lambers et al., 2008). 

In addition, organic acids including amino acids, which are the major source of nitrogen in animals, 

are transported through the phloem (Douglas, 2006). Nonetheless, sugars are dominating the 

phloem sap and amino acids are scarce. Feeding compensation occurs in phloem-feeders to ingest 

sufficient essential amino acids, but lead to an uptake of more carbohydrates than required (Price 

et al., 2011). To get rid of the surplus sugars, phloem-feeding insects excrete undigested sugars as 

honeydew (Douglas et al., 2006). Additionally, in the gut of psyllids and other hemipterans, several 

endosymbionts are found that might provide their hosts with additional nutrients (Baumann, 2005; 

Cooper et al., 2017; Douglas, 2003). Next to resources movement, phloem plays an important role 

in plant defense, as phytohormones are distributed via the phloem (see chapter 1.3). Furthermore, 

specialized bacteria can colonize the phloem tissue, causing severe plant diseases (see chapter 1.2). 

In addition to direct damage due to mass occurrence, some psyllid species harm their host plants 

by infecting them with phloem dwelling bacteria. One of these bacteria transmitting species is the 

plum psyllid C. pruni.   

Cacopsylla pruni 

Cacopsylla pruni (Scopoli, 1763) (Figure 1) migrates between Prunus and coniferous trees (Fig. 3) as 

described above and reproduces exclusively on some species belonging to the Prunus genus. 

Whereas newly emerged emigrants are light green (Figure 1e) and turn into orange to pale brown 

with grayish forewings after some days (Figure 1f), the overwintered remigrants are red-brown 

colored with characteristic dark brown forewings (Figure 1a, b). C. pruni is abundant in stone fruit 

growing areas all over Europe (Fialová et al., 2004; Fialová et al., 2007; Jarausch et al., 2008; Ja-

rausch et al., 2019b; Jarausch et al., 2019a; Labonne and Lichou, 2004; Maier et al., 2013; Mer-

genthaler et al., 2017; Sabaté et al., 2016; Yvon et al., 2004). In field surveys diverging preferences 

for different Prunus species and genotypes are reported. Commonly C. pruni is most abundant on 

Prunus spinosa and Prunus cerasifera, varying numbers are found on Prunus domestica genotypes (La-

bonne and Lichou, 2004; Mergenthaler et al., 2017). In Spain, high numbers are also captured in 

wild Prunus mahaleb (Sabaté et al., 2016). C. pruni is able to survive on Prunus amygdalus, Prunus arme-

niaca, and Prunus persica (Carraro et al., 2004a), but field studies monitored less individuals on species 

cultivated for fruit production, such as apricots (P. armenica), peaches (P. persica) and Japanese plums 

(P. salicina) in the field (Mergenthaler et al., 2017; Warabieda et al., 2018). Nonetheless plum psyllids 

cause severe damage to these fruit crops, because they transmit the pathogen ‘Candidatus Phyto-

plasma prunorum’ (Jarausch et al., 2008; Jarausch et al., 2019a).  
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1.2. Phytoplasma 

General  

Phytoplasmas are cell wall-less obligate parasitic bacteria, causing severe diseases in plants. They 

have small linear chromosomes and show limited function of metabolic pathways. Therefore, they 

rely on their host for nutrition (Bai et al., 2006; Kube et al., 2008; Marcone et al., 1999). In their 

Figure 1: Developmental stages of Cacopsylla pruni: a) overwintered female remigrants; b) male 

remigrant; c) egg on the abaxial leaf surface; d) 5th instar nymphs on a lateral branch producing 

honeydew; e) newly emerged adult female; f) 3 day old female emigrant. 

a b 

c d 

e f 
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specific host plants, they are restricted to the phloem tissue (Pagliari and Musetti, 2019). Sap suck-

ing insects, such as leafhoppers, planthoppers, cicadas and psyllids, acquire the bacteria during 

feeding at the phloem of infected plants (acquisition feeding). If insects ingest sufficient amount 

of phytoplasmas they are able to establish in the vector. During the latent period the pathogens 

invade the insect gut, move into the haemocoel and multiply. When phytoplasmas insert the sali-

vary glands, infected insects are able to transmit the pathogen to healthy plants through their saliva 

during phloem-feeding (inoculation feeding) (Carraro et al., 1998; Hogenhout et al., 2008; Thébaud 

et al., 2009).  

‘Ca. P. prunorum’ and European stone fruit yellows 

Lorenz et al. (1994) discovered that previously known yellowing diseases of several stone fruits 

such as apricot chlorotic leafroll (ACLR), plum leptonecrosis (PLN), peach yellowing and plum 

decline are caused by the same phytoplasma and introduced the name European stone fruit yellows 

(ESFY) phytoplasma. Ten years later Seemüller and Schneider (2004) revealed the close relation-

ship between apple proliferation (AP), pear decline (PD) and European stone fruit yellows phyto-

plasmas, belonging to the apple proliferation group (16SrX) and proposed the name ‘Ca. P. pruno-

rum’ for the causal agent of ESFY. In contrast, the so-called peach X-disease, distributed in North 

America, is caused by ‘Candidatus Phytoplasma pruni’, belonging to a different phytoplasma sub-

group (Lee et al., 2000; Lorenz et al., 1994). The most characteristic symptoms of ESFY are the 

enlargement of midribs and swollen main lateral veins as well as chlorotic leafroll and yellow-

ing/reddening of leaves (Figure 2). In some species off-season growth and a premature bud brake 

has been recorded after ESFY infections (Lorenz et al., 1994; Marcone et al., 2010; Smith, 1997). 

Japanese plums infected by vector transmission show an incubation period of 4-5 month before 

first symptoms are visible (Carraro et al., 1998). Infected apricots are reported to die within 12-24 

month after appearance of symptoms (Smith, 1997). Additionally, fruit set and pollen germination 

in some diseased apricots cultivars is decreased, indicating a loss in fruit yield (Nečas et al., 2017). 

In general severity of disease and symptom manifestation is variable, depending on the susceptibil-

ity of Prunus species and genotype as well as phytoplasma strain virulence (Kison and Seemüller, 

2001; Koncz et al., 2017; Richter, 2002). Although infected wild P. spinosa, P. cerasifera commonly 

remain symptom free, these plants may harbor ‘Ca. P. prunorum’ and represent a pathogen reser-

voir (Carraro et al., 2002). ESFY is reported from nearly all apricot and peach growing areas in 

central and southern Europe: Germany (Jarausch et al., 2008; Jarausch et al., 2019b), France (Ja-

rausch et al., 2001; Thébaud et al., 2006; Yvon et al., 2004), Austria (Laimer Da Câmara Machado 

et al., 2001), Switzerland (Ramel and Gugerli, 2004), Italy (Marcone et al., 1996; Poggi Pollini et al., 

2007; Poggi Pollini et al., 2010), Spain (Sabaté et al., 2016; Torres et al., 2004), Hungary (Koncz et 

al., 2017; Mergenthaler et al., 2017; Tarcali et al., 2014), Romania, Slovenia (Steffek et al., 2012) and 
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the Czech Republic  (Fialová et al., 2004; Fialová et al., 2007; Nečas et al., 2017). In Poland 

‘Ca. P. prunorum’ is present but actually not rated as a dangerous threat to Polish stone fruit pro-

duction (Warabieda et al., 2018). ESFY phytoplasma has also been detected in Prunus cultivars in 

Azerbaijan (Balakishiyeva et al., 2010), Turkey (Ulubaş Serçe et al., 2006) and in the African coun-

tries Egypt (Steffek et al., 2012) and Tunisia (Khalifa et al., 2011). There is evidence that 

‘Ca. P. prunorum’ is transovarial transmitted within C. pruni (Tedeschi et al., 2006). Transmission 

trails revealed that both adults and nymphs are able to transmit the phytoplasma (Carraro et al., 

1998). 1st instar nymphs acquired the bacteria after 2 to 4 days on infected plants followed by a 

varying latency period that lasted at minimum 2 weeks (Carraro et al., 2001). The bacteria are per-

sistent in C. pruni. Therefore, infected individuals that migrate to Prunus after overwintering are very 

infectious (Carraro et al., 2001; Carraro et al., 2004b; Thébaud et al., 2009). A study on the presence 

of ‘Ca. P. prunorum’ in flowers, fruits, seedlings and pollen indicate no bacterial transmission by 

seeds or pollen (Nečas et al., 2017). 

Figure 2: P. persica plant and leaf a) without ESFY and b) infected with ‘Ca. P. prunorum’, showing 

characteristic leaf yellowing and reduced growth.  

Crop protection measurements - current situation 

Crop protection measurements against phytoplasmas do not exist. Attempts to cultivate phytoplas-

mas in artificial media still fails, impeding the development of cures. In the European Union ESFY 

and further phytoplasma associated diseases are quarantine (Smith, 1997) and regulated in the 

Council Directive 2000/29/EC (Council of the European Union, 2000). Today the use of verified 

healthy rootstocks and cultivars as well as clearing of infected trees are the only possible phytosan-

itary measures to prevent the spread of ESFY. Alternatively, an effective strategy for vector control 

could help to reduce the pathogen spread. In 2015 the only approved insecticide against C. pruni in 



1. Introduction

11 

Germany expired the authorization for application (Bundesamt für Verbraucherschutz und Le-

bensmittelsicherheit, 2018). The control of C. pruni with insecticides cypertmethrin (pyretroid) and 

thiacloprid (neonicotinoid) was very effective, but came along with risks of those non-selective 

chemicals for pollinators and other beneficial insects (Paleskić et al., 2017). Therefore, the devel-

opment of eco-friendly plant protection measurements should be the future aim. A selective and 

environmentally friendly control strategy could be based on semiochemicals (Gross and Günder-

mann, 2016). 

1.3. Chemical communication 

General 

The metabolism of chemical substances and the development of chemical sense in plants and in-

sects enables these organisms to interact with each other and their environment. Chemicals that 

release behavioral responses in intra- and interspecific communications are also referred to as sem-

iochemicals. Pheromones are semiochemicals used in intraspecific interactions (Karlson and Lü-

scher, 1959). Insects for example, use pheromones to find mating partners, to mark trails to food 

sources or to alert conspecifics to threats, such as predators (Regnier and Law, 1968; Schoonhoven, 

1990). The communication between individuals from different species is based on metabolites 

called allelochemicals. Nordlund and Lewis (1976) categorized these chemicals in regard to their 

impact on the emitter and receiver. While allomones are beneficial for the emitter but have adverse 

effects in the receiver, kairomones are detrimental for the emitter but have advantages for the 

receiver (Nordlund and Lewis, 1976). Common examples for allomones are plant volatiles that 

repel or nonvolatile substances that deter phytophagous insects and save the plant from herbivore 

attack. In contrast, kairomones are e.g. plant volatiles that attract phytophagous insects to their 

hosts (Price et al., 2011). Signals that benefit the emitter as well as the receiver, such as plant vola-

tiles elicited after herbivore attack that attract predators or parasitoids, are defined as synomones 

(Price et al., 2011).  

Host finding and acceptance by herbivores 

Insects show different degrees of host specializations. Many herbivorous insects are specialized to 

a narrow range of host plants (monophagous and oligophagous), which they accept for feeding and 

oviposition (Bernays and Graham, 1988). Therefore, the detection of suitable host plants is crucial 

for survival and reproductive success and phytophagous insects developed sophisticated chemore-

ceptors to locate and identify their hosts due to volatile and nonvolatile metabolites. In general, 

visual and olfactory cues are important for the orientated movement (searching behavior) over 
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distance (Deletre et al., 2016; Schoonhoven et al., 2005). Commonly, herbivorous insects use blends 

of several plant-emitted volatiles to identify and locate suitable hosts (Bruce and Pickett, 2011). 

After landing on the plant, physical factors of the surface and gustatory cues become important for 

host plant evaluation (Schoonhoven et al., 2005; Visser, 1988). Insects can use information from 

nonvolatile secondary plant metabolites, such as epicuticular waxes on the plant surface that can 

promote acceptance of host plants for feeding and oviposition (Müller and Riederer, 2005; Powell 

et al., 1999; Rid et al., 2018). Additionally, primary metabolites affect host selection. The content 

of primary metabolites enables insects to recognize food quality, which is for this very reason im-

portant for food selection process. Gustatory receptor neurons located on the mouthparts and tarsi 

enable insects to perceive information from the plant surface and the inside of the plant tissue 

(Chapman, 2003). The carbohydrates sucrose and fructose act as feeding stimulants for phytopha-

gous insects (Mittler and Dadd, 1963; Arn and Cleere, 1971). Phagostimulatory neurons that re-

spond to sorbitol are detected in caterpillars of Lepidopteran species specialized to Rosacea, as 

sorbitol is a characteristic metabolite in rosaceous plants (Chapman, 2003; Ziegler and Mittler, 

1959). Lapointe et al. (2016) elaborated a three-component blend that stimulates the stylet pene-

tration of Asian Citrus Psyllid, Diaphorina citri. In contrast, deterrents inhibit feeding or oviposition. 

Some phenolic compounds are shown to act as antifeedants for hemipterans (Dreyer and Jones, 

1981; Grayer et al., 1994), but specific compounds that deter psyllids from feeding are not yet 

identified. 

Plant defense 

Several defense mechanisms have evolved in plants, enabling the sessile organisms to defend them-

selves against attacking herbivores and microbes. Some morphological and chemical mediated pro-

tections are constitutive in plants while others are produced only in response to insect feeding or 

infestations with microbial pathogens (Baker et al., 1997; Chisholm et al., 2006; Karban and Bald-

win, 1997; War et al., 2012). For example, the production of allomones, which repel or deter at-

tacking herbivores, as well as synomones, which indirectly defend the plant by luring predators or 

parasitoids of the herbivores, can be induced (Schoonhoven et al., 2005). An example of wide-

distributed physical defense are trichomes, the formation of which is constitutive but can also be 

increased in response to herbivory (Dalin et al., 2008). Induced plant responses are regulated by 

phytohormones, signal molecules that regulate physiological and metabolic processes in plants. 

Plant responses towards biotic stress appear diverse and complex and depend on the type of enemy 

and attack, as well as on the degree of damage and the wounded plant part. Two main pathways 

are induced by enemy attack depending either on jasmonic acid (JA) or salicylic acid (SA). Chewing-

biting herbivores cause severe physical damage to plant tissue. Next to wound responses, as reac-

tion to the mechanical wounding, molecules in regurgitates and saliva from insects are recognized 
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by the plant and elicit specific immune reactions (Felton and Tumlinson, 2008; Walling, 2000). 

Receptors in the plant bind the elicitors and induce the production of jasmonates that activate 

specific defense mechanisms, such as the production of specific volatiles, alkaloids, trichomes or 

extrafloral nectar (Heil and Ton, 2008). Salicylic acid plays a major role in plant defense against 

biotrophic pathogenic microorganisms, such as fungi, viruses and bacteria, depending on living 

plant tissue (Ma and Ma, 2016; Robert-Seilaniantz et al., 2011).  

Similar pathways are activated by piercing-sucking herbivores, causing minimal and local-

ized injury to the plant tissue. Elicitors in the saliva of phloem-feeding insects, or microbes induce 

plant defense mechanisms such as sieve tube occlusion (Chisholm et al., 2006; Will et al., 2013; Will 

and van Bel, 2006). In some cases, the SA as well as the JA pathway is activated. For example, 

pathogens or microbes from the plant surface can attach to herbivores and may enter into plant 

tissue during herbivore feeding (Felton and Tumlinson, 2008).  

Information about induction of phytohormones in response to psyllid attack is rare. No 

literature is available on the phytohormone concentrations in Rosacea after Cacopsylla infestation.  

Nehela et al. (2018) revealed higher concentrations of auxins, SA, JA and abscisic acid (ABA) in 

leaves from Citrus sinensis trees infested with D. citri compared to leaves from non-infested trees. 

Ibanez et al. (2019) confirmed the accumulation of SA and SA metabolites in C. sinensis leaves in 

response to long time infestations with D. citri. To date the number of studies on the role of the 

phytohormones (ethylen, abscisic acid, auxins and cytokinins) on plant defense mechanisms and 

the crosstalk of different hormones are rising (Robert-Seilaniantz et al., 2011; Thaler et al., 2012), 

illustrating the complex interplay between herbivores, microorganisms and plants.   
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The transmission of ‘Ca. P. prunorum’ by C. pruni causes severe threats to several cultivated stone 

fruit crops. Studies focusing on the epidemiology of ESFY and the abundance of the vector in fruit 

orchards are dominating the literature, but little is known about the biology of the vector insect. A 

broad knowledge about C. pruni could help to develop specific, innovative and sustainable plant 

protection measurements and lower the spread of ESFY. 

Figure 3: Life cycle of C. pruni and influence of olfactory and gustatory senses on different life cycle 

aspects on deciduous and coniferous trees and during migration that were investigated in this thesis: 

a) host finding and preference, b) migration between conifers and stone fruit trees, c) triggering

migration flight, d) phytoplasma infection of host trees.

Therefore, I focused my research on the impact of infochemicals on several life cycle aspects of 

C. pruni and the role of ‘Ca. P. prunorum’ in plant – insect interaction (Fig. 3).

I addressed the following research questions 

• Which chemical cues influence the host finding and host preferences of C. pruni (Fig. 3a)?

• Why is C. pruni migrating between Prunus and conifers (Fig. 3b)?

• Are volatile organic compounds influencing the migration behavior (Fig. 3c)?

• Which impact has an infection of Prunus trees by ‘Ca. P. prunorum’ on the feeding behavior

and development of C. pruni? Are the behavior and development influenced by gustatory cues

(phloem chemistry) (Fig. 3d)?
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2. Summary of publications

Publication 1 

Collection, Identification, and Statistical Analysis of Volatile Organic Compound Pat-

terns mitted by Phytoplasma Infected Plants 

Jürgen Gross, Jannicke Gallinger and Margit Rid 

Published 2019 in: Musetti R, Pagliari L (eds) Phytoplasmas: Methods and Protocols. Springer, 

New York, pp 333–343 

The analysis of volatile organic compounds (VOCs) is an important tool for chemical ecologists. 

In this protocol, we present headspace sampling methods and give advice for the chemical analysis 

of VOC samples and the handling and evaluation of measured data. The chapter focuses on the 

special case of comparison of VOC compositions from phytoplasma infected and non-infected 

host plants. The described approach in general is certainly suitable for different kind of studies 

investigating volatile metabolites from the atmosphere.  

Different devices for headspace sampling and ideal accessories are listed that minimize 

contaminations and allow exact and comparable sampling. The use of a portable sampling device, 

developed by the working group, is described in more detail. The chemical analysis by gas chroma-

tography followed by mass spectrometry (GC-MS) is recommended and the identification and 

quantification with AMDIS software (Automated Mass Spectral Deconvolution and Identification 

System) is explained in detail. Appropriate multivariate statistical methods to visualize and calculate 

similarities and differences in compositional data are shortly introduced and discussed. Addition-

ally, we provide an R-script to convert the AMDIS output in a compositional dataset that is needed 

for further statistical analysis.  

The described procedure of headspace sampling and analysis was used for the comparison of VOC 

patterns emitted from different host plants of C. pruni reported in publication 2. In addition, the 

identification and quantification with AMIDS and the statistical evaluation of GC-MS data were 

used for the analysis of phloem and xylem content compositions in publication 3 and 4.   



2. Summary of publications

16 

Publication 2 

Host Plant Preferences and Detection of Host Plant Volatiles of the Migrating Psyllid 

Species Cacopsylla pruni, the Vector of European Stone Fruit Yellows 

Jannicke Gallinger, Barbara Jarausch, Wolfgang Jarausch, Jürgen Gross 

Published 2019 in: Journal of Pest Science 

Cacopsylla pruni migrates between Prunus trees for reproduction and coniferous trees for overwin-

tering. Hence, C. pruni needs to locate host plants of divergent classes over great distance. Insects 

commonly use volatile signals to locate their host over distance. The detection and reaction of C. 

pruni towards VOCs from Prunus and coniferous hosts was investigated in this study. It was hy-

pothesized that volatile signals could trigger the migration behavior, if Prunus VOCs are repellent 

and odors from conifers are attractive for young adults (emigrants) and vice versa for remigrants. 

Additionally, monitoring studies report differences in the abundance of C. pruni on several Prunus 

species. Thus far, the impact of plant volatiles on this preference of C. pruni for some Prunus species 

over others and on the migration behavior was not investigated before.  

In this study, we monitored the preference of C. pruni for different Prunus cultivars by beat-

ing tray method in the field over three years, to identify favored Prunus species. We caught high 

numbers of C. pruni from P. spinosa, Prunus besseyi × P. cerasifera and P. insititia. We showed a low 

abundance of C. pruni on P. persica and P. armeniaca trees and confirmed them as non-preferred 

hosts of plum psyllids. We choose to sample the headspace of P. insititia cv. ‘GF655-2’, which was 

considered as an attractive cultivar and the non-attractive P. persica cv. ‘South Haven’. In addition, 

volatile samples were collected from silver firs (Abies alba) exemplary for conifers as overwintering 

hosts. VOCs were sampled directly in the field (as described in publication 1) at several develop-

mental stages of the plants. In total, we determined 114 VOCs and compared their composition in 

the headspace of the three host species at different phenological stages. Aldehydes (hexanal, oc-

tanal, nonanal, decanal, dodecanal), the ketone 1-phenylethane-1-one and the alkane tridecane were 

identified to be characteristic for Prunus odor profiles. Especially at early developmental stages of 

the plants high proportions of these compounds contributed to the volatile composition. Their 

relative amount decreased over time, because green leaf volatiles (GLV) (Z)-3-hexene-1-ol and (Z)-

3-hexenyl acetate dominated the odor samples with progressing leaf development. Overall, low

relative abundances of terpenes were detected in samples from both Prunus species. In contrast,

the following terpenes were characteristic for the odor of silver firs: camphene, myrcene, terpino-

lene, alpha-pinene and limonene. Another characteristic compound in silver fir samples was bornyl
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acetate, the acetate ester of the terpene borneol. We found no differences in the odor profiles from 

A. alba between the two sampling times (spring and fall). We tested the detection of the character-

istic VOCs by C. pruni females with electroantennography. All selected aldehydes except dodecanal

and all tested terpenes released a significant antennal response. Additionally, the psyllid antenna

reacted to the application of (Z)-3-hexenyl acetate and 1-phenylethane-1-one. The application of

dodecanal, (Z)-3-hexene-1-ol, tridecane and bornyl acetate did not elicit receptor potentials greater

than solvent application. At least we investigated the preference of C. pruni remigrants and emi-

grants for the different host plants in olfactometer trails. Contrary our expectations, remigrants did

not prefer P. insititia plants over P. persica plants, if plant odors are offered simultaneously in an y-

shaped olfactometer. Furthermore, neither remigrants nor emigrants showed a preference for

P. insititia or A. alba odors if offered simultaneously.

Our field survey proved that C. pruni has divergent preferences for Prunus species and our 

EAG study confirmed that C. pruni is able to detect characteristic host plant volatiles. Nonetheless, 

the preferences for different Prunus species are not mediated by plant odors alone. Additional cues, 

such as visual and / or gustatory stimuli must have some influence on plant preference of C. pruni. 

Even though C. pruni females detected VOCs from coniferous plants as well as from Prunus, which 

enables them to locate their desired hosts for reproduction and overwintering. The migration flight 

of C. pruni seems not to be triggered by changing attractiveness or repellence of plant odors de-

pended on the age of C. pruni. We conclude that other factors, such as gustatory cues, play an 

important role in host acceptance and migration behavior of C. pruni. Therefore, the impact of the 

chemical composition of host plant phloem and xylem was investigated in the following publica-

tions 3 and 4.  
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Publication 3 

Unraveling the Host Plant Alternation of Cacopsylla pruni – Adults but Not Nymphs 
Can Survive on Conifers Due to Phloem/Xylem Composition 

Jannicke Gallinger, Jürgen Gross 

Published 2018 in: Frontiers in Plant Science 

To unravel the reasons for migration of plum psyllids between conifers and Prunus trees, we inves-

tigated the feeding behavior, development and survival of C. pruni on different host plants in this 

study. We recorded electrical penetration graphs (EPG) of emigrants and fifth instar nymphs on 

several coniferous trees and P.  domestica cv. Wavit. With these recordings, we were able to demon-

strate that a migrating psyllid species actually feeds on conifer diet. In accordance with this, the 

bioassays revealed that newly emerged emigrants survive on P. abies and A. alba as long as on P. do-

mestica. On all plants, they survived significantly longer than without food supply. This results 

demonstrate that C. pruni adults rely on coniferous diet to survive the winter. EPG studies further 

showed that also nymphs penetrate conifer needles and ingest plant saps. We therefore concluded 

that conifer volatiles do not repel C. pruni nymphs and no mechanical barriers hinder them to feed 

on conifers. If C. pruni feeds on conifers, the question arises why they need to migrate to Prunus. 

We therefore investigated the development of nymphs on P.  domestica, P. abies and A. alba 

We found that although C. pruni nymphs show feeding behavior on conifers, they were not able to 

develop from second instar to adult stage on these plants, as all nymphs died on the investigated 

conifers. In contrast, 92% adults eclosed from nymphs developed on P. domestica. To identify com-

ponents that could affect the feeding and development of C. pruni the phloem and xylem sap was 

extracted from A. alba, P. abies, Larix decidua, Pinus sylvestris and P. domestica trees by centrifugation 

technique. We derivatized sugars, sugar alcohols, amino acids and other organic acids in plant sap 

centrifugates and analyzed the samples via GC-MS. Afterwards we compared the composition of 

these metabolites between the different plant species (as described in Pub.1). The sugar alcohol 

sorbitol was the main compound in samples from P. domestica. In contrast, we did not detect sorbi-

tol in sap samples from conifers, which contained great proportions of pinitol instead. Caffeic acid 

and a great proportion of asparagine was characteristic for P. domestica saps. In contrast, conifer 

plant saps contained no caffeic acid but high proportions of quinic acid. On one hand sorbitol or 

caffeic acid, which were exclusively found in Prunus sap samples, could act as phagostimulants. On 

the other hand, compounds in coniferous diet could act as deterrents for C. pruni nymphs.  
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Publication 4 

Phloem Metabolites of Prunus sp. rather than Infection with ‘Candidatus Phyto-
plasma prunorum’ Influence Feeding Behavior of Cacopsylla pruni Nymphs 

Jannicke Gallinger, Jürgen Gross 

Published 2020 in: Journal of Chemical Ecology 

Previous studies (Pub. 2 and 3) imply that phloem sap chemistry affects host preference, feeding 

behavior and development of C. pruni. As C. pruni is the only known vector of ‘Ca. P. prunorum’, 

we were interested how the infection of Prunus trees with ‘Ca. P. prunorum’ influences the vector 

fitness. Additionally, in publication 2 we were not able to show that olfactory cues are responsible 

for host plant preferences of C. pruni and therefore hypothesized a great impact of gustatory cues. 

To elucidate the role of phloem chemistry for host acceptance and performance of C. pruni we 

compared the feeding behavior and development of nymphs on two host plants of different at-

tractiveness: P. insititia as a preferred and P. persica as a non-favored host plant species. This prefer-

ence was detected in previous field surveys (Pub. 2).  

First, we investigated the development of nymphs on ESFY-infected and non-infected 

P. insititia and P. persica plants. Interestingly the phytoplasma infection of both Prunus species had

no impact for the development of C. pruni. In contrast, their development was significantly elon-

gated and less successful on P. persica compared to that on P. insititia. Less adults developed from

nymphs reared on P. persica trees, only 12 % on non-infected and 15 % on infected plants. In con-

trast, four times more adults eclosed on P. insititia trees, 57 % on non-infected and 60 % on ESFY-

infected trees. The evaluation of occurrence and duration of several waveforms (feeding behaviors)

from EPG recordings revealed a reduced phloem feeding of nymphs on P. persica plants, which

explains the reduced development. On average nymphs fed three times longer on the phloem of

P. insititia than on P. persica. From a total time period of 16 h nymphs on P. persica spend 13 % of

the time with phloem ingestion and 9 % with ingestion of xylem content. Nymphs feeding on

P. insititia ingested phloem on average for 40 % and xylem for 7 % of the time. In contrast to these

great differences in the duration of feeding, the frequency of occurrence and the time until the first

phloem ingestion occurs was not different between the plant species. Therefore, it was concluded

that reduced feeding time was caused by the chemical composition of phloem sap, rather than

morphological differences between the plants. The phloem sap content of infected and non-in-

fected P. insititia and P. persica trees was sampled by centrifugation technique. After derivatization

of plant metabolites, the samples were analyzed via GC-MS. Contrary to our expectations, the
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infection with ‘Ca. P. prunorum’ did not change the metabolic composition of phloem centrifu-

gates neither from P. persica nor P. insititia plants. Instead, the comparison of phloem chemistry 

revealed significant differences between the Prunus species.  
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3. Discussion
Very few information is available about the chemical communication of plum psyllids with their

environment, even though the spreading of ‘Ca. P. prunorum’ is a severe threat for fruit growing

with a great economic impact. For the development of innovative crop protection measurements,

a detailed knowledge about the biology and ecology of target pests is crucial. Therefore, I focused

my work on the identification of chemical cues that shape the behavior of C. pruni (Fig. 4), which

can be used for the design of ecofriendly control strategies based on semiochemicals.

Olfaction: Host preference of C. pruni is not the result of plant volatiles alone. 

We were able to show that C. pruni detects characteristic volatiles from different host plants and 

identified characteristic volatile compounds for coniferous overwintering host and alternate repro-

duction host trees (Prunus), which are detectable by C. pruni antenna (Pub. 2). These compounds 

can act as kairomones that enable plum psyllids to locate and may distinguish their host plants 

during migration flight. Nonetheless, behavioral studies elucidated that volatiles are less important 

for host acceptance (Pub. 2, Fig. 4a). Even though we found differences in the odor composition 

between more and less attractive Prunus cultivars, the content of EAG active components seems 

to depend on the developmental stage of the plants rather than the Prunus species (Pub. 2). I con-

clude that olfactory cues play a minor role for host plant preference of C. pruni. That host selection 

of psyllids is not based on plant volatiles alone is also found for other psyllid species (Farnier et al., 

2018; Horton and Landolt, 2007; Soroker et al., 2004; Wenninger et al., 2009). This is in accordance 

with the general assumption, that olfactory signals are important for host searching over distance, 

but gustatory and textual cues on the plant surface and in the plant tissue play the major role in 

host acceptance (Schoonhoven et al., 2005). The great importance of gustatory and mechanosen-

sory information for host acceptance is well documented for other phloem-feeding insects, manly 

aphids (Douglas, 2003). Whereas information about the sensory mediated choice of psyllids is still 

rare. Patt et al. (2011) highlighted the interaction and synergistic effects of olfactory, visual and 

gustatory stimuli on psyllid behavior. Additionally, the colonization of Asian Citrus Psyllid (D. citri) 

of preferred plant parts (young flush) is influenced by nutritional factors as well as morphological 

parameters (George et al., 2017; Sétamou et al., 2016). These findings imply the great importance 

of phloem-sap ingredients and composition on psyllid settling and feeding behavior.   

Gustation: Phloem content chemistry influences the vector development and host plant 

preference of C. pruni. 

In our study C. pruni nymphs showed increased feeding activity on preferred P. insititia plants over 

P. persica trees. These differences in behavior are correlated with significant differences in the com-

position of the phloem sap of both Prunus species (Pub. 4). Comparable results were found in
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behavioral studies with C. pyricola suggesting that cues perceived from the leaf surface and from 

inside the plant tissue affect the feeding behavior and oviposition of the psyllid and lead to ac-

ceptance or rejection of plants as hosts (Horton and Krysan, 1991; Ullman and McLean, 1988). 

Indicating that gustatory stimuli play a major role in host acceptance and preference in psyllids (Fig. 

4a). In general, the morphology of psyllid mouthparts is similar to other Hemipterans. Even though 

there are no studies on the gustatory receptors on the feeding apparatus of C. pruni existing, differ-

ent types of chemosensory sensilla are described from the mouthparts of related pear psyllid species 

C. pyricola and C. chinensis (Forbes, 1972; Liang et al., 2013; Ullman and McLean, 1986). Garzo et al. 

(2012) reported labial sensilla of Asian Citrus Psyllids and hypothesized a gustatory sensory func-

tion in comparison to aphid sensilla. The identification of feeding-stimulants for D. citri provided 

evidence for the importance of gustation for psyllid behavior (George et al., 2016; Lapointe et al., 

2016; Patt et al., 2011). As a result of the increased phloem ingestion of C. pruni nymphs on P. 

insititia, nymphs had a greater development success on P. insititia compared to P. persica (Pub. 4). 

This finding strongly supports the hypothesis that C. pruni is well adapted to indigenous European 

Prunus species, such as P. insititia.  

Significance of plant chemistry for migration: C. pruni needs Prunus trees for development 

and conifers as food source in winter. 

Behavioral studies with remigrants and emigrants from the related species C. melanoneura and 

C. picta indicated that olfactory cues may trigger migration behavior of psyllids (Mayer et al., 2011). 

In contrast, the preference for coniferous and Prunus host plants does not change due to develop-

mental stage of C. pruni (Pub. 2, Fig. 4c). Considering that plant VOCs do not elicit the migration 

flight of C. pruni, two new questions arise: what causes the migration and why do plum psyllids 

alternate their hosts. Many psyllid species have a narrow host range (Hodkinson, 2009). Thus, the 

development of alternation between such diverged tree species is of high interest. The strong im-

pact of phloem chemistry of Prunus host on feeding behavior and fitness of C. pruni suggest the 

assumption that phloem content is also important for host alternation. Our studies revealed that 

C. pruni is not able to develop on coniferous trees (Pub. 3). Nymphs are maybe adapted to Prunus 

diet and therefore reject feeding on conifers, as early life stages are commonly sensitive to plant 

quality (Schoonhoven et al., 2005). In contrast, survival of C. pruni adults is possible on coniferous 

diet (Pub. 3). Although psyllids are said to be phloem-feeders, EAG studies reveal that they are not 

only ingesting phloem sap notably adults ingest less phloem but more xylem compared to immature 

psyllids (Ebert et al., 2018; George et al., 2018), demonstrating that adults need less nutrients. In 

accordance with our findings, the ingestion of xylem sap might be essential for psyllid fluid balance.  

I conclude that adult C. pruni feed on phloem and xylem of coniferous trees for water and nutrient 

uptake as coniferous trees provide enough energy and water for overwintering of adults, but not 
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for development of nymphs. Therefore, plum psyllids need to migrate to evergreen conifers to 

survive during winter and need to remigrate to stone fruit trees, because reproduction is impossible 

on conifers (Fig. 4b).  

All results of this study imply that gustatory cues have a great impact on psyllid behavior, 

thus the release of migration flight could be triggered by seasonal changes in phloem of host plants. 

A similar mechanism is detectable in aphids. Some species evolved strategies to avoid their woody 

hosts during mid-summer (Moran, 1992; Sandström, 2000). For example, Brachycaudus helichrysi, 

Brachycaudus cardui, Hyalopterus pruni and Myzus persicae are aphid species that migrate from their 

primary Prunus hosts (P. domestica and P. persica resp.) to secondary host in summer (Jousselin et al., 

2010; Latham and Mills, 2011; Shim et al., 1977). The reasons for this migration behavior of aphids 

are still unclear. Sandström (2000) suggested that mature woody plants are unfavorable hosts for 

aphids, but was not able to attribute the poor suitability to nutrient composition. As C. pruni also 

starts its migration flight in the beginning of summer (Jarausch et al 2019a), similar unknown rea-

sons may trigger this early start of migration behavior. Differences in nutritional quality and leaf 

anatomy of host should be investigated by seasonal analysis of Prunus phloem.  

Figure 4: Impact of olfactory and gustatory cues on the lifecycle of the plum psyllid Cacopsylla pruni. 

Impact of phytoplasma on the plant – insect interaction: No impact on phloem composi-

tion and development of C. pruni. 

Due to the importance of gustatory stimuli on psyllid behavior, we concentrated our studies on the 

influence of phytoplasma infections on the content of vascular tissue of Prunus trees. We expected 
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that the phytoplasma infection manifest in differences in the composition of phloem sap content 

of P. insititia and P. persica plants. It is known that phytoplasma infections negatively affect the pho-

tosynthetic activity, plant metabolism and change the translocation of metabolites in infected plants 

(Bertamini et al., 2002; Bertamini et al., 2004; Christensen et al. 2005; Maust et al., 2003).  Altered 

metabolite distribution in plants could be related to disturbed hormone balance in plants (Dermas-

tia, 2019). Contrary to our expectation, we were not able to distinguish the phloem sap composition 

between infected and non-infected Prunus trees (Pub. 4). This might be due to an antagonistic 

crosstalk between induced phytohormones, SA and jasmonic acid iso-leucin (JA-Ile), the major 

bioactive conjugate of JA (Staswick and Tiryaki, 2004). SA and JA-Ile concentrations were signifi-

cantly increased in leaves of ESFY-infected P. persica plants (unpublished data). Phytoplasma-trig-

gered changes in phytohormone levels are also reported for apple trees infected with ‘Ca.  P. mali’ 

(Zimmermann et al., 2015). Janik et al. (2017) revealed that differences of SA, JA-Ile and ABA 

levels between infected and non-infected apple trees are changing over time. Reciprocal antagonis-

tic effects between SA and JA are well studied in model plants Arabidopsis, tomato and tobacco 

(Thaler et al., 2012). For example, the single application of JA and SA affected the composition of 

phloem sap of Plantago lanceolata plants, but when both phytohormones had been applied at the 

same time, these effects disappeared (Schweiger et al., 2014). Additionally, and in contrast to single 

application, the survival of aphids was not reduced by the simultaneous application of both hor-

mones (Schweiger et al., 2014). In accordance to previously stated, we found no impact on the 

development of C. pruni due to ESFY infections of P. persica and P. insititia plants in our study (Pub. 

4, Fig. 4d). Contrasting results were documented for the related species C. picta, which offspring 

has a decreased development success on phytoplasma infected apple trees (Mayer et al., 2011). It 

is still unknown whether the ‘Ca.  P. mali’ infection affects the C. picta progeny due to changes of 

phloem composition (food quality) or other factors such as disturbed phloem anatomy or defense 

mechanisms, such as callose deposition. The impairment of the vascular system, due to anatomical 

changes might be responsible for a number of symptoms, such as chlorosis, leaf yellowing, swollen 

leaf-veins and curly of leaves, that are among others characteristic for ESFY-infected peach trees. 

Even though the vascular tissue of Prunus trees might be affected by the ‘Ca. P. prunorum’ infec-

tion, such anatomical changes do not negatively affect the feeding behavior of C. pruni nymphs. 

The latter indicates that plant defense mechanisms induced in response to the phytoplasma infec-

tion are not efficient to defend the plants against the insect C. pruni. 

Evolution of the plant-pathogen-vector system 

Tedeschi and Bertaccini (2019) concluded a long-term coevolution of ‘Ca. P. prunorum’ and its 

vector based on the fact that ‘Ca. P. prunorum’ is vertically transmitted to C. pruni progeny 

(Tedeschi et al., 2006). Our finding that the phytoplasma infection does not negatively affect the 
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vector development supports this statement. C. pruni, as well as ‘Ca. P. prunorum’ are considered 

to be indigenous to Europe. P. insititia is closely related to domesticated P. domestica and wild plums 

P. cerasifera (Zohary et al., 2012). Therefore, P. insititia, P. domestica and P. cerasifera are accepted to 

be autochthonous to Europe. In contrast P. persica, P. armeniaca and P. salicina have their origin in 

Asia. As no wild ancestors can be found in Europe, it is hypothesized that they have been intro-

duced as already domesticated cultivars to Europe (Huang et al., 2008; Zohary et al., 2012). Our 

developmental studies demonstrate the well-established adaptation of C. pruni to European P. insi-

titia in contrast to the less suitable Asian host P. persica (Pub. 4).   

In addition, many studies on the epidemiology of ESFY already highlighted the differences 

in the sensitiveness of European and Asian Prunus species to the pathogen. In general, European 

Prunus are more tolerant, whereas Asian Prunus species suffer severely from ESFY infections. Stud-

ies on the reproduction success/fitness of C. pruni on further species of Asian origin and the impact 

of ‘Ca. P. prunorum’ infections on plant defense mechanisms in European Prunus could further 

elucidate the adaption of both, the vector and the phytoplasma to European Prunus species. 

Conclusion & Outlook 

This thesis contributes to the knowledge about the biology of C. pruni. Increasing knowledge can 

guide the development of alternative strategies, to control the vector and reduce the spread of 

ESFY. As a main result of this doctoral thesis, gustatory cues are very important for host plant 

selection of C. pruni. Therefore, the influence of the compounds found in the phloem of host 

plants on the feeding behavior needs to be in the focus of further experiments with artificial diets. 

Volatiles that are detectable by C. pruni were identified in this work. Even though the behavioral 

activity of volatiles alone was less than expected, their capability for psyllid behavior manipulation 

has to be investigated perhaps in combination with visual stimuli. The identification of gustatory 

and olfactory attractants and phagostimulants can be used for innovative and selective attract-and-

kill protection measurements against plum psyllids. The identification of volatiles that mask host 

odors or repel C. pruni (Gallinger et al. 2019b) can be combined with lure-baited traps to push-pull 

strategies. In addition, these findings might be transferable to other psyllid species, which are vec-

tors of various phytoplasma diseases, such as apple proliferation and pear decline. The results 

presented in this work highlight the importance of the coevolution of the plant-pathogen-insect 

interaction, which has to be considered in future studies, management plans and breeding pro-

grams of different Prunus species.   
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Plant sap feeding insects like psyllids are known to be vectors of phloem dwelling
bacteria (‘Candidatus Phytoplasma’ and ‘Ca. Liberibacter’), plant pathogens which
cause severe diseases and economically important crop damage. Some univoltine
psyllid species have a particular life cycle, within one generation they alternate two times
between different host plant species. The plum psyllid Cacopsylla pruni, the vector of
European Stone Fruit Yellows (ESFY), one of the most serious pests in European fruit
production, migrates to stone fruit orchards (Prunus spp.) for mating and oviposition
in early spring. The young adults of the new generation leave the Prunus trees in
summer and emigrate to their overwintering hosts like spruce and other conifers. Very
little is known about the factors responsible for the regulation of migration, reasons
for host alternation, and the behavior of psyllids during their phase of life on conifers.
Because insect feeding behavior and host acceptance is driven by different biotic
factors, such as olfactory and gustatory cues as well as mechanical barriers, we carried
out electrical penetration graph (EPG) recordings and survival bioassays with C. pruni
on different conifer species as potential overwintering hosts and analyzed the chemical
composition of the respective plant saps. We are the first to show that migrating psyllids
do feed on overwintering hosts and that nymphs are able to ingest phloem and xylem
sap of coniferous trees, but cannot develop on conifer diet. Analyses of plant saps
reveal qualitative differences in the chemical composition between coniferous trees and
Prunus as well as within conifer species. These differences are discussed with regard
to nutritional needs of psyllid nymphs for proper development, overwintering needs of
adults and restriction of ‘Ca. P. prunorum’ to Prunus phloem.

Keywords: phloem, chemical composition, psyllid, development, overwintering, host alternation, migration,
conifer

INTRODUCTION

Phloem and xylem tissue enables plants to allocate their resources from sources to sinks and
distribute phytohormones to regulate physiological processes. Especially the phloem is rich in
nutrients (Douglas, 2006), making it a suitable food source for sap-sucking insects. Although
mechanical barriers like sclerenchymatous fibrous rings are able to hinder phloem-feeders from
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reaching the vascular bundles (George et al., 2017), the phloem
is poorly chemically defended (Douglas, 2006). Since decades
studies focused on the chemical composition of phloem sap and
the nutrition of phloem-feeding insects. Most work was done in
the field of crops, such as rice (Fukumorita and Chino, 1982),
broad bean, clover, and peas (Sandström and Pettersson, 1994;
Wilkinson and Douglas, 2003) and their pests (especially aphids),
because of the economic importance and the role of aphids as
model organisms. Information about the composition of phloem
and xylem sap of coniferous plants is rare. Ziegler and Mittler
(1959) extracted phloem sap from Picea abies by stylectomy
and found sucrose as the only sugar in paper chromatography
analysis. Later studies focused on induced defense mechanisms
in bark phloem after bark beetle attack (Rohde et al., 1996),
food quality of needles (Schopf et al., 1982; Fisher and Fisher,
1987) and impact of air pollution on nutrition of conifers
(Zedler et al., 1986; Kainulainen et al., 1993). These studies
give an impression of which metabolites could be found in
plant sap of coniferous trees, but compounds were extracted
from whole plant tissue (bark resp. needles). More explicit
knowledge about plant sap composition is important for a better
understanding of the biology of phloem-feeding insects that
migrate between two different host plant species, e.g., psyllids
(Hemiptera: Psyllidae).

Psyllids or jumping plant lice are plant sap feeding insects
encompassing more than 3000 species. Most of them are
oligophagous and use perennial dicotyledonous angiosperms as
host plants for reproduction (Hodkinson, 2009; Mayer et al.,
2009, 2011). In the genus Cacopsylla two different strategies
can be observed: There are polyvoltine species reproducing and
feeding exclusively on the same host plant and univoltine species
with an obligate alternation of two host plants (Ossiannilsson,
1992; Hodkinson, 2009). The latter migrate between their
reproduction host plants (respective fruit crops) and their
overwintering host plants (conifers) (Mayer and Gross, 2007;
Mayer et al., 2011). For identifying their particular host plants
for feeding and reproduction, volatile signals are used in many
species during migration (Soroker et al., 2004; Gross and
Mekonen, 2005; Mayer et al., 2008a,b, 2009; Weintraub and
Gross, 2013).

The plum psyllid, Cacopsylla pruni is the only known vector of
one of the most serious pests in European fruit production, the
cell wall lacking bacterium ‘Candidatus Phytoplasma prunorum’
(Carraro et al., 1998). The phloem dwelling bacterium induces the
European Stone Fruit Yellows (ESFY) (Seemüller and Schneider,
2004). Because infected trees yield poorly and die quickly, this
plant disease causes high economic losses in European fruit
production every year. So far no curative approach was found
against this disease. Unfortunately, it is not possible to cultivate
this obligate cell parasite outside of the host plant or vector, which
hampers research toward a cure. Therefore, the only measure to
inhibit infection of stone fruit orchards is to prevent invasion
of the vector insect, as C. pruni alternates between Prunus spp.
and coniferous trees during its life cycle. After reproduction and
development on Prunus spp., the young adults (emigrant stage)
emigrate and spend the rest of the year on spruce and other
conifers (Thébaud et al., 2009; Jarausch and Jarausch, 2016).

In early spring they return to Prunus spp. for reproduction
(remigrant stage). Very little is known about the reason for
migration and feeding behavior of psyllids during their life on
conifers (Thébaud et al., 2009). To date it remains unclear
whether overwintering psyllids actually feed on conifers. Former
experiments with the closely related hawthorn psyllid Cacopsylla
melanoneura failed, although the maintenance of body condition
and level of hydration suggested feeding (Jackson et al., 1990).
Because it was shown that adult C. pruni did not survive
the winter on one of their reproduction hosts Prunus spinosa
(Carraro et al., 2002; Thébaud et al., 2009), and that some
migrating species including C. pruni already start migration
to their overwintering host during summer (Mayer and Gross,
2007; Mayer et al., 2009; Jarausch and Jarausch, 2016), we
hypothesize that C. pruni needs to feed on overwintering host
plants during this long period and therefore needs to leave
deciduous Prunus trees to migrate to evergreen conifers, which
show yearlong photosynthesis and phloem activity. On the other
hand, reproduction on coniferous trees could be impossible for
C. pruni, forcing them to migrate back to Prunus. A better
knowledge of the vector biology is needed to develop new
control strategies against vector insects and bacterial pathogens
(Gross and Gündermann, 2016; Perilla-Henao and Casteel,
2016).

Here, we studied the feeding behavior of adults and nymphs on
several conifer species as well as Prunus domestica, and conducted
bioassays to unveil C. pruni’s ability to survive and develop on
plant sap of overwintering hosts. Furthermore, we extracted the
phloem/xylem sap of both Prunus spp. and conifers and analyzed
sugars and organic acids including amino acids.

MATERIALS AND METHODS

Insects
Cacopsylla pruni remigrants (overwintered adults) were caught
by beating tray method from Prunus domestica trees located
at the experimental field of the Julius Kühn-Institut in
Dossenheim, Germany and at an experimental orchard of
Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Neustadt
an der Weinstrasse, Germany in spring 2017. Psyllids were
maintained on Prunus trees (cv. GF655/2 and Prunus spinosa) in
cages housed in a climate chamber at 20◦C during photophase
and 16◦C during scotophase (L16:D8). After mating and
oviposition the field captured adults were transferred to cages
with fresh plants. For survival experiments about 200 fifth instar
nymphs were gently transferred to a new P. domestica (cv. Wavit)
tree and emerged adults (emigrants) were collected daily.

Plants
Four conifer species, Abies alba (Silver fir), Larix decidua
(European larch), Picea abies (Norway spruce), and Pinus
sylvestris (Scots pine), and the P. domestica cultivar Wavit were
used for experiments. Plants were grown under natural
conditions in an insect safe environment. Hexythiazox
(Ordoval, BASF, Ludwigshafen am Rhein, Germany) and
Fenpyroximate (Kiron, Cheminova Deutschland GmbH & Co.
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KG, Stade, Germany) were applied once to P. domestica plants in
April 2017 to prevent infestation with spider mites.

EPG-Recordings
To investigate whether C. pruni adults and nymphs feed on
coniferous trees in general, the electrical penetration graph
technique (EPG) was applied. EPGs were recorded using an 8
channel amplifier (model Giga-8d, EPG-Systems, Wageningen,
Netherlands). Data acquisition and analysis was performed with
Stylet+ software (EPG-Systems). To connect the psyllids to
a copper electrode, a piece of fine gold wire (18 µm) was
attached to the pronotum with a small droplet of water based
silver glue (EPG-Systems). The electrode was attached to an
EPG probe and the reference electrodes were placed in the
soil of the test plants. Feeding behavior of C. pruni male and
female emigrants (minimum age 6 weeks) was recorded in a
climate chamber at 10◦C with 60–65% RH for 16 h and of fifth
instar nymphs (about 6 weeks old) at 20◦C under the same
conditions. Plants and insects were housed in a grounded self-
constructed Faraday cage during recordings. Recordings were
replicated 10 times for nymphs on each P. abies, A. alba, and
P. domestica (cv. Wavit). Feeding behavior of emigrants was
recorded on P. sylvestris (4 males and 6 females), P. abies (6
males and 4 females), A. alba (5 males and 5 females), and
L. decudia (6 males and 4 females). To ensure that emigrants
used for EPG recordings were not repelled by conifers (due
to their developmental stage), C. pruni adults were caged with
P. abies and A. alba twigs one day prior recordings and only
emigrants which were found on conifer twigs were chosen for
the experiment. Recordings were examined for occurrence of
stylet penetration and waveforms indicating phloem and xylem
uptake according to Bonani et al. (2010) and Civolani et al.
(2011).

Bioassays
Survival
Survival of emigrants was studied on P. abies, A. alba, and
P. domestica cv. Wavit plants. Transparent plastic cups (0.5 l
capacity) were used as cages. The bottom of each cup was
replaced by gauze for venting. A hole was punched into the lids
to attach the cups on twigs of living plants. The lid was sealed
with self-made modeling clay (composed of 42.6% water, 42.6%
flour, 3.2% sunflower oil, 10.6% salt, and 1.1% citric acid) and
five newly emerged emigrants (<24 h) were released in each
cup. Living individuals were recorded daily over a period of
40 days. Additionally, the mortality of emigrants in the same
type of cups, but without food supply (control), was observed.
The experiment was replicated eight times for every plant
species and five times without plants (control) under rearing
conditions.

Development
For developmental experiments C. pruni nymphs of second and
third instar were gently transferred with a fine brush from
rearing plants to twigs with young flush of P. abies, A. alba,
or P. domestica cv. Wavit, respectively. On each plant, five
nymphs were caged in insect rearing sleeves (40 cm × 20 cm,

100× 80 mesh/square inch, MegaView, Taiwan). The experiment
was replicated seven times on each conifer species and five
times on cv. Wavit. Experimental plants were housed under
rearing conditions in a climate chamber. After 21 days cages were
controlled consistently once a week for hatched C. pruni adults
(emigrants). After 56 days all cages were opened and checked for
living nymphs.

Xylem and Phloem Sap Sampling
Phloem and xylem saps were collected in June 2017 using
modified centrifugation technique according to Hijaz and Killiny
(2014). The twigs from young flush from P. domestica (cv. Wavit)
and conifer species P. abies, A. alba, L. deciduas, and P. sylvestris
were sliced into 2–3 cm pieces with a clean scalpel. The bottom
of a 0.5 ml Eppendorf tube was removed with a razor blade and
twig pieces were placed into the tube. The tube was immersed in
a 1.5 ml tube. For collecting the phloem and xylem sap, the tubes
were centrifuged at 12.000 rpm at 4◦C for 10 min. The collected
samples were stored at −80◦C up to analysis. In the following,
this collected mixture of phloem and xylem sap is referred as
plant sap.

Plant Sap Derivatization
The sap samples were derivatized with methyl chloroformate
(MCF) to focus the GC-MS analysis on amino and other organic
acids (Smart et al., 2010). An aliquot of 20 µl plant sap was mixed
with 180 µl sodium hydroxide (1 M) in a silanized glass vial. Then
167 µl methanol and 34 µl pyridine were added, followed by
20 µl MCF. The sample was vortexed for exactly 30 s, additionally
20 µl MCF were added and the sample was mixed again for 30 s.
To extract the alkylated derivatives 150 µl chloroform were added
to each sample and mixed for another 10 s. A 200 µl aliquot
of sodium bicarbonate solution (50 mM) was added and mixed
for 10 s again. After a double meniscus was formed, the aqueous
phase was discarded and a few milligrams of anhydrous sodium
sulfate were added to the organic layer to bind the remaining
water. The supernatant was transferred to a GC-MS vial with a
glass insert.

For the derivatization with trimethylsilyl (TMS) 5 µl aliquots
of the sap samples were added to 60 µl of an internal standard
solution (Ribitol in ultrapure water) and dried under nitrogen
stream (Reacti-Vap, Thermo Fisher Scientific Inc., Waltham,
MA, United States). Samples were derivatized by adding 70 µl
methoxyamine hydrochloride solution (MOX) in pyridine (2%)
and allow to incubate for 90 min at 37◦C stirring at adjustment
of 7 (Reacti-Therm, Thermo Fisher Scientific Inc.). 90 µl
of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) were
added and the silylation was allowed to react for 60 min at
37◦C stirring at adjustment of 7 (Reacti-Therm, Thermo Fisher
Scientific Inc.). The supernatant was transferred to a GC-MS vial
with a glass insert.

Chemical Analysis
Derivatized samples were analyzed by gas chromatography
coupled with mass spectrometry (GC-MS) using a PerkinElmer
Clarus R 680 GC system coupled to a PerkinElmer quadrupole
inert mass selective detector for molecular structure analysis.
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A non-polar Elite-5MS (Crossbond 5% diphenyl-95% dimethyl
polysiloxane, PerkinElmer) capillary column (30 × 0.25 mm
id× 0.25 µm film thickness) was used for GC separation. Carrier
gas flow rate (Helium, Linde, Germany) was about 5 ml/min
(column head pressure 150 kPa). Injection of 1 µl of the samples
derivatized with MCF was done at 290◦C injector temperature
with a split flow of 1 ml/min. The initial oven temperature of
70◦C was held for 3 min, followed by a temperature increase
of 20◦C/min up to 240◦C held for 3.5 min and a further
increase to 300◦C at a rate of 20◦C/min. The final temperature
of 300◦C was held for 2 min. The GC temperature program to
analyze samples after silylation was as follows: the initial oven
temperature of 80◦C was held for 3 min, followed by an increase
of 5◦C/min up to 320◦C. The final temperature of 320◦C was
held for 4 min. One microliter of each sample was injected
at 220◦C with a split flow of 5 ml/min. Transfer line and ion
source temperatures were set to 250◦C and 180◦C, respectively.
The quadrupole mass detector was operated in electron-impact
(EI) mode at 70 eV. All data were obtained by collecting the
full-scan mass spectra within the range of 35–550 m/z. Blank

samples, reference standards and mixtures of alkanes (C8–C20
and C10–C40) were analyzed additionally according to both
methods.

Identification and Quantification With
AMDIS
GC-MS chromatograms were analyzed using “Automated Mass
spectral Deconvolution and Identification System” (AMDIS,
V. 2.71; National Institute of Standards and Technology
NIST, Boulder, CO, United States). Detected compounds
were identified by comparing characteristic ion fragmentation
patterns, retention times and retention indices with standard
compounds according to Weintraub and Gross (2013). For
quantification, the peak areas were integrated after deconvolution
with AMDIS. Identification criteria were applied as follows:
match factor had to be ≥80% and the relative retention
index deviation ≤5% from reference value. The settings for
deconvolution were: component width: 32; adjacent peak
subtraction: one; resolution: medium; sensitivity: medium; shape
requirements: high; level: strong; maximum penalty: 20, and

FIGURE 1 | (A–D) Examples of EPG recordings from C. pruni nymphs (5th instar) on spruce (A) with a detailed magnification of phloem phase waveform (B) and on
fir (C) with a detailed magnification of the waveform of xylem feeding (D). (E,F) Examples of recordings from a female C. pruni emigrant on larch (E) and a male
emigrant on fir (F) with marked penetration and feeding phases.
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‘no RI in library’: 20. Methionine, threonine, and serin were
only found in traces (match < 80) and were therefore excluded
from the analysis. Relative proportions of amino and organic
acids were calculated by setting the sum of the selected
compounds as 100%. Proportions of detected compounds after
TMS derivatization were normalized to internal standard.

Chemicals and Standards
Alanine, aspartic acid, cysteine, glutamic acid, histidine, leucine,
lysine, proline, threonine, tryptophan, valine, salicylic acid,
pyridine, methanol, chloroform, methyl chloroformate (MCF),
sodium bicarbonate, sodium sulfate, methoxyamine, ribitol,
myo-inositol, xylose, pinitol, and iso-leucine were purchased
from Sigma-Aldrich Chemie GmbH (Munich, Germany).
Arginine and phenylalanine were purchased from SERVA
Electrophoresis GmbH (Heidelberg, Germany). Glycine,
methionine, serine, malic acid, caffeic acid, succinic acid,
arabinose, and saccharose from Carl Roth GmbH & Co. KG
(Karlsruhe, Germany). Asparagine, mannitol, glucose, and
galactose from Merck KGaA (Darmstadt, Germany). Sorbitol
and glutamine from AppliChem GmbH (Darmstadt, Germany).
MSTFA from Macherey-Nagel GmbH & Co. KG (Düren,
Germany). Citric acid was purchased from Acros Organics
(Thermo Fisher Scientific, Geel, Belgium).

Statistical Analysis
Statistical analysis was done in R version 3.4.2 “Short Summer”
(R Core Team, 2017). Visualizations were conducted with the
ggplot2 package (Wickham, 2009). Death hazard from C. pruni
emigrants on different host plants were compared by Cox’s
proportional hazard regression through likelihood ratio test.
Efron approximation was used for tie handling. The proportional
hazards assumption for Cox regression model fit was confirmed
using the cox.zph function of the survival package (Therneau,
2017). Non-metric multidimensional scaling (NMDS) plots were
used to visualize Bray–Curtis dissimilarities of the chemical
composition of xylem and phloem between plant species. NMDS
was performed using the metaMDS function from vegan package
(Oksanen et al., 2017). Scaling was standardized by Wisconsin
double standardization. Significantly (p < 0.01, N = 10000)
influential factors (chemical compounds) were plotted as
arrows in NMDS plots. Dissimilarity matrix was calculated
to test for discrimination of plant species by Permutational
Multivariate Analysis of Variance (PERMANOVA). Additionally,
the dispersion of groups was tested for multivariate homogeneity
(PERMDISP).

RESULTS

EPG-Recordings
To determine if C. pruni feeds on overwintering hosts (conifers),
feeding behavior of emigrants was recorded on potential host
plants. The recordings revealed that both male and female
emigrants fed on plant saps of all four offered conifers: P. abies,
A. alba, P. sylvestris, and L. decudia. Recordings from nymphs of

C. pruni showed that they were also able to feed on P. abies and
A. alba (Figure 1).

Bioassays
Survival
Newly emerged C. pruni emigrants survived on P. abies and
A. alba as long as on P. domestica cv. Wavit (Figure 2). The Cox
regression model showed that death hazard differed significantly
between host plants and controls without food supply (likelihood
ratio = 81.76, df = 3, R2 = 0.431, p < 0.001). Death hazard for
emigrants fed on P. domestica cv. Wavit did not differ from

FIGURE 2 | Kaplan–Meier curves visualizing the survival of newly emerged
emigrants caged on P. abies (n = 40), A. alba (n = 40), P. domestica cv. Wavit
(n = 40), or in cages without a plant (control, n = 25). Letters indicate
significant differences between survival curves (likelihood ratio = 81.76, df = 3,
R2 = 0.431, p < 0.001).

FIGURE 3 | Number of emerged C. pruni emigrants from nymphs (2nd instar)
on P. abies, A. alba, and P. domestica cv. Wavit.
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P. abies (likelihood ratio = 81.76, df = 3, R2 = 0.431, p = 0.803)
and A. alba (likelihood ratio = 81.76, df = 3, R2 = 0.431,
p = 0.846). Emigrants on all three potential host plant species
had a significant lower death hazard than psyllids without food
(control). The hazard ratio was reduced by 97, 97, and 96% if
C. pruni was allowed to feed on P. abies, A. alba, or P. domestica
cv. Wavit, respectively.

Development
After 56 days 92% of the C. pruni nymphs on P. domestica cv.
Wavit emerged while none of the nymphs developed neither on
P. abies nor A. alba (Figure 3). As no living nymphs could be
found on the coniferous trees, we conclude that they all died in
nymphal stage.

Chemical Composition of Phloem and
Xylem Content
Plant species differed significantly in the chemical composition
of sugars and other compounds detected by GC-MS analysis
after TMS derivatization of plant sap (PERMANOVA, df = 4,
R2 = 60.83, N = 10000, P < 0.001). The dispersions differed not
significantly between the groups (PERMDISP, df = 4, F = 0.42,
N = 10000, P > 0.05), confirming that separation of species was
due to their location. The NMDS plot illustrates the differences of
chemical profiles (Figure 4).

Plant saps from P. domestica trees contained a high amount of
sorbitol. This sugar alcohol constituted about 58% of the plant sap
from P. domestica cv. Wavit but was not detected in samples from

coniferous trees (Figure 5). In contrast, pinitol was exclusively
found in plant sap from conifers. However, the most abundant
component was quinic acid in all conifer samples (Figure 5). The
relative abundance of quinic acid ranged from 30% in pine to 56%
in spruce. Sap samples of P. domestica were composed of 80%
sugars and sugar alcohols and 18% acids, whereas spruce, fir, pine,
and larch samples consisted of 29, 41, 50, and 36% sugars and
sugar alcohols and 69, 53, 43, and 61% acids, respectively.

The composition of amino acids and other organic acids
differed significantly between the plant species (PERMANOVA,
df = 4, R2 = 46.85, N = 10000, P < 0.001). The dispersions
between the groups also differed significantly (PERMDISP, df = 4,
F = 3.96, N = 10000, P < 0.01), indicating that the separation
of the plant species could be effected by different variation
within species (Figure 6). The NMDS plot shows caffeic acid
and asparagine contributing to the separation of P. domestica
cv. Wavit from coniferous trees (Figure 6). Caffeic acid was
exclusively found in P. domestica cv. Wavit, while asparagine was
more abundant in P. domestica cv. Wavit as in P. abies and A. alba
(Figure 7).

The main organic acid component in the plant sap of all tested
plant species was malic acid (29–48%). Aspartic acid was the
second most abundant component in all plants, except in larch
which contained more glutamic acid. Differences between the
plant species were detected concerning the relative amounts of
lysine in the plant sap composition. Lysine represented about
17% of the sap samples of spruce trees and was the third most
abundant component in those trees, as glutamic acid was in fir

FIGURE 4 | Visualization of Bray–Curtis dissimilarities with non-metric multidimensional scaling (NMDS) plots (stress = 0.14) of plant sap samples from spruce
(n = 10), pine (n = 6), larch (n = 6), fir (n = 10), and P. domestica cv. Wavit (n = 11) after methoximation followed by trimethylsilylation.
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FIGURE 5 | Composition of sugars and acids in vascular bundle content of P. domestica cv. Wavit (n = 11), spruce (n = 10), fir (n = 10), pine (n = 6), and larch (n = 6).
Plant sap was collected by centrifugation and derivatized by trimethylsilylation after methoximation. Dark blue indicates a high relative abundance of the
components, light blue a low abundance. Numbers are mean values of relative abundance.

(10%), pine (15%), and P. domestica cv. Wavit (12%) (Figure 7).
Cysteine, methionine, and threonine were under detection limits
in all samples. The NMDS plots indicate the responsibility of the
essential amino acids tyrosine, tryptophan, lysine, and histidine
on the separation of spruce and fir from P. domestica cv. Wavit
(Figure 6).

DISCUSSION

Electrical penetration graph recordings showed that C. pruni
emigrants and nymphs are able to feed on the plant saps of

spruce, pine, larch, and fir. EPGs recorded from 5th instar
nymphs prove that nymphs are not repelled by metabolites
of coniferous plants and able to reach the phloem and xylem
tissue with their stylet. The question arises why C. pruni
migrates to Prunus for reproduction when their progeny is
able to ingest food from conifers. We suggest that there is
no change in host acceptance of nymphs between different
instars, but nutritional needs could change between nymphal
development stages. Therefore we investigated the emergence of
adults starting from the earliest possible instar (2nd). Because
the impact of low food quality or inhibitory components may
accumulate and negative influence raise over time, 5th instar
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FIGURE 6 | Visualization of Bray–Curtis dissimilarities with NMDS plots (Stress: 0.13) of plant sap samples from spruce (n = 8), pine (n = 6), larch (n = 6), fir (n = 10),
and P. domestica cv. Wavit (n = 10) derivatization with methyl chloroformate.

nymphs may able to compensate a short period on a non-
optimal diet while early instars would suffer more from low food
quality than later ones. But it is of crucial importance, whether
C. pruni is able to fully develop from egg to adult stage on
coniferous trees. Bioassays revealed that adult psyllids survived
on coniferous trees, while nymphs did not develop and died,
although they were able to ingest plant sap from conifer needles.
Thus, the chemical composition of the respective conifer saps
influences the nymphal survival and development. Therefore the
plant saps of overwintering hosts were subsequently analyzed
and compared to sap content of their reproduction host plant
(P. domestica).

The GC-MS analysis revealed enormous differences in the
chemical compositions of plant sap of the Rosacea species
P. domestica cv. Wavit and the four studied conifer species.
Especially the lack of sorbitol in all four conifers as well as
the high amount of quinic acid and pinitol (which was not
detected in Prunus trees) could be challenging for phloem feeding
insects, which alternate between Rosacea and conifers during
their life cycle. Even though it was known that spruce needles
contain quinic acid, shikimic acid, fructose, glucose, sucrose,
and pinitol (Schopf et al., 1982), to date it was unclear, in
which proportions they occur in the phloem and xylem sap of
coniferous trees, and how their proportions differ between tree
species.

Until today it was a widespread belief that conifers are
used by migrating Cacopsylla species like C. pruni, C. picta,
and C. melanoneura for shelter during winter time, exclusively
(Burckhardt et al., 2014; Jarausch and Jarausch, 2016). In the

presented study we were able to show for the first time,
that conifers are not only shelter plants for migrating species
belonging to the genus Cacopsylla, but also an important food
resource enabling their overwintering. Thus, the term “shelter
plant” should hereafter be replaced by “overwintering host” or
just “alternate host” plant.

Due to the lack of knowledge that psyllids feed on conifers,
the effect of coniferous phloem constituents like quinic acid,
shikimic acid, and pinitol on psyllid feeding behavior and
development was not studied before. Pinitol is a cyclic polyol,
which serves as osmoprotectant and is involved in a broad
spectrum of physiological processes in plants (Chiera et al.,
2006; Kordan et al., 2011; Saxena et al., 2013). It is found
in conifers, legumes (Fabaceae) and Caryophyllales such as
Simmondsia chinensis (Angyal and Macdonald, 1952; Dittrich
and Korak, 1984; Guo and Oosterhuis, 1995; Chiera et al.,
2006). D-pinitol induces oviposition of the Grass Yellow
Butterfly Eurema mandarina (Mukae et al., 2016). However,
an influence of pinitol from the phloem of alfalfa on phloem-
feeding pea aphid could not be found (Campbell and Binder,
1984).

There is evidence, that psyllid adults and nymphs are tolerant
to high osmotic pressures of their diets (Hall et al., 2010;
Russell and Pelz-Stelinski, 2015). Therefore, we hypothesize no
negative influence of pinitol on C. pruni, even if it occurs
in high amounts in overwintering hosts. Quite the contrary,
pinitol could act as mechanism of protection against freezing
stress, as shown for other polyols (Bale, 2002). The freezing
temperature of the green spruce aphid is reduced in the presence
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FIGURE 7 | Composition of organic acids in vascular bundle content of P. domestica cv. Wavit (n = 10), spruce (n = 8), fir (n = 10), pine (n = 6), and larch (n = 6).
Plant sap was collected by centrifugation and derivatization with methyl chloroformate. Dark green indicates a high relative abundance of a respective organic acid,
light green a low abundance. Numbers are mean values of relative abundance.

of mannitol in aphid hemolymph (Parry, 1979). Whiteflies
accumulate sorbitol for thermo- and osmoprotection (Hendrix
and Salvucci, 1998). Sømme (1965) found an accumulation of
sorbitol in overwintering eggs of European red mite (Panonychus
ulmi).

We found that sorbitol is the most abundant component in
sap samples of P. domestica cv. Wavit, which is in accordance
with the fact that sorbitol is most often found in Rosacea
(Loescher, 1987). Sorbitol is also known to be accumulated
in the phloem of apple trees (Bieleski, 1969) and is the
most abundant soluble sugar in the phloem of pear and
apple fruits (Zhang et al., 2004, 2014). Nevertheless, adult
C. pruni can tolerate high amounts of sorbitol or pinitol in
their diet. EPG recordings suggest that C. pruni (both adults
and nymphs) also ingest xylem content (unpublished results),
which could be a regulatory reaction to reduce the phloem’s
high osmotic pressure by dilution. Pompon et al. (2011) showed
that aphids ingest more xylem sap after feeding on high
concentrated sucrose diets to compensate osmotic unbalance.

Moreover, for nymphal development the availability of amino
acids (especially essential amino acids) could be of higher
importance, as nitrogen content of food is an important limiting
growth factor for phytophagous insects (Douglas, 2006). In
accordance with Douglas (1993) we found asparagine besides
aspartic acid and glutamic acid as one of the most abundant
amino acids in young leaves of Prunus, while we found only
low concentrations of glutamine in Prunus flush leaves. All
plant species contained only low concentrations of the essential
amino acids histidine, isoleucine, leucine, lysine, methionine,
phenylalanine, threonine, tryptophan, and valine. To compensate
for low quality of nitrogen in plant saps phloem feeders harbor
microsymbionts (Douglas, 2006). Many psyllid species harbor
the bacterial endosymbiont Carsonella ruddii, which provides
its host with essential amino acids (Thao et al., 2000). Also
representatives of the genus Wolbachia, Arsenophonus and
other Enterobacteriaceae were found in psyllids (Baumann,
2005). Although the microsymbionts harbored by C. pruni are
unidentified, differences in the symbiont community in adults
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and nymphs were not expected, because vertical transmission of
endosymbionts was shown for many species. Furthermore, recent
studies indicated the transovarial transmission of Arsenophonus
in Cacopsylla pyricola (Cooper et al., 2017).

We suggest that the inability of C. pruni nymphs to
develop on coniferous trees is due to differences in organic
acid availability. The caffeic acid, which is exclusively found
in cv. Wavit, could play a key role in host acceptance of
C. pruni and maybe act as a phagostimulant. Caffeic acid
was found in several stone fruits like peaches and plums,
which are typical host plants of C. pruni (Carbonaro et al.,
2002; Lombardi-Boccia et al., 2004). However, not all of the
components responsible for the separation of cv. Wavit from
the coniferous species need to be of biological relevance. To
unravel which components are actually important for proper
development or which ones may inhibit nymphal growth,
feeding experiments with nymphs on artificial diets are crucial.
The analysis of excreted honeydew could suggest important
information on how psyllids process plant nutrients. This
study also revealed differences between the plant saps of the
investigated coniferous trees. Therefore, a detailed analysis of
EPG recordings from nymphs on the different tree species
could be needful to identify feeding stimulants or deterrents
and will be investigated in future. This knowledge could be
used for development of an artificial diet system for rearing
of C. pruni and screening for potential toxins against psyllids
(Jancovich et al., 1997; Hall et al., 2010). Interestingly, although
some of the migrating psyllids like C. pruni harbor phloem-
limited plant pathogenic bacteria (‘Ca. Phytoplasma’ or ‘Ca.
Liberibacter’) and feed on conifers, the phytopathogens seem to
be restricted to vector insects and their reproduction host plants
(Gross, 2016). Because the genomes of Phytoplasma spp. lack
metabolic genes but contain a lot of transporter systems, it is
suggested that they depend strongly on the nutrition of their
hosts (Oshima et al., 2004; Kube et al., 2008). Insight on the
chemical composition of the phloem sap of host plants could
support developing a culture media for phytoplasmas and may
advance the research on phytoplasma diseases (Trivedi et al.,
2016).

CONCLUSION

No mechanical nor chemical border prevents C. pruni adults and
nymphs from feeding on conifers. Emigrants feed and survive
on their overwintering hosts. Nymphs can feed on, but are not
able to develop on spruce and fir. This is likely due to strong
differences in the compositions of organic acids and sugars
between plant saps of conifers and P. domestica. Furthermore,
feeding experiments with nymphs on artificial diets should reveal
which components are responsible for successful development of
C. pruni. Additionally, more insight on phloem sap composition
could open up new possibilities for phytoplasma cultivation and
pathogen research.
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Abstract
Phytoplasmas are specialized small bacteria restricted to the phloem tissue and spread by hemipterans feeding on plant sieve tube
elements. As for many other plant pathogens, it is known that phytoplasmas alter the chemistry of their hosts. Most research on
phytoplasma-plant interactions focused on the induction of plant volatiles and phytohormones. Little is known about the
influence of phytoplasma infections on the nutritional composition of phloem and consequences on vector behavior and devel-
opment. The plum psyllidCacopsylla pruni transmits ‘Candidatus Phytoplasma prunorum’, the causing agent of European Stone
Fruit Yellows (ESFY). While several Prunus species are susceptible for psyllid feeding, they show different responses to the
pathogen. We studied the possible modulation of plant-insect interactions by bacteria-induced changes in phloem sap chemistry.
Therefore, we sampled phloem sap from phytoplasma-infected and non-infected Prunus persica and Prunus insititia plants,
which differ in their susceptibility to ESFYand psyllid feeding. Furthermore, the feeding behavior and development of C. pruni
nymphswas compared on infected and non-infectedP. persica and P. insititia plants. Phytoplasma infection did not affect phloem
consumption by C. pruni nymphs nor their development time. In contrast, the study revealed significant differences between
P. insititia and P. persica in terms of both phloem chemistry and feeding behavior of C. pruni nymphs. Phloem feeding phases
were four times longer on P. insititia than on P. persica, resulting in a decreased development time and higher mortality of vector
insects on P. persica plants. These findings explain the low infestation rates of peach cultivars with plum psyllids commonly
found in field surveys.

Keywords Plant-insect interaction . European stone fruit yellows . Vector development . Phytobiome . Phloem composition .

Electropenetrography . Phytoplasma

Introduction

Phytoplasmas are phloem-restricted plant pathogenic bacteria,
causing severe diseases in different plant species. Many of
these phytoplasma-induced diseases affect agricultural crops
(Bertaccini et al. 2014), resulting in high economic losses in

crop production all over the world (Smith 1997). For example,
the causal agent of the European stone fruit yellows (ESFY),
‘Candidatus Phytoplasma prunorum’, infects different species
of the genus Prunus. Infected trees suffer from severe symp-
toms, yield poorly, and exhibit dieback and decline (Kison and
Seemüller 2001; Marcone et al. 1996; Nečas et al. 2017).
Several Prunus species are susceptible to ‘Ca. P. prunorum’
but vary in degree of symptom expression (Carraro et al.
2004a; Jarausch et al. 2000). Peaches, apricots and Japanese
plums are severely affected (Kison and Seemüller, 2001;
Torres et al. 2004), whereas Prunus domestica, Prunus
cerasifera and Prunus insititia are found to be less affected
(Kison and Seemüller 2001). Differences in response to ESFY
infections also occur between cultivars within species (Koncz
et al. 2017;Marcone et al. 1996; Richter 2002). Diverse symp-
toms are known to be associated with phytoplasma diseases.
Besides structural changes of the vascular system, such as
callose deposition, phloem necrosis, and hyperplasia
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(Musetti et al. 2016; Zimmermann et al. 2015), phytoplasma
infections affect translocation of carbohydrates between
source and sink plant organs and alter the metabolic compo-
sitions of leaf tissue (Christensen et al. 2005; Lepka et al.
1999; Prezelj et al. 2016). Because phytoplasmas are obligate
parasites depending on their host plants and insects, they have
small genomes that lack genes for some metabolic pathways
and need to obtain nutrients from the host organism (Bai et al.
2006; Kube et al. 2008; Marcone et al. 1996; Marcone et al.
1999). While several studies highlighted changes in the chem-
istry of plant tissue due to phytoplasma infections, only few
studies have determined the effects on the chemical composi-
tion of the phloem, which is the side of infection. In the most
recent publication comparing the phloem composition of
phytoplasma-infected vs. non-infected mulberry plants, Gai
et al. (2014) found a change in the metabolic composition of
phloem sap in response to phytoplasma infection. Their anal-
ysis revealed higher amounts of sucrose, abscisic acid (ABA),
cytokinin and total content of free amino acids in phloem sap
from infected than non-infected plants. In contrast, the phloem
metabolome of coconut palms was not affected by lethal
yellowing disease (Stemmer et al. 1982).

‘Ca. P. prunorum’ and other phytoplasma species of the
16SrX or apple proliferation group are transmitted by jumping
plant lice or psyllids of the superfamily Psylloidea
(Hemiptera: Sternorrhyncha) feeding on plant sieve tube ele-
ments (Weintraub and Beanland 2006). These psyllid-
transmitted phytoplasmas as well as their vectors are closely
related and associated with economically important diseases
of fruit trees such as pear decline, apple proliferation and
ESFY (Jarausch et al. 2019). The plum psyllid Cacopsylla
pruni transmits ‘Ca. P. prunorum’, the causal agent of ESFY
by feeding on the phloem tissue of plants during reproduction
(Carraro et al. 1998, 2004b). Little is known about the influ-
ence of phytoplasma infections on the nutritional composition
of phloem and consequences on vector behavior and develop-
ment. Amino acid composition, plant defense mechanisms
and phytohormone concentrations (Dermastia 2019) could af-
fect insect vector feeding on diseased plants. Although it is
well known that nutritional quality and hormonal levels of
plants in general impact insect performance and fitness (Cao
et al. 2016; Pradit et al. 2019; Schoonhoven et al. 2010;
Schweiger et al. 2014), much less is known about how plant
infections with phloem-restricted bacteria impact insect
fitness.

Cacopsylla picta emigrants that developed on Malus
domestica trees infected with ‘Ca. P. mali’ are smaller and
their development is slightly elongated compared to psyllids
that develop on healthy apple plants (Mayer et al. 2011).
Consequently, females prefer healthy over infected plants for
oviposition (Mayer et al. 2011). In contrast, the survival and
reproduction of female Macrosteles quadrilineatus and
Dalbulus maidis is enhanced on host plants infected with

Aster Yellows-witches’ broom phytoplasma (AY-WB)
(Beanland et al. 2000; Purcell 1988; Sugio et al. 2011), while
the infection of host plants with Bois Noir has no impact on
growth of vector progeny (Kaul et al. 2009). By investigating
the feeding behavior of Asian citrus psyllid (Diaphorina citri)
with electropenetrography (EPG), Cen et al. (2012) recorded
lower mean durations of phloem ingestion phase (E2) on
plants inoculated with ‘Candidatus Liberibacter asiaticus’
(CLas) than on uninfected plants. George et al. (2018) re-
vealed lower total durations of E2 per psyllid in infected than
uninfectedCitrus plants. This reduction of phloem uptake is in
accordance with the elongated developmental time of D. citri
nymphs when reared on CLas-infected compared to uninfect-
ed Citrus plants (Pelz-Stelinski et al. 2010).

Prunus persica is highly susceptible to ESFY and shows
severe symptoms and high mortality, while P. insititia is also
susceptible but shows light symptoms and low mortality
(Kison and Seemüller 2001). Therefore, we expected a signif-
icant influence of ‘Ca. P. prunorum’ on the phloem metabo-
lome of P. persica. A comparison with the metabolite compo-
sition of infected P. insititia could indicate whether phloem
chemistry is influencing symptom manifestation or reveal
components associated with phytoplasma tolerance. Killiny
and Hijaz (2016) found higher abundance of amino acids in-
volved in plant defense mechanisms in phloem sap of citrus
varieties tolerant to CLas.

To investigate the interaction of ‘Ca. P. prunorum’ with its
natural plant environment, we analyzed sugars, sugar alcohols
and organic acids in phloem centrifugates of infected and non-
infected Prunus trees. Furthermore, we compared two Prunus
species, which were differently affected by the infection
(P. persica and P. insititia). To link the composition of primary
plant metabolites of phloem centrifugates with vector devel-
opment, we recorded and analyzed the feeding behavior and
development of C. pruni nymphs on healthy and ‘Ca. P.
prunorum’-infected plants. The importance of volatile organic
compounds released by plants onC. pruni host preference and
the importance of phloem chemistry on C. pruni development
has been addressed previously (Gallinger et al. 2019,
Gallinger and Gross 2018). Thus, the objective of the present
research was to investigate the importance of gustatory cues
on the host plant choice of C. pruni using two Prunus species
that exhibit different degrees of sensitivity to ESFYphytoplas-
ma infection.

Methods and Materials

Insects Overwintered C. pruni adults (remigrants) were col-
lected by beating foliage above a collection tray in early spring
(March and April). Psyllids were sampled at two different
sites: the experimental field and surroundings of the Julius
Kühn-Institut (JKI) in Dossenheim, Germany, and an
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experimental Prunus orchard of Dienstleistungszentrum
Ländlicher Raum Rheinpfalz (DLR), Neustadt an der
Weinstrasse, Germany. Psyllids were reared on Prunus
spinosa trees in insect cages (BugDorm, MegaView Science
Co, Taiwan 47.5 × 47.5 × 93 cm), housed in a climate cham-
ber at 20 °C (photophase) and 16 °C (scotophase) (L16:D8).

PlantsCultivars of P. persica (cv. South Haven) and P. insititia
(cv. GF655–2) were used for experiments. P. insititia (cv.
GF655–2) plants were dug out in October from the experi-
mental field of the JKI and used for the experiments. Scion
wood of P. persica cv. South Haven was grafted on one-year-
old peach seedlings (cv. Montclar) as is common practice in
fruit growing. All plants were grown in 1.8 L pots with clay
substrate (Klasmann-Dielmann GmbH, Geeste, Germany).
Plants were fertilized with ~ 500 ml Triabon (Compo Expert
GmbH, Münster, Germany, 2 g/L) once in March and then
weekly with 300–500 mL Wuxal (Hauert MANNA
Düngerwerke GmbH, Nürnberg, Germany, 0.2%). Prunus
trees were treated once with paraffin oil in March to prevent
infestations with spider mites. All plants were housed in an
insect free environment and treated weekly with nematodes
Steinernema feltiae (SAUTTER & STEPPER GmbH,
Ammerbuch, Germany) against fungus gnats. Polymerase
chain reaction (PCR) analysis revealed naturally occurring
phytoplasma infections in P. insititia plants from the field.
Because we had no naturally infected P. persica plants,
P. persica trees were graft-inoculated with ‘Ca. P. prunorum’
ESFYQ06 fromPrunus mariannaGF 8–1 (Prunus cerasifera
x Prunus munsoniana). Each tree was inoculated with two
side-graftings of infected scion wood. Phytoplasma infesta-
tion was verified via PCR prior to experiments. Plants that
were inoculated but infection with ‘Ca. P. prunorum’ could
not be verified were excluded from the experiments.
Experiments were conducted between May and August in
2018 and 2019 during leaf and shoot development. No plants
expressed inflorescences during the two years of experiments.

Development of C. pruni The influence of ESFY infection and
host species on developmental time of C. pruni was investi-
gated. Therefore, nymphs were placed on healthy and ESFY-
infected P. persica cv. South Haven and P. insititia cv. GF
655–2 plants. Second instar nymphs were gently transferred
with a fine brush from a P. spinosa plant to middle-aged fully
expanded leaves from experimental plants. Ten nymphs were
placed on each leaf and were caged with small gauze bags
(10 × 12 cm). Due to logistic reasons, seven to ten bags (70–
100 nymphs) were attached to plants from each species and
ESFY infection status. Bags were monitored daily for nymph
development and adult eclosion. Eclosed adults were counted
daily and removed from the bags. The experiment continued
for 49 days until all adults eclosed or nymphs died. The ex-
periment was set up in May and ended in July 2019. Plants

were inoculated with phytoplasmas two years before the
experiment.

Electropenetrography (EPG) Fifth instar nymphs were collect-
ed from the rearing cages with P. spinosa plants one hour
before EPG recordings (1 h starvation period). Nymphs were
carefully cleaned with a wet cotton stick and were allowed to
dry for about 10 min. A droplet of water-based silver glue
(EPG-Systems, Wageningen, The Netherlands) was attached
to the mesothorax of each nymph and a piece of fine gold wire
(18 μm diameter, ca. 1 cm length) was fixed on the pronotum
with a second droplet of silver glue. The gold wire was con-
nected to a copper extension wire soldered to a brass insect
pin. The pin was attached to the EPG probe. The reference
electrodes were placed into the wet soil of the test plants. The
feeding behavior of C. pruni nymphs was recorded with an 8-
channel amplifier (model Giga-8d, EPG-Systems,
Wageningen, The Netherlands) in a climate chamber at
23 °C with 60%–65% RH for 16 h (log-day period).
Nymphs were placed on the adaxial surface of mature leaves
(second to sixth fully expanded leaves). Plants and insects
were housed in a grounded self-constructed Faraday cage
made of zinc-coated bird cage wire (mesh size: 6.3 ×
6.3 mm) during the recordings. Feeding patterns of 15 indi-
viduals were recorded from both ESFY-infected and non-
infectedP. insititia and P. persica plants. Only recordings from
nymphs that showed 16 h of activity were included in the
analysis, while nymphs that molted during the experiment
were excluded. EPGs were recorded in May and June one
and two years after inoculation with phytoplasmas (2018
and 2019). Data acquisition and analysis was performed with
S ty l e t+ so f twa r e (EPG-Sys t ems , Wagen ingen ,
The Netherlands). Recordings were examined for occurrence
of waveforms according to Bonani et al. (2010) and Civolani
et al. (2011). Patterns corresponding to the start of penetration
and the stylet position in the parenchyma (A, B, C1 and C2)
were summarized as intracellular pathway phase (C). The
phase between the parenchyma and the phloem was consid-
ered at phase D, which has been suggested as the transition
phase between parenchyma and phloem. The two phloem
feeding waveforms were E1 and E2, while the ingestion of
xylem content was G. Finally, the non-probing (Np) phases
were also annotated during which time insects were not pen-
etrating the plant tissue with their stylets.

Collection of Sap Samples One phloem sap sample was col-
lected from each tree with the centrifugation technique accord-
ing to Hijaz and Killiny (2014). Briefly, the bark from young
flush of P. persica and P. insititia plants was removed manu-
ally and sliced into 1–2 cm pieces with a clean scalpel. The
bottom of a 0.5 ml Eppendorf tube was removed. Each tube
was immersed in a second, larger tube (1.5 ml). To collect the
phloem content, bark pieces were placed into the small tube
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and centrifuged at 12.000 rpm at 4 °C for 10 min. The collect-
ed samples were stored at −80 °C until analysis. As we cannot
totally exclude possible slight contamination from mesophyll
cell content, we refer to the samples as phloem centrifugates
henceforth. Phloem centrifugates were sampled in August
2018 one year after inoculation with phytoplasmas.

Measurement of °Brix Value To compare the absolute amount
of soluble solid content in phloem centrifugates, °Brix values
were measured with a handheld refractometer (type 45–81;
Bellingham + Stanley Ltd., TunbridgeWells, UK). The refrac-
tometer was calibrated with sucrose as standard. About 1 μl
phloem centrifugate from either P. insititia (nnon-infected = 6, n-

infected = 6) or P. persica (nnon-infected = 11, ninfected = 7) were
used for measurements.

Derivatization of Phloem Centrifugates Silylation was used to
analyze sugars, sugar derivates and organic acids in phloem
centrifugates. Five μl of the samples were added to 60 μl of a
1.5 mmol ribitol internal standard solution (Sigma-Aldrich
Chemie GmbH, Munich, Germany) and dried under nitrogen
stream (Reacti-Vap, Thermo Fisher Scientific Inc., Waltham,
Massachusetts, USA). Seventy μl of methoxyamine hydro-
chloride solution (MOX) in pyridine (2%) was added to each
sample. Methoxyamine was allowed to react for 90 min at
37 °C stirring at adjustment of 7 (Reacti-Therm, Thermo
Fisher Scientific Inc.). N-methyl—(N-trimethylsilyl)
(MSTFA) was used as silylation reagent. After adding 90 μl
MSTFA to each sample, the reaction was incubated for 60min
at 37 °C with stirring at adjustment of 7. The supernatant was
transferred to a GC-MS vial with a glass insert. A second
derivatization method using methyl chloroformate was used
to optimize the detection of amino acids (Smart et al. 2010).
Aliquots of 15 μl phloem centrifugates were mixed with
7.5 μl DL-norvaline (Sigma-Aldrich Chemie GmbH) as an
internal standard (17 mmol in ultrapure water) and 180 μl
sodium hydroxide (1 M). 167 μl methanol and 34 μl pyridine
were added, followed by 20 μl MCF. Afterwards, the sample
was vortexed for 30 s., and an additional 20 μl of MCF were
added and the sample wasmixed for 30 s. again. The alkylated
derivatives were extracted by adding 150 μl chloroform and
mixing for 10 s. After adding a 200 μl aliquot of sodium
bicarbonate solution (50 mM), the samples were mixed again
for 10 s. Silanized glass vials (Carl Roth GmbH + Co. KG,
Karlsruhe, Germany) were used for the chemical reaction. The
aqueous phase was discarded. To bind any remaining water, a
fewmilligrams of anhydrous sodium sulfate were added to the
organic layer. The supernatant was transferred to a GC-MS
vial with a glass insert.

GC-MS Analysis Derivatized samples were analyzed by gas
chromatography coupled with mass spectrometry (GC-
MS) using a PerkinElmer Clarus R 680 GC system coupled

to a Perkin Elmer quadrupole inert mass selective detector.
For GC separation a nonpolar Elite-5MS (Crossbond 5%
diphenyl −95% dimethyl polysiloxane, PerkinElmer) cap-
illary column (30 × 0.25 mm id × 0.25 μm film thickness)
was used. One μl of samples derivatized with MCF were
injected with an open injector vent at 70 °C injector tem-
perature, to purge out the solvent. After 0.5 min, the vent
was closed and the injector temperature was raised to
290 °C after 1 min. Carrier gas flow rate (Helium, Air
Liquide, Germany) was about 5 ml/min (column head pres-
sure 130 kPa) and 30 ml/min split flow. The initial oven
temperature of 80 °C was held for 2 min, followed by a
temperature increase of 10 K/min up to 240 °C held for
3.5 min and a further increase to 300 °C at a rate of 20 K/
min. The final temperature of 300 °C was held for 2 min.
For the analysis of sap samples after silylation, 1.5 μl of
each sample was injected with a split flow of 5 ml/min at
140 °C and the injector temperature was increased by 50 K/
min to 250 °C. Column head pressure of Helium flow was
set to 130 kPa. The GC temperature program was as fol-
lows: the initial oven temperature of 80 °C was held for
3 min, followed by an increase of 5 K/min up to 320 °C.
The final temperature of 320 °C was held for 4 min. For all
analysis the transfer line and ion source temperatures were
set to 250 °C and 180 °C respectively. The quadrupole
mass detector was operated in electron-impact (EI) mode
at 70 eV. All data was obtained by collecting the full-scan
mass spectra within the range of 35–550 m/z. Blank sam-
ples, reference standards and mixtures of alkanes (C8 -
C20 and C 10- C40) were analyzed additionally according
to both methods. Reference standards and suppliers are
listed in the supplementary material (Table S1).

Identification and Quantification with AMDISChromatograms
of sap sample derivates were analyzed using “Automated
Mass spectral Deconvolution and Identification System”
(AMDIS, V. 2.71; National Institute of Standards and
Technology NIST, Boulder, CO). For the identification, the
ion fragmentation patterns and retention indices of detected
compounds were compared with standard compounds (Gross
et al. 2019). Compounds that were not identified were anno-
tated as unknowns. For quantification, the peak areas were
integrated after deconvolution. Identification criteria were ap-
plied as follows: match factor had to be ≥ 80% and the relative
retention index deviation ≤ 5% from reference value. The set-
tings for deconvolution were: component width: 32; adjacent
peak subtraction: one; resolution: medium; sensitivity: medi-
um; shape requirements: low; level: very strong; maximum
penalty: 20 and ‘no RI in library’: 20. Components with a
signal to noise ratio < 50 were excluded from the analysis.
Relative amounts of detected compounds after derivatization
were calculated in relation to the respective internal standards
norvaline and ribitol.
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Statistical AnalysesAll statistical analyses were conducted in
R version 3.5.3 (R Core Team 2017). Graphics were pro-
duced using the ggplot2 package (Wickham 2009). A para-
metric survival model (time-to-event analysis) was used to
investigate the effect of plant species and the infection status
of plants on the development of C. pruni. The model was
fittedwith an exponential distribution with the survreg func-
tion of the ‘survival’ package. Linear models (LMs) were
used to determine the influence of the plant species and phy-
toplasma infection on the duration of waveforms per event
(total), duration per nymph (mean) and the time to first oc-
currence of waveforms in EPG recordings from C. pruni
nymphs. In case of non-normality of residuals, the data were
transformed as specified in Table S2. The fit of models with
the main effects ‘Prunus species’ and ‘ESFY infection sta-
tus’ and the interaction of these two factorswas compared by
second-order Akaike’s information criterion (AICc)
corrected for small samples. To analyze the occurrence
(frequency) of individual waveforms per nymph, GLMs
with quasi-Poisson distr ibution were used due to
overdispersion. To compare models fitted with quasi-
Poisson distribution the quasi-AICc (qAICc)was computed,
using the model deviance instead of the likelihood and used
in the ICtab function from ‘bbmle’ package (Bolker and R
Development Core Team 2017). A LM was fitted with
square root transformed °brix values, to analyze the influ-
ence ofPrunus species and ESFYinfection on the amount of
total soluble solid content in phloem centrifugates. AICc
was used to identify best model fit. Model assumptions were
validated graphically as recommended by Zuur et al. (2009).
The emmeans function from the ‘emmeans’ package (Lenth
et al. 2019) was used to calculate the estimated marginal
means and corresponding 95% confidence intervals and to
determine differences between treatment levels. In casemul-
tiple pairwise comparison p-values were adjusted by the
method of Tukey. Discrimination of the chemical composi-
tion of phloem centrifugates from infected and non-infected
Prunus trees was calculated by a type II permutation multi-
variate analysis of variance (PERMANOVA) of the Bray-
Curtis dissimilarities matrix. The PERMANOVAwas calcu-
lated with the adonis.II function from ‘RVAideMemoire’
package (Hervé 2019). The dispersions of groups were test-
ed for multivariate homogeneity (PERMDISP). Both analy-
ses were calculated with N = 10000 permutations. The
Bray–Curtis dissimilarities were visualized by non-metric
multidimensional scaling (NMDS) plots. The scaling was
standardized by Wisconsin double standardization and per-
formed using the metaMDS function from ‘vegan’ package
(Oksanen et al. 2019). Influence of main factors and inter-
action on the relative amount of total amino acids, sugars,
sugar alcohols, and organic acids were analyzed by fitting
linear models as described above. The model specifications
were as reported in Table S3.

Results

Development of C. pruniAfter 49 days, all C. pruni nymphs
had emerged to adults or died (Fig. 1). The development of
C. pruni was significantly different between both Prunus
species (survreg, Z = 7.09, df = 1, P < 0.01 N = 370). Fifty-
seven and 60% of nymphs developed on healthy and
phytoplasma-infected P. insititia plants, respectively;
whereas, 15% of C. pruni emigrants emerged on healthy
and 12% on diseased P. persica trees. Mean development
time was 41 and 39 days on healthy and infected P. insititia
plants, respectively. On average, C. pruni nymphs required
47 days for development on P. persica plants. Phytoplasma
infection had no significant influence on the development
of C. pruni nymphs (survreg, Z = 0.34, df = 1, P = 0.73,
N = 370).

EPG Waveforms detected in EPG recordings from C. pruni
nymphs were comparable to those specified for C. pyri
(Civolani et al. 2011). The intracellular pathway phase (C), a
phase that always occurred between parenchyma and phloem
phases (D), two phloem patterns (E1 and E2), a xylem pattern
(G) and non-probing phases (Np), as described by Civolani
et al. (2011), were identified in the recordings.

Frequency The mean number of waveforms C, E2 and Np
phases were neither affected by the Prunus species nor by
infection status of the plants. Whereas the main effect of the
plant species was significant for the occurrence of waveform
D (GLM, χ2 = 9.56, df = 1, P = 0.002, N = 60) and E1 (GLM,
χ2 = 4.96, df = 1, P = 0.026, N = 60), both waveforms were
recorded more frequently from nymphs feeding on
P. persica than on P. insititia plants (Table 1). The number
of bouts of G was influenced by the infection status of the
plants (GLM, χ2 = 4.03, df = 1, P = 0.044, N = 60). On aver-
age, nymphs accessed the xylem of healthy leaves 4 ± 3.27
and the xylem of infected leaves 2.7 ± 1.73 times during the
16 h recording period on both Prunus species (Table 1).

Mean Duration Per Psyllid Plant species had a strong effect on
the mean duration of C (GLM, F = 12.38, df = 1, P = <0.001,
N = 60), D (GLM, F = 11.32, df = 1, P = 0.001, N = 60), E1
(GLM, F = 12.27, df = 1, P = <0.001, N = 60), E2 (GLM,
F = 21.80, df = 1, P = <0.001, N = 60) and Np (GLM, F =
5.75, df = 1, P = <0.02, N = 60) phases (Table 2). The mean
duration per nymph in the pathway phase and phases (C) of
non-probing (Np) were significantly longer during feeding on
P. persica than on P. insititia (Table 2). Furthermore, the du-
rations of D and E1 were longer on P. persica than P. insititia
plants (Table 2). Nymphs feeding on P. persica plants spent
about 75% of the time in non-ingestion phases, 13% ingesting
phloem and 9% ingesting xylem. In contrast, nymphs feeding
on P. insititia ingested phloem three times longer and the time
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spent in non-feeding phases was 50% lower than on P. persica
(Fig. 2b).

Mean Duration Per Event Prunus species and the interaction
between species and ESFY infection status significantly affect-
ed themean duration of waveforms not associatedwith phloem
ingestion (C, D, E1 and Np) (Fig.3). C phases were shorter on
infected than non-infected P. persica trees, whereas infection
had no influence on the duration of C on P. insititia plants (Fig.
3). While the duration of E1 and Np phases was shorter on
infected than non-infected P. persica plants, E1 and Np lasted
longer in infected than in healthy P. insititia trees (Fig. 3).
Phloem ingestion phases (E2) by nymphs feeding on
P. insititia were significantly longer than those by nymphs
feeding on P. persica (Table 3). On average, xylem phases
lasted for 22.31 (± 2.13 SE) min. The mean duration per event
was not affected by Prunus species nor ESFY infection
(Table 3).

Time to First Occurrence The time until each waveform oc-
curred the first time was not affected by plant species nor
ESFY infection status of the plants (Table S4).

Chemistry of Phloem Centrifugates To estimate the total con-
tent of soluble sugar content, °Brix was measured from
centrifugates. °Brix differed significantly as a function of
Prunus species (LM, F = 6.32, df = 1; P = 0.019, N = 30). A
higher °Brix value was measured in centrifugates from
P. insititia plants (13.33 ± 1.76 SD) than fromP. persica plants
(11.33 ± 2.33 SD).

We found 10 amino acids and 9 organic acids (4 uniden-
tified) in phloem centrifugates from Prunus trees after
MCF derivatization (Table 4). The chemical composition
of amino and organic acid in phloem centrifugates differed
between the two Prunus species (Fig. 4a, PERMANOVA,
F = 3.97, df = 1, P = 0.009, N = 34). The infection status as
well as the interaction between infection and plant species

Table 1 Frequency of waveform events occurring in 16 h EPG recordings of C. pruni nymphs on P. insititia (nhealthy = 15, nESFY = 15) and P. persica
(nhealthy = 15, nESFY = 15) trees

Waveform P. insititia P. persica P. insititia P. persica model statistics*

Frequency mean ± SE (min-max) mean ± SE (min-max) emmean (lower-upper
CI)

emmean (lower-upper
CI)

influential
factors

χ2 P

C healthy 35.87 ± 5.3 (5–73) 34.87 ± 3.06 (20–57)

ESFY 33.07 ± 4.69 (8–65) 39.27 ± 3.49 (20–58)

D healthy 7 ± 1.75 (1–29) 12.2 ± 1.27 (3–18) 6.77 (5.11–8.97) 11.70 (9.45–14.49) species 9.560 0.002

ESFY 6.53 ± 1.06 (1–14) 11.2 ± 2.15 (0–29)

E1 healthy 11.07 ± 2.87 (1–48) 16.33 ± 1.82 (3–27) 10.8 (8.16–14.4) 16.3 (12.97–20.6 species 4.959 0.026

ESFY 10.6 ± 1.8 (1–23) 16.33 ± 3.16 (0–34)

E2 healthy 6.33 ± 1.8 (1–30) 8.07 ± 1.1 (1–16)

ESFY 6.53 ± 1.23 (1–17) 9.2 ± 2.2 (0–28)

G healthy 3.47 ± 0.75 (1–13) 4.53 ± 0.93 (1–15) 4.0 (3.13–5.11)

ESFY 2.2 ± 0.45 (0–6) 3.2 ± 0.42 (1–6) 2.7 (2.00–3.64) infection 4.035 0.044

np healthy 24.73 ± 3.66 (3–54) 17.47 ± 1.94 (4–32)

ESFY 23.07 ± 4.52 (3–62) 24.33 ± 3.11 (9–50)

Mean (± SE) number per nymph, value range of occurrence and significant effects of Prunus species, ESFY infection of Prunus trees on the number of
events. The estimated marginal means and the corresponding confidence intervals from the models are shown for significant factors

* Generalized linear models with quasi-Poisson distribution were used to analyze the effects of main factors and interactions on the frequency of
waveforms events. Model statistics are presented for models simplified by removing nonsignificant factors due to AICc.

Fig. 1 Cumulative percentage of
C. pruni nymphs completing
development per day post
infestation (dpi) on ESFY infect-
ed and healthy P. insititia (n-
healthy = 100, nESFY = 100) and
P. persica (nhealthy = 100, nESFY =
70) trees. Ten nymphs were caged
together on each leaf
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had no significant effect on the discrimination between the
phloem centrifugates (PERMANOVA, infection: F = 1.85,
df = 1, P = 0.117, interaction: F = 0.61, df = 1, P = 0.647,
N = 34). The variance in samples from P. persica was signif-
icantly higher than from P. insititia (PERMDISP, F = 17.49,
df = 1, P = 0.0002, N = 34). Higher relative amounts of caffeic
acid and one unidentified compound (unknown_RI206) were
detected in phloem centrifugates from P. insititia plants com-
pared to P. persica plants (Table 4). High relative amounts
of asparagine, glutamic acid, citric acid and one un-
known compound (unknown_RI2062) were found in
phloem centrifugates from P. persica trees (Table 4).
Overall, phloem centrifugates from P. persica plants
contained higher relative amounts of amino acids than
those from P. insititia (Fig. 5).

After TMS derivatization 5 organic acids, 7 sugars and
sugar alcohols and 7 unidentified compounds were detected
in phloem centrifugates (Table 4). The chemical composition
of compounds after silylation differed significantly between
the two Prunus species (Fig. 4b, PERMANOVA, F = 23.33,
df = 1, P = 9e-05, N = 40); whereas, infection with ‘Ca. P.
prunorum’ had no influence on the composition of the detect-
ed metabolites (PERMANOVA, F = 1.11, df = 1, P = 0.326,
N = 40). The variability between all four groups did not differ
(PERMDISP, F = 2.723, df = 3, P = 0.059, N = 40). In general,
P. persica samples showed a greater variance than samples
from P. insititia (PERMDISP, F = 4.891, df = 1, P = 0.033,
N = 40). Sorbitol was the most abundant compound in phloem
centrifugates from both Prunus species (Table 4). Phloem
centrifugates from P. insititia contained more sorbitol, sucrose
and quinic acid than those from P. persica plants (Table 4).
However, larger quantities of unknown_RI2519were detected
in samples from P. persica than form P. insititia (Table 4). The
relative amount of sugars/sugar alcohols and organic acids
was significantly higher in phloem centrifugates from
P. insititia than from P. insititia plants (Fig. 5).

Discussion

It was shown previously that the plum psyllid, C. pruni, pre-
fers P. insititia plants over P. persica plants in field (Gallinger
et al. 2019). Our current results suggest that avoidance of
P. persica appears to be beneficial to C. pruni, given that
nymphs feeding on P. persica exhibited prolonged develop-
mental time and reduced developmental success than ob-
served on P. insititia. In contrast, nymphs seem not to be
repelled by P. persica plants because they initiated stylet pen-
etration behavior as fast as that observed on P. insititia. This is
in accordance with recent findings from olfactometer assays,
showing that C. pruni exhibit no preference between
P. insititia and P. persica plants based on olfactory cues
(Gallinger et al. 2019). Waveform D, as recorded by EPG, isTa
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thought to reveal the transition from parenchyma to phloem
tissue feeding (Civolani et al. 2011). Extended periods in D
phase could be a result of structural characteristics of the vas-
cular tissue, but C. pruni nymphs were able to reach the phlo-
em of P. persica as often and as fast as that ofP. insititia. Thus,
mechanical barriers like sclerenchymatous rings surrounding
the phloem, which are shown to inhibit adult D. citri from
reaching the vascular tissue (Ammar et al. 2014), are unlikely
to be involved in this system. Regardless, the duration of
phloem-feeding by C. pruni was drastically reduced on
P. persica compared to P. insititia plants. Therefore, we sug-
gest that the feeding preference for P. insititia may be rather
influenced by phloem chemistry than by mechanical barriers.

Analyses of phloem centrifugates revealed significant dif-
ferences between the chemical composition of P. persica and
P. insititia. We recorded higher brix values for phloem
centrifugates of P. insititia than those for P. persica. GC-MS
analysis revealed higher amounts of sucrose, sorbitol and
quinic acid in phloem of P. insititia compared to P. persica.
Although phloem is generally rich in nutrients, amino acids
essential for insects are rare and phloem-feeders have to face
the challenge of overabundance of carbohydrates and high

osmotic pressures comprising their diets (Douglas 2006;
Douglas et al. 2006).

In contrast to differences in feeding behavior pattern be-
tween the two plant species, phytoplasma infections solely
significantly decreased in both Prunus species the duration
of xylem ingestion. The same effect of bacterial infection
(CLas) of Citrus plants on feeding behavior of D. citri was
found using EPG studies (Cen et al. 2012; George et al. 2018).
Typically, psyllid nymphs exhibit reduced xylem ingestion
and prolonged phloem ingestion compared to adults to meet
their nutritional requirements (Civolani et al. 2011; George
et al. 2018). Interestingly, in our study the reduction of xylem
ingestion was not associated with prolonged phloem inges-
tion. It is assumed that xylem ingestion by phloem-feeders
helps regulate fluid balance (Spiller et al. 1990). For example,
potato aphids (Macrosiphum euphorbiae) use ingestion of xy-
lem content to regulate their osmotic potential (Pompon et al.
2011). The higher amount of soluble carbohydrates in
P. insititia did not lead to an increased ingestion of xylem
content by C. pruni nymphs feeding on P. insititia. Nymphs
spent more time feeding on phloem and their mortality was
lower onP. insititia plants, which contained fewer amino acids

Fig. 2 a) Example of electropenetrography recording from C. pruni
nymphs on a non-infected P. persica plant showing the classified wave-
forms: Intracellular pathway phase (C), transition phase between the pa-
renchyma and the phloem (D), phloem salvation and ingestion (E), inges-
tion of xylem content (G) and the non-probing (Np) phases. b) Mean

percentage duration of waveforms per psyllid detected during 16 h EPG
recordings with C. pruni nymphs on P. insititia (nhealthy = 15, nESFY = 15)
and P. persica (nhealthy = 15, nESFY = 15) trees. Additional explanations to
particular waveforms are given in the text
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and higher amounts of sugars, than on P. persica plants, which
had more amino acids and fewer sugars. The observed feeding
behavior indicates thatC. pruni is well adapted toP. insititia as
a diet. Congruently, Jakobs and Müller (2018) documented
that a high abundance of amino acids in phloem does not
increase the developmental success of aphids in general.
Instead, individual aphid species are adapted to specialized
diet compositions (Jakobs et al. 2019). Interestingly, we found
no increase in total sugar concentration (Brix value) in

infected compared to non-infected plants. Thus, our results
suggest that increased xylem phases are independent from
phloem conditions and therefore might be based on differ-
ences in xylem metabolites.

Sugars can act as feeding stimulants for insects. The
best-known example is sucrose, which stimulates feeding
of many phytophagous insects, including aphids (Arn and
Cleere 1971; Chapman 2003; Mittler and Dadd 1963). The
sugar alcohol sorbitol is a characteristic phloem metabolite

Table 3 Duration of waveform per event from 16 h EPG recordings of C. pruni nymphs on P. insititia (nhealthy = 15, nESFY = 15) and P. persica
(nhealthy = 15, nESFY = 15) trees

Waveform P. insititia P. persica P. insititia P. persica model statistics*

Duration /
Event [min]

mean ± SE (min-max) mean ± SE (min-max) emmean (lower-
upper CI)

emmean (lower-
upper CI)

influential
factors

F P

C healthy 10.84 ± 0.67 (0.05–174.54) 16.75 ± 1.23 (0.04–266.82) 6.04 (5.44–6.68) 8.76 (7.93–9.67) species 9.549 0.002

ESFY 12.39 ± 0.76 (0.12–130.96) 13.83 ± 1.23 (0.04–516.39) 6.87 (6.18–7.62) 6.57 (5.96–7.24) infection 2.958 0.085

interaction 16.448 < .001

D healthy 0.9 ± 0.06 (0.06–4) 1.15 ± 0.05 (0.38–5.56) 0.77 (0.70–0.85) 1.05 (0.97–1.13) species 20.818 < .001

ESFY 0.94 ± 0.04 (0.14–2.42) 1.08 ± 0.05 (0.05–5.23) 0.85 (0.77–0.94) 0.94 (0.87–1.02) infection 0.487 0.486

interaction 5.315 0.022

E1 healthy 0.38 ± 0.03 (0.02–2.22) 1.04 ± 0.1 (0.05–11.89) 0.28 (0.24–0.32) 0.54 (0.47–0.60) species 28.861 < .001

ESFY 0.52 ± 0.05 (0.03–4.41) 0.67 ± 0.06 (0.03–7.97) 0.37 (0.32–0.43) 0.40 (0.36–0.45) infection 0.814 0.367

interaction 16.199 < .001

E2 healthy 60.98 ± 15.21 (0.23–768.65) 15.56 ± 4.95 (0.21–461.88) 9.17 (6.93–12.12) 3.28 (2.54–4.25) species 42.507 < .001

ESFY 57.68 ± 11.99 (0.09–706.66) 13.3 ± 2.72 (0.15–300.18) 12.53 (9.50–16.52) 4.49 (3.51–5.74) infection 4.075 0.044

G healthy 25.2 ± 6.06 (0.15–272.73) 19.61 ± 2.66 (0.17–142.97)

ESFY 23.05 ± 4.47 (0.71–135.65) 22.52 ± 3.68 (0.2–146.13)

np healthy 3.25 ± 0.35 (0.05–100.44) 6.83 ± 0.91 (0.1–201.55) 2.00 (1.79–2.23) 3.54 (3.11–4.04) species 20.775 < .001

ESFY 4.42 ± 0.33 (0.08–58.74) 7.4 ± 1.27 (0.04–282.72) 2.61 (2.33–2.93) 2.63 (2.35–2.94) infection 0.017 0.8963

interaction 22.568 < .001

Mean (± SE) duration, value range and significant effects of Prunus species, ESFY infection of Prunus trees and their interaction on the duration per
event. The estimated marginal means and the corresponding confidence intervals from the models are shown for significant factors

* Linear models were used to analyze the effects ofmain factors and interactions on the frequency of waveforms events.Model statistics are presented for
models simplified by removing nonsignificant factors due to AICc

Fig. 3 Interaction plots of
estimated marginal means and
confidence intervals predicted
from linear models of the mean
duration per event of the
waveform C, Np and E1 from
EPG recordings of C. pruni
nymphs feeding on healthy or
ESFY infected P. insititia
(nhealthy = 15, nESFY = 15) and
P. persica (nhealthy = 15, nESFY =
15) trees
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Table 4 Mean relative amounts (± sd) of compounds detected via GC-MS analysis after derivatization

P. insititia P. persica
Compounds Retention 

Index

healthy ESFY healthy ESFY

TMS mean ± sd mean ± sd mean ± sd mean ± sd

O
r
g

a
n

ic
 a

c
id

s Phosphoric acid 1271 0,000 0,000 0,019 0,014 0,053 0,049 0,125 0,155

Malic acid 1489 0,083 0,048 0,121 0,053 0,123 0,083 0,151 0,089

Citric acid 1816 0,502 0,292 0,377 0,278 0,753 0,975 0,561 0,710

Quinic acid 1856 4,165 1,221 4,458 0,980 0,566 0,401 0,407 0,191

Galactaric acid 2001 0,002 0,005 0,005 0,006 0,000 0,000 0,000 0,000

S
u

g
a
r
s
 a

n
d

 

s
u

g
a

r
a

lc
o

h
o

ls
 

Xylose 1645 / 1656 0,000 0,000 0,001 0,003 0,010 0,014 0,002 0,005

Fructose 1869 / 1885 0,275 0,058 0,459 0,198 0,428 0,280 0,533 0,293

Glucose 1895 / 1912 0,520 0,223 0,618 0,171 0,863 0,627 0,707 0,281

Mannitol 1926 0,022 0,003 0,023 0,014 0,179 0,641 0,961 2,848

Sorbitol 1933 16,978 3,238 15,017 3,824 11,293 3,287 10,325 2,066

Myo-inositol 2086 0,197 0,029 0,325 0,105 0,188 0,141 0,201 0,188

Sucrose 2629 6,439 2,414 5,122 2,768 3,187 1,573 3,209 1,846

U
n

id
e
n

ti
fi

e
d

 

unknown_RI1526 1526 0,040 0,014 0,042 0,010 0,030 0,020 0,047 0,026

unknown_RI1997 1997 0,046 0,005 0,055 0,014 0,059 0,044 0,047 0,040

unknown_RI2519 2519 0,879 0,264 0,698 0,315 4,376 2,548 4,091 2,843

unknown_RI2860 2860 0,042 0,024 0,037 0,036 0,001 0,003 0,009 0,009

unknown_RI2886 2886 0,213 0,115 0,256 0,105 0,078 0,079 0,102 0,173

unknown_RI3116 3116 0,033 0,014 0,061 0,056 0,027 0,033 0,030 0,037

unknown_RI3389 3389 0,054 0,027 0,111 0,067 0,052 0,054 0,167 0,176

MCF

A
m

in
o

 a
c
id

s

Asparagine 1385 0,067 0,093 0,328 0,406 3,882 4,489 4,085 6,291

Proline 1386 0,017 0,019 0,038 0,069 0,126 0,286 0,231 0,575

Aspartic acid 1454 0,562 0,268 0,950 0,353 0,903 0,826 1,315 1,248

Serine 1521 0,000 0,000 0,004 0,012 0,000 0,000 0,010 0,020

Glutamic acid 1580 0,722 0,389 0,897 0,279 1,511 1,062 1,387 0,813

Phenylalanine 1720 0,037 0,016 0,057 0,041 0,037 0,030 0,051 0,044

Lysine 2012 0,021 0,026 0,014 0,013 0,048 0,067 0,050 0,096

Histidine 2067 0,003 0,007 0,015 0,018 0,071 0,074 0,193 0,371

Tyrosine 2186 0,020 0,014 0,038 0,033 0,018 0,018 0,034 0,030

Tryptophan 2377 0,023 0,024 0,084 0,150 0,030 0,053 0,010 0,018

o
r
g

a
n

ic
 a

c
id

s

Malic acid 1107 1,198 0,468 1,376 0,434 0,955 0,510 0,826 0,387

Cinnamic acid 1373 0,016 0,014 0,010 0,013 0,000 0,000 0,000 0,000

Citric acid 1460 4,823 3,032 3,645 2,857 8,642 9,980 2,281 1,699

Salicylic acid 1526 0,006 0,009 0,008 0,009 0,002 0,007 0,011 0,018

Caffeeic acid 2232 0,904 0,649 1,254 0,905 0,191 0,251 0,211 0,164

unknown_RI1602 1602 0,178 0,165 0,150 0,156 0,444 0,499 0,077 0,115

unknown_RI1654 1654 0,479 0,340 0,404 0,329 1,286 1,476 0,312 0,256

unknown_RI1879 1879 1,797 0,767 1,484 1,198 2,860 1,282 2,077 1,570

unknown_RI2062 2062 0,426 0,227 0,336 0,358 0,005 0,007 0,006 0,007

Min Max

Amounts of organic acids, sugars, sugaralcohols and unknown compounds after silylation of phloem centrifugates from healthy or ESFY infected
P. insititia (nhealthy = 6, nESFY = 10) and P. persica (nhealthy = 14, nESFY = 10) trees are relative to internal standard ribitol. Amounts of amino acids and
organic acids after MCF derivatization of phloem centrifugates from healthy or ESFY infected P. insititia (nhealthy = 5, nESFY = 12) and P. persica
(nhealthy = 10, nESFY = 7) trees are relative to the internal standard norvaline. Colors range from green (min) to red (max) (see below)
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of plants belonging to the Rosaceae and could therefore
play a central role in host acceptance of psyllid species
feeding on Prunus spp., Malus spp. or Pyrus spp.
(Spiraeoideae: Rosaceae). The chemosensory sensilla from
the mouthparts of C. pruni have not been described, but
phagostimulatory cells that respond to sorbitol are known
to occur in caterpillars specialized on rosaceaes plant

species (Chapman 2003). Although sugars stimulate feed-
ing by herbivores, phloem-feeders must excrete surplus
non-assimilated sugars as honeydew (Ammar et al. 2013;
Douglas 2006; Le Goff et al. 2019). Thus, future analysis
of honeydew from nymphs could reveal components es-
sential for proper development of C. pruni (Le Goff et al.
2019).

Fig. 5 Mean relative amount of total amino acids of phloem centrifugates
from P. insititia (n = 17) and P. persica (n = 17) after MCF derivatization,
sugars and organic acids in phloem centrifugates from P. insititia (n = 16)
and P. persica (n = 24) after silylation. Amino acids (asparagine, proline,
aspartic acid, serine, glutamic acid, phenylalanine, lysine, histidine,
tyrosine and tryptophan) have been quantified relative to the internal
standard norvaline. Organic acids (phosphoric acid, malic acid, citric
acid, quinic acid and galactaric acid), sugars and sugaralcohols (xylose,

fructose, glucose, sucrose, mannitol, sorbitol and myo-inositol) after
silylation have been quantified relative to internal standard ribitol.
Boxes correspond to the 25th and 75th percentiles, medians are shown
as lines, and whiskers extend to 1.5 times of the interquartile ranges. Dots
represents raw values. Corresponding means and confidence intervals
predicted for significant factors from linear models are shown on the right
of each box

Fig. 4 Visualization of Bray–Curtis dissimilarities with non-metric mul-
tidimensional scaling (NMDS) plots of phloem centrifugates from ESFY-
infected (dark) and non-infected (light) Prunus trees. a) amino and other
organic acids from P. insititia (brown triangles, nhealthy = 5, nESFY = 12)

and P. persica (green dots, nhealthy = 10, nESFY = 7) trees and b) sugars and
organic acids from P. insititia (nhealthy = 6 nESFY = 10) and P. persica (n-
healthy = 14, nESFY = 10) trees. Large triangles and circles visualize group
centroids
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Of the compounds detected in the phloem centrifugates
(Table 4), caffeic acid is of particular interest. Its possible
positive influence on the feeding behavior of C. pruni de-
serves further investigation, because this metabolite was
also detected in phloem sap of Prunus domestica but not
in conifers, which are no suitable hosts for feeding and
development of C. pruni’s offspring (Gallinger and Gross
2018). Hydroxycinnamic acids are commonly known as
constitutive plant defenses against herbivores (Rehman
et al. 2012). For example, chlorogenic acid is related to
thrips resistance in plants (Leiss et al. 2009; Leiss et al.
2013). To our knowledge, the influence of phenolics on
feeding behavior of psyllids has not been studied. Among
psyllid species, phagostimulants have only been investigat-
ed for D. citri and appear to result from degradation prod-
ucts of common citrus volatiles (George et al. 2016;
Lapointe et al. 2016). Therefore, further experiments
should investigate whether reduced feeding of C. pruni
nymphs is based on feeding deterrents or the lack of im-
portant metabolites that stimulate feeding on P. persica.

In the current study, we investigated the impact of phyto-
plasma infection on the phloem chemistry of its host plant. For
this purpose, we compared two different plant-phytoplasma
combinations: a less susceptible Prunus species naturally in-
fected by a ‘Ca. P. prunorum’ strain, which induced no symp-
toms, and a highly susceptible Prunus species inoculated with
a ‘Ca. P. prunorum’ isolate that induces characteristic symp-
toms in the susceptible species. Neither type of infection with
either ‘Ca. P. prunorum’ strain caused major changes in the
composition of detected sugars, sugar alcohols and organic
acids in P. persica or P. insititia plants. Naturally infested
P. insititia plants were possibly colonized by a different phy-
toplasma strain than graft-inoculated P. persica plants. The
virulence of phytoplasmas mainly depends on the combina-
tion of scions and isolates, but is also influenced by the
rootstock. Kison and Seemüller (2001) investigated the viru-
lence of different ‘Ca. P. prunorum’ strains in combination
with different Prunus species. P. persica scions and rootstocks
suffered from infections with all tested ESFY isolates but to
varying degrees. In contrast, P. insititia rootstocks have been
less susceptible to all tested ESFY isolates. Regarding the
current results, we cannot exclude the possibility that other
combinations of scions, rootstocks and phytoplasma strains
could affect changes to phloem composition. The feeding be-
havior of C. pruni nymphs was partly influenced by phyto-
plasma colonizing host plants. The interaction of the main
factors (Prunus species and ESFY infection) affected feeding
behavior. This supports the hypothesis that ESFY infections
differentially affect P. persica and P. insititia trees. Shortened
intracellular pathway phases (C) could indicate that C. pruni
nymphs were able to reach the sieve-tube elements faster on
infected P. persica than on uninfected plants. This might be a
consequence of structural changes in phloem tissue, as

enlargement of whole midribs is a characteristic symptom of
ESFY in P. persica plants (Marcone et al. 1996).

Indeed, investigations have reported that C. pruni can sur-
vive and reproduce on P. persica in general (Carraro et al.
2004a; Fialová et al. 2004). However, we are the first to show
that P. persica (peach) is a less suitable host for plum psyllids,
which is clearly demonstrated by the low number of nymphs
that developed successfully on P. persica plants. This is in
accordance with findings from field surveys of C. pruni feed-
ing on different Prunus species (Carraro et al. 2002; Gallinger
et al. 2019; Mergenthaler et al. 2017). The measurement of
abundance of C. pruni was monitored in these field surveys
under the same conditions as in current study: non-grafted
P. insititia rootstocks were compared with grafted P. persica
scions on other rootstocks as this is common agricultural prac-
tice in fruit growing. To our knowledge there are no studies
describing the influence of grafting on phloem chemistry of
Prunus species, but it has been shown that rootstock species
influences plant growth and fruit quality (Melnyk 2017). The
rootstock-scion interaction can also influence psyllid feeding
behavior, as grafting on resistant interstocks reduced scion
susceptibility to pear psylla, Cacopsylla bidens (Shaltiel-
Harpaz et al. 2018).

Even though P. persica is not a preferred host plant of
C. pruni, trees are highly susceptible to phytoplasma infec-
tions and suffer from severe symptoms. Manifestation of
symptoms could be elicited by physical changes of the vascu-
lar system and secondary metabolites, as an infection withCa.
P. prunorum’ induces the release of phytohormones and the
deposition of callose in P. persica plants (unpublished data).
Phytohormones could affect the feeding behavior of vector
nymphs on ESFY-infected P. persica trees. There is evidence
that plant defense mechanisms mediated by phytohormones
are induced in response to ‘Ca. P. prunorum’ infestations in
apricot trees, which may lead to recovery from and tolerance
to ESFY (Osler et al. 2014; Osler et al. 2016). Microbial
phytopathogens induce hormonal changes in plants both di-
rectly and indirectly and this has been demonstrated for bac-
teria, fungi and viruses (Dermastia 2019; Killiny 2017; Ma
andMa 2016;Mauck et al. 2016). Inmany pathosystems these
modifications are proven to alter the behavior of vector insect
either directly or indirectly via volatile organic compounds
(Bak et al. 2019; Martini et al. 2017; Martini et al. 2018;
Mayer et al. 2008a, 2008b; Rid et al. 2016). Further, the in-
fection status of the vector itself influenced the behavior
(Mayer et al. 2008b). In this regard, the feeding and oviposi-
tion preferences of adult C. pruni, as influenced by their in-
fection status, should be investigated to evaluate the possible
effect on the transmission and spread of bacteria. Even though
psyllid nymphs are less mobile than winged adults, nymphs
spend more time feeding on phloem tissue (E1 and E2)
(Civolani et al. 2011; George et al. 2018). As a result, acqui-
sition of bacteria is higher when adults emerge from nymphs
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that fed on infected plants than when uninfected adults feed on
infected plants (George et al. 2018; Inoue et al. 2009; Pelz-
Stelinski et al. 2010). Consequently, transmission efficiency is
higher when bacteria are acquired during the nymph than
adult stage (Pelz-Stelinski et al. 2010). Since we found no
negative effect of host plant phytoplasma colonization on de-
velopment of C. pruni nymphs, it is possible that emerged
adults contained high titers of bacteria and were capable of
efficient pathogen inoculation.
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Table S1: Suppliers of reference standards used for GC-MS analysis. 

Standard Supplier 

Alanine 

Sigma-Aldrich Chemie GmbH 
(Munich, Germany) 

Aspartic acid 

Cysteine 

Glutaminic acid 

Histidine 

Iso-leucine 

Leucine 

Lysine 

Myo-isonitol 

Pinitol 

Proline 

Ribitol 

Salicylic acid 

Threonine 

Tryptophan 

Valine 

Xylose 

Arginine SERVA Electrophoresis GmbH 
(Heidelberg, Germany) Phenylalanine 

Glycine 

Carl Roth GmbH + Co. KG 
(Karlsruhe, Germany) 

Methionine 

Serin 

Malic acid 

Succinic acid 

Arabinose 

Sucrose 

Asparagine 

Merck KGaA 
(Darmstadt, Germany) 

Mannitol 

Glucose 

Galactose 

Sorbitol AppliChem GmbH  
(Darmstadt, Germany) Glutamine 

Citric acid 
Acros Organics  
(Thermo Fisher Scientific, Geel, Belgium) 



Table S2: Specification of linear models analyzing waveform parameters form EPG recordings of C. 

pruni nymphs (L5) feeding on healthy and ESFY infected P. insititia und P. persica leaves.  

Table S3: Specification and results of linear models analyzing the relative amount of total amino acids, 

sugars and organic acids in phloem sap samples from healthy and ESFY infected P. insititia und P. 

persica. 

waveform 
mean duration / nymph 

Data 
transformation 

waveform 
mean duration / event 

Data 
transformation 

C sqrt C log+1 

D sqrt D log+0.01 

E1 log+1 E1 log+0.01 

E2 none E2 log+0.01 

G log+1 G log+10 

np sqrt np log+0.01 

Relative 

amount of 

Data 

transformation 

Factor F-value Pr(>F) 

Amino acids log+0.01 species 4.376 0.044 

Sugars and  

sugaralcohols  

none species 22.536 <0.001 

Organic acids none species 140.29 <0.001 



Table S4: Specification and results of linear models analyzing the time (min) until first occurrence of 

each waveform in EPG recordings from C. pruni nymphs (L5) feeding on healthy and ESFY infected 

P. insititia und P. persica leaves.

waveform P. insititia P. persica

Time to first 

occurrence of 

waveform   

healthy ESFY healthy ESFY 

mean ± 

SE 

(min-

max) 

mean ± 

SE 

(min-

max) 

mean ± 

SE 

(min-

max) 

mean ± 

SE 

(min-

max) 

C 6.86 ± 

3.03 

(0.64 - 

37.61) 

9.14 ± 

5.13 

(1.32 - 

80.41) 

11.08 ± 

6.41 

(1.2 - 

99.49) 

19.42 ± 

15.43 

(0.64 - 

235.09) 

D 262.8 ± 

56.83 

(50.25 - 

897.45) 

280.8 ± 

60.64 

(37.35 - 

910.98) 

200.46 

± 30.52 

(75.72 - 

512.48) 

232.83 

± 68.13 

(0 - 

823.61) 

E1 263.86 

± 56.93 

(50.78 - 

899.55) 

282.13 

± 60.69 

(38.02 - 

912.76) 

201.52 

± 30.52 

(77.08 - 

513.64) 

233.63 

± 68.12 

(0 - 

824.38) 

E2 309.67 

± 57.56 

(50.93 - 

900.46) 

293.74 

± 61.3 

(38.1 - 

912.98) 

273.85 

± 47.62 

(77.29 - 

684.07) 

210.24 

± 65.36 

(0 - 

824.83) 

G 113.43 

± 27.21 

(12.12 - 

437.6) 

196.46 

± 60.62 

(0 - 

930.62) 

103.31 

± 23.24 

(12.08 - 

275.94) 

196.26 

± 74 

(10.55 - 

953.32) 

np 29.93 ± 

10.77 

(1.17 - 

159.48) 

27.98 ± 

9.36 

(3.99 - 

135.78) 

28.44 ± 

9.04 

(2.28 - 

116.64) 

43.21 ± 

18.57 

(2.62 - 

287.6) 

Time to first 

occurrence of 

waveform   

Data 

transformation 
Factor 

F-value 

Full model 

Pr(>F) 

Full model 

Best model 

AICc 

C log+0.01 species 0.166 0.685 

null model infection 0.064 0.801 

interaction 0.899 0.347 

D sqrt species 1.712 0.196 

null model infection 0.025 0.874 

interaction 0.196 0.660 

E1 sqrt species 1.714 0.196 

null model infection 0.024 0.878 

interaction 0.198 0.658 

E2 sqrt species 2.129 0.151 

null model infection 1.722 0.195 

interaction 0.906 0.345 

G log+1 species 0.028 0.869 

null model infection 0.164 0.687 

interaction 0.106 0.746 

np log+1 species 0.463 0.499 

null model infection 0.293 0.590 

interaction 0.027 0.870 
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