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SUMMARY 

 

Summary 

 

Grapevine is grown on about 1% of the German agricultural area requiring one third 

of all fungicides sprayed due to pathogens being introduced within the 19
th

 century. In 

spite of this requirement for viticulture a reduction is necessary to improve sustainability. 

This objective can be achieved by growing fungus resistant grapevine cultivars. The 

development of new cultivars, however, is very time-consuming, taking 20 to 25 years. In 

recent years the breeding process could be increased considerably by using marker assisted 

selection (MAS). Further improvements of MAS applications in grapevine breeding will 

come along with developing of faster and more cost efficient high-throughput (HT) 

genotyping methods.  

Complementary to genotyping techniques the quality, objectivity and precision of current 

phenotyping methods is limited and HT phenotyping methods need to be developed to 

further increase the efficiency of grapevine breeding through sensor assisted selection. 

Many different types of sensors technologies are available ranging from visible light 

sensors (Red Green Blue (RGB) cameras), multispectral, hyperspectral, thermal, and 

fluorescence cameras to three dimensional (3D) camera and laser scan approaches. 

Phenotyping can either be done under controlled environments (growth chamber, 

greenhouse) or can take place in the field, with a decreasing level of standardization. 

Except for young seedlings, grapevine as a perennial plant needs ultimately to be screened 

in the field. From a methodological point of view a variety of challenges need to be 

considered like the variable light conditions, the similarity of fore- and background, and in 

the canopy hidden traits. 

The assessment of phenotypic data in grapevine breeding is traditionally done directly in 

the field by visual estimations. In general the BBCH scale is used to acquire and classify 

the stages of annual plant development or OIV descriptors are applied to assess the 

phenotypes into classes. Phenotyping is strongly limited by time, costs and the subjectivity 

of records. Therefore, only a comparably small set of genotypes is evaluated for certain 

traits within the breeding process. Due to that limitation, automation, precision and 

objectivity of phenotypic data evaluation is crucial in order to (1) reduce the existing 
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phenotyping bottleneck, (2) increase the efficiency of grapevine breeding, (3) assist further 

genetic studies and (4) ensure improved vineyard management. In this theses emphasis was 

put on the following aspects: Balanced and stable yields are important to ensure a high 

quality wine production playing a key role in grapevine breeding. Therefore, the main 

focus of this study is on phenotyping different parameters of yield such as berry size, 

number of berries per cluster, and number of clusters per vine. Additionally, related traits 

like cluster architecture and vine balance (relation between vegetative and generative 

growth) were considered. Quantifying yield parameters on a single vine level is 

challenging. Complex shapes and slight variations between genotypes make it difficult and 

very time-consuming. 

As a first step towards HT phenotyping of yield parameters two fully automatic image 

interpretation tools have been developed for an application under controlled laboratory 

conditions to assess individual yield parameters. Using the Cluster Analysis Tool (CAT) 

four important phenotypic traits can be detected in one image: Cluster length, cluster 

width, berry size and cluster compactness. The utilization of the Berry Analysis Tool 

(BAT) provides information on number, size (length and width), and volume of grapevine 

berries. Both tools offer a fast, user-friendly and cheap procedure to provide several 

precise phenotypic features of berries and clusters at once with dimensional units in a 

shorter period of time compared to manual measurements. 

The similarity of fore- and background in an image captured under field conditions is 

especially difficult and crucial for image analysis at an early grapevine developmental 

stage due to the missing canopy. To detect the dormant pruning wood weight, partly 

determining vine balance, a fast and non-invasive tool for objective data acquisition in the 

field was developed. In an innovative approach it combines depth map calculation and 

image segmentation to subtract the background of the vine obtaining the pruning area 

visible in the image. 

For the implementation of HT field phenotyping in grapevine breeding a phenotyping 

pipeline has been set up. It ranges from the automated image acquisition directly in the 

field using the PHENObot, to data management, data analysis and the interpretation of 

obtained phenotypic data for grapevine breeding aims. The PHENObot consists of an 

automated guided tracked vehicle system, a calibrated multi camera system, a Real-Time-

Kinematic GPS system and a computer for image data handling. Particularly developed 

software was applied in order to acquire geo referenced images directly in the vineyard. 



xiii 

SUMMARY 

The geo-reference is afterwards used for the post-processing data management in a 

database. As phenotypic traits to be analysed within the phenotyping pipeline the detection 

of berries and the determination of the berry size and colour were considered. The high-

throughput phenotyping pipeline was tested in the grapevine repository at Geilweilerhof to 

extract the characteristics of berry size and berry colour using the Berries In Vineyards 

(BIVcolor) tool. Image data acquisition took about 20 seconds per vine, which afterwards 

was followed by the automatic image analysis to extract objective and precise phenotypic 

data. In was possible to capture images of 2700 vines within 12 hours using the PHENObot 

and subsequently automatic analysis of the images and extracting berry size and berry 

colour. With this analysis proof of principle was demonstrated. The pilot pipeline provides 

the basis for further development of additional evaluation modules as well as the 

integration of other sensors. 
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Zusammenfassung 

 

Weinbau wird auf 1% der deutschen Agrarfläche betrieben. Auf dieser 

vergleichsweise kleinen Anbaufläche wird jedoch ein Drittel aller in der deutschen 

Landwirtschaft verwendeten Fungizide appliziert, was auf die Einführung von 

Schaderregern im 19. Jahrhundert zurück zu führen ist. Für einen nachhaltigen Anbau ist 

eine Reduktion des Pflanzenschutzmittelaufwands dringend notwendig. Dieses Ziel kann 

durch die Züchtung und den Anbau neuer, pilzwiderstandsfähiger Rebsorten erreicht 

werden. Die Rebenzüchtung als solche ist sehr zeitaufwendig, da die Entwicklung neuer 

Rebsorten 20 bis 25 Jahre dauert. Der Einsatz der markergestützten Selektion (MAS) 

erhöht die Effizienz der Selektion in der Rebenzüchtung fortwährend. Eine weitere 

Effizienzsteigerung ist mit der andauernden Verbesserung der Hochdurchsatz 

Genotypisierung zu erwarten. 

Im Vergleich zu den Methoden der Genotypisierung ist die Qualität, Objektivität und 

Präzision der traditionellen Phänotypisierungsmethoden begrenzt. Die Effizienz in der 

Rebenzüchtung soll mit der Entwicklung von Hochdurchsatz Methoden zur 

Phänotypisierung durch sensorgestützte Selektion weiter gesteigert werden. Hierfür sind 

bisher vielfältige Sensortechniken auf dem Markt verfügbar. Das Spektrum erstreckt sich 

von RGB-Kameras über Multispektral-, Hyperspektral-, Wärmebild- und Fluoreszenz-

Kameras bis hin zu 3D-Techniken und Laserscananwendungen. Die Phänotypisierung von 

Pflanzen kann unter kontrollierten Bedingungen in Klimakammern oder Gewächshäusern 

beziehungsweise im Freiland stattfinden. Die Möglichkeit einer standardisierten 

Datenaufnahme nimmt jedoch kontinuierlich ab. Bei der Rebe als Dauerkultur erfolgt die 

Aufnahme äußerer Merkmale, mit Ausnahme junger Sämlinge, deshalb auch überwiegend 

im Freiland. Variierende Lichtverhältnisse, Ähnlichkeit von Vorder- und Hintergrund 

sowie Verdeckung des Merkmals stellen aus methodischer Sicht die wichtigsten 

Herausforderungen in der sensorgestützen Merkmalserfassung dar. Bis heute erfolgt die 

Aufnahme phänotypischer Merkmale im Feld durch visuelle Abschätzung. Hierbei werden 

die BBCH Skala oder die OIV Deskriptoren verwendet. Limitierende Faktoren dieser 

Methoden sind Zeit, Kosten und die Subjektivität bei der Datenerhebung. Innerhalb des 
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Züchtungsprogramms kann daher nur ein reduziertes Set an Genotypen für ausgewählte 

Merkmale evaluiert werden. Die Automatisierung, Präzisierung und Objektivierung 

phänotypischer Daten soll dazu führen, dass (1) der bestehende Engpass an phänotypischen 

Methoden verringert, (2) die Effizienz der Rebenzüchtung gesteigert, und (3) die 

Grundlage zukünftiger genetischer Studien verbessert wird, sowie (4) eine Optimierung 

des weinbaulichen Managements stattfindet. 

Stabile und über die Jahre gleichbleibende Erträge sind für eine Produktion qualitativ 

hochwertiger Weine notwendig und spielen daher eine Schlüsselrolle in der 

Rebenzüchtung. Der Fokus dieser Studie liegt daher auf Ertragsmerkmalen wie der 

Beerengröße, Anzahl der Beeren pro Traube und Menge der Trauben pro Weinstock. Die 

verwandten Merkmale Traubenarchitektur und das Verhältnis von generativem und 

vegetativem Wachstum wurden zusätzlich bearbeitet. Die Beurteilung von 

Ertragsmerkmalen auf Einzelstockniveau ist aufgrund der genotypischen Varianz und der 

Vielfältigkeit des betrachteten Merkmals komplex und zeitintensiv. 

Als erster Schritt in Richtung Hochdurchsatz (HT) Phänotypisierung von Ertragsmerk-

malen wurden zwei voll automatische Bildinterpretationsverfahren für die Anwendung im 

Labor entwickelt. Das Cluster Analysis Tool (CAT)
 
ermöglicht die bildgestützte Erfassung 

der Traubenlänge, -breite und -kompaktheit, sowie der Beerengröße. Informationen über 

Anzahl, Größe (Länge, Breite) und das Volumen der einzelnen Beeren liefert das Berry 

Analysis Tool (BAT). Beide Programme ermöglichen eine gleichzeitige Erhebung 

mehrerer, präziser phänotypischer Merkmale und sind dabei schnell, benutzerfreundlich 

und kostengünstig.  

Die Möglichkeit, den Vorder- und Hintergrund in einem Freilandbild zu unterscheiden, ist 

besonders in einem frühen Entwicklungsstadium der Rebe aufgrund der fehlenden 

Laubwand schwierig. Eine Möglichkeit, die beiden Ebenen in der Bildanalyse zu trennen, 

ist daher unerlässlich. Es wurde eine berührungsfreie, schnelle sowie objektive Methode 

zur Bestimmung des Winterschnittholzgewichts, welches das vegetative Wachstum der 

Rebe beschreibt, entwickelt. In einem innovativen Ansatz wurde unter Kombination von 

Tiefenkarten und Bildsegmentierung die sichtbare Winterholzfläche im Bild bestimmt. 

Im Zuge dieser Arbeit wurde die erste HT Phänotypisierungspipeline für die 

Rebenzüchtung aufgebaut. Sie umfasst die automatisierte Bildaufnahme im Freiland unter 

Einsatz des PHENObots, das Datenmanagement mit Datenanalyse sowie die Interpretation 
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des erhaltenen phänotypischen Datensatzes. Die Basis des PHENObots ist ein 

automatisiert gesteuertes Raupenfahrzeug. Des Weiteren umfasst er ein Multi-Kamera-

System, ein RTK-GPS-System und einen Computer zur Datenspeicherung. Eine eigens 

entwickelte Software verbindet die Bilddaten mit der Standortreferenz. Diese Referenz 

wird anschließend für das Datenmanagement in einer Datenbank verwendet. Um die 

Funktionalität der Phänotypisierungspipeline zu demonstrieren, wurden die Merkmale 

Beerengröße und -farbe im Rebsortiment des Geilweilerhofes unter Verwendung des 

Berries In Vineyard (BIVcolor) Programms erfasst. Im Durschnitt werden 20 Sekunden 

pro Weinstock für die Bildaufnahme im Feld benötigt, gefolgt von der Extraktion der 

Merkmale mittels automatischer, objektiver und präziser Bildauswertung. Im Zuge dieses 

Versuches konnten mit dem PHENObot 2700 Weinstöcke in 12 Stunden erfasst werden, 

gefolgt von einer automatischen Bestimmung der Merkmale Beerengröße und -farbe aus 

den Bildern. Damit konnte die grundsätzliche Machbarkeit bewiesen werden. Diese 

Pilotpipeline bietet nun die Möglichkeit zur Entwicklung weiterer innovativer Programme 

zur Erhebung neuer Merkmale sowie die Integration zusätzlicher Sensoren auf dem 

PHENObot. 
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1. General introduction 

 

Grapevine (Vitis vinifera L.) is one of the oldest domesticated and most worldwide-

grown perennial fruit crops. Its evolution is closely linked to the cultural development of 

humankind and has an important economic and social value. The primary centre of 

domestication is most likely the Transcaucasia region (Töpfer et al., 2011). Nowadays it is 

cultivated at latitudes from 50°N to 30°N and 40°S to 30°S that approximate to the 10°C 

and 20°C isotherms (Mullins et al., 1992). It is supposed, that worldwide 8,000 to 12,000 

grapevine cultivars exist, mainly used for wine production (56.8%) but also for table 

grapes (27.0%), a mixed usage for both wine and table grape production (7.3%), dried 

fruits (0.7%), and finally other genotypes are used as rootstocks (Töpfer et al., 2011). 

Besides wine production and fresh or dried food consumption grapes are used for juice, 

jam, syrups, ethanol, vinegar and seed oil production. 

 

1.1 Grapevine breeding 

 

History of grapevine breeding 

 

One of the oldest known genotypes, first mentioned by Philippe de Beaumanoir in 

1283, is ‘Weißer Heunisch’. Together with the old ‘Pinot’ cultivar family it forms the 

parentage of many cultivars of present importance (Boursiquot et al., 2004; Bowers et al., 

1999). It remains unclear how these cultivars emerged. It might be reasonably assumed that 

they originated from random selections rather than from organized breeding activities. The 

first clear cut evidence for controlled grapevine breeding is found in America during the 

late 18
th

 century (Töpfer et al., 2011). First known cultivars like ‘Sage’, ‘Cunningham’ and 

‘Catawba’ are well known as American hybrids. In European countries, above all in 

France, breeding activities turned up as a consequence of the introduction of different 

pathogens in the 19
th

 century. Powdery mildew (Erysiphe (syn. Uncinula) necator, 
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Schwein.1834) was introduced to Europe in 1845 causing 80% harvest failures (Creasy and 

Creasy, 2009). Around 1863 phylloxera (Daktulosphaira vitifoliae, Fitch) arrived in 

Europe. Only the grafting of vines using scions of traditional cultivars (with leaf resistance 

to phylloxera) and root tolerant rootstocks saved the viticulture production (Campbell, 

2004). Tragically another pathogen, downy mildew (Plasmopara viticola, Berk. & Curt ex. 

De Bary) came along with such rootstocks in 1878. Millardet suggested in 1878 to 

combine the V. vinifera L. subsp. vinifera fruit quality and the resistance against powdery 

and downy mildew found in American wild species. The outcome of these breeding 

activities was recognised as the so-called French hybrids. Due to the poor wine quality 

neither of the American and French hybrids succeeded in the market. Whereas the breeding 

activities stopped in France, countries like Germany used the French material for their own 

breeding efforts. While generating F1-populations by interspecific crosses was quite 

successful for rootstock breeding the quality of the achieved wine grapes was insufficient. 

Making it necessary to have more than two generations from the wild species to select 

reasonable genotypes and even more crosses to obtain really elite lines and new quality 

cultivars (Töpfer et al., 2011). Husfeld was the first proving that resistance and quality can 

be combined (Alleweldt, 1977). His cultivars (‘Aris’, ‘Siegfriedrebe’) convinced with good 

wine quality and high mildew resistance but were insufficient in terms of yield and virus 

susceptibility (Alleweldt, 1977). Except for the step of marker assisted selection (MAS) the 

illustration of Figure 1 shows a breeding scheme and gives an idea about the time frame of 

breeding programs already used by Husfeld and Alleweldt. Classical breeding programs 

obtain several successive steps decreasing the number of individuals in each step. 

Assuming a breeding program of wine grapes starts with 50,000 seedlings a year, 

greenhouse testing will lead to 5,000 vines planted in a seedlings plot. 

Apart from the seedling stage all further steps require three to five years of growth. The 

first three years are needed to get the vine established and the following years to achieve a 

full crop. Vines from breeding lines showing good viticultural performance and high 

resistance levels will then be used for quality assessments. This so-called micro-

vinification is crucial in wine grape breeding. Starting from a single vine level with no 

more than one litre it is by far one of the most time consuming evaluations in classical 

grapevine breeding. Reducing the required time for this step could accelerate the duration 

of grapevine breeding. This could only be realized through the development of early 

marker based genotyping methods. Not only wine quality traits like sugars, acids, flavours, 

off-flavours, etc. could be interesting for this application but also the yield traits correlated 
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to important quality traits like berry size, berry number, cluster architecture and phenology 

traits like time of ripening and ripening duration. 

 

 
Figure 1 Timescale and steps of grape wine breeding. A: pre-selection in the greenhouse to 

eliminate e.g. genotypes with high susceptibility to fungal diseases (Plasmopara viticola, Erysiphe 

necator). For the early evaluation of traits like yield and quality the importance of MAS is 

increasing since these traits are difficult to evaluate prior to planting and growing in the field. B: 

Increasing number of vines per genotype in various steps of testing, seedlings- (1 vine), pre- (10 

vines), intermediate- (50 vines) and main testing (500 vines). C: Followed by test trails with 

viticultural practice. Usually developing a new cultivar through classical wine grape breeding 

requires 25-30 years. With the utilization of MAS the expected savings in time are up to 10 years. 

 

Grapevine was the fourth one of the first flowering plants and the first fruiting perennial 

crop whose genome was completely sequenced (Jaillon et al., 2007; Velasco et al., 2007) 

and therefore progress was made easier by the relatively small size of the genome 

(Bouquet, 2011). The rapid development of molecular techniques and genome sequencing, 

most important the development of molecular markers, accelerates grapevine breeding. 

First genetic mapping studies used RAPD (randomly amplified polymorphic DNA) 

markers (Weeden et al., 1994), followed by SSR (simple sequence repeats) markers 

(Bowers et al., 1996; Di Gaspero et al., 2007; Di Gaspero et al., 2005; Merdinoglu et al., 

2005; Welter et al., 2007) which proved to be reliable, comparable and robust while 

permitting a more detailed analysis of genetically determined grapevine traits (Töpfer et 

al., 2011). As a next generation of markers in grapevine breeding, single nucleotide 

polymorphism (SNP) based markers have been used for genetic analysis (Myles et al., 
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2010; Salmaso et al., 2004; Salmaso et al., 2008). Using SSR or other marker types, as well 

as a combination of them to develop genetic maps, provides the genetic framework 

required for QTL (quantitative trait loci) mapping and therefore the combination of 

genotypic and phenotypic information. This analysis permits the dissection of complex 

polygenetic traits and provides a rough localization of possible underlying genes. 

With emerging new and effective genotyping methods in the last decade, the major missing 

tools are efficient and objective high-throughput phenotyping methods to accomplish 

modern grapevine breeding. 

 

Objectives of grapevine breeding 

 

A long generation cycle, limited plant material, slow propagation rates due to hard 

wood cuttings and the requirement of several repetitions to break down the environmental 

influence of a trait make grapevine breeding very time consuming (compare Figure 1). 

Two methods of grapevine breeding can be distinguished: (1) clonal selection of variants 

within the cultivar (asexual) for keeping cultivars healthy and stable in yield and (2) cross 

breeding (sexual reproduction) divided into breeding of rootstocks, table and wine grapes. 

To achieve the specific breeding goals of all three categories totally independent breeding 

programs based on different kinds of genetic resources are needed. Mainly non-vinifera 

vines of North American origin have been used to improve rootstocks through interspecific 

crosses. Agronomical performance and the resistance to phylloxera are the major breeding 

issues for rootstocks. In table grape breeding mainly crosses within V. vinifera L. subsp. 

vinifera are performed and the main breeding goals are quality (seedlessness, taste, 

sweetness, colour, uniformity of colour an cluster architecture, crispness, berry size, 

Botrytis stability) and post-harvest traits (time of ripening, transport stability) (Truel, 

1983). The major objectives in wine grape breeding are high wine quality combined with 

high disease resistances and good climatic adaption. The most important traits for wine 

grape breeding are summarized in Table1. 
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Table 1 Objectives in wine grape breeding. 

Breeding traits range of traits 

wine quality    

red dark colour moderate colour  

white fruity neutral muscat/aromic 

rich in various components tannins, flavonols amino acids potassium 

sugar medium high  

acidity high medium  

off-flavours none   

other wine characters well balanced taste wine with rich body  

aging potential medium aging potential high long lasting wine 

viticulture performance     

resistances- fungi Erysiphe necator  

(syn. Uncinula necator) 

Black rot 

Plasmopara viticola  

 

Anthracnose 

Botryotinia fuckeliana 

(syn. Bortytiy cineria) 

resistance- bacteria Pierce`s disease Agrobacterium Phomopsis viticola 

resistances-insects Daktulospharia 

vitifoliae 

Xiphinema index  

(vector for viruses) 

 

resistances- abiotic stress frost drought sunburn 

growth upright   

wood maturation early middle  

yield    

yield < 1 kg m
-2

 1.5 kg m
-2

 > 1.5 kg m
-2

 

fruit characters loose cluster thickness of berry skin  

berry ripening early middle late 

berry size small (13 mm) medium (18 mm) wide (23 mm) 

berries per cluster < 200 200-300 > 300 

cluster per cane 2 3 4 

    modified after Töpfer et al. 2011 

 

1.2 Phenotyping bottleneck 

 

With the rapid development of plant genomic technologies the ability to dissect the 

genetics of quantitative traits is limited due to a lack of access to plant phenotyping 

instruments. Although molecular breeding strategies have laid greater effort on genetic 

selection, phenotypic data are still needed for selection of breeding material, to identify 

genetic markers and for genetic studies. Current assessments of phenotyping characteristics 

in grapevine breeding are manly done by visual estimations using the BBCH scale (Lorenz 

et al., 1995) or OIV (Anonymous, 2009) descriptors. These methods are subjective, very 

time consuming and therefore also expensive. Modern plant phenotyping intended to 

measure complex traits non-invasive at a certain accuracy and precision at different scales 

of organization, from whole plant level to organs, to increase the efficiency in grapevine 

breeding. To achieve this goal modern phenotyping involves expertise from biological and 

computer science, mathematics and engineering to develop so-called machine vision 
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systems. These kinds of systems are already widely used in industrial production, 

medicine, radar guidance and document analysis for examination, monitoring or 

controlling. Within the agricultural sector modern phenotyping methods are also used in 

food industry for post-harvest fruit recognition and in precision agriculture. Phenotyping 

with such systems can take place in different environments (controlled or field) and 

depending on the experimental design different sensors can be used. To analyse the gene-

environment interaction and to display the phenotypic response it is crucial to capture 

quantitative reference measurements and interpret the gained sensor results.  

 

Sensor type 

 

The sensors used to detected and quantify the phenotype of plants express the 

interaction between light and plants such as the reflectance, absorbance or transmission of 

photons. Different plant components show various wavelength-specific characteristics. For 

example, chlorophyll absorbs primary in the blue (420-480nm) and red (630-790nm) 

spectral region whereas liquid water has its absorption characteristics in the infrared. 

Therefore imaging at different wavelength is used for different plant phenotyping aspects. 

Imaging techniques manly include visible light, fluorescence, thermal infrared and 

spectroscopy imaging among others (MRI, PET, CT). Table 2 gives an overview of sensors 

currently used in plant research. 

 

Controlled environment phenotyping systems 

 

In the recent years, many efforts have been made to build up platforms, which allow 

the assessment of large quantities of phenotypic data under controlled environments. These 

platforms can be divided into two principal approaches depending on the movement of 

either the sensor or the plant: sensor-to-plant system and plant-to-sensor system. 

PHENOPSIS (Granier et al., 2006) was developed to assess the plant growth in 

Arabidopsis thaliana and follows the sensor-to-plant principle. Another representative of 

this group is the pepper plant imaging facility in Wageningen developed within the SPICY 

project (van der Heijden et al., 2012). Phenotyping systems representing the plant-to-sensor 

principle have been set up at Jülich Plant Phenotyping Centre (GROWSCREEN, Nagel et 
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al., 2012, Jansen et al,. 2009, Walter et al., 2007), at INRA Montpellier (Phenoscope, Tisné 

et al., 2013), and at the University of Ghent (WIWAM, Skirycz et al., 2011). 

Only a few companies offer individual solutions of HT plant phenotyping systems, such as 

the LemnaTec Scanalyzer (LemnaTec AG, Aachen, www.lemnatec.de) or PlantScreen 

Conveyor systems (Qubit Phenomics, Kingston, Ontario, Canada, 

www.qubitphenomics.com). LemnaTec systems have for instance been installed at public 

research institutions in Adelaide (The Plant Accelerator as part of the Australian Plant 

Phenomics Facility, http://www.plantphenomics.org.au/), at INRA Dijon and Montpellier 

(PPHD and Phenoarch, http://bioweb.supagro.inra.fr/phenoarch/index.php/en/), and at the 

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK; http://www.ipk-

gatersleben.de/en).  

Qubit Phenomics Trayscan systems are for instance operating at the High Resolution Plant 

Phenomics Centre Canberra (http://www.csiro.au/Outcomes/Food-and-Agriculture/ 

HRPPC/PlantScan.aspx), the ARC Centre of Excellence in Plant Energy Biology, Acton, 

Australia, (http://www.plantenergy.uwa.edu.au/research/tech_platforms_main.shtml), and 

the C4 Rice Centre at the International Rice Research Institute in Los Baños, Laguna, 

Philippines (Junker et al., 2015).  

All of these systems require several components:  

 one or more sensors for raw data acquisition. 

 a physical system for the integration of different sensors if needed and power supply. 

 devises for plant or sensor positioning (depending on the type of platform). 

 analytical capabilities for reference measurements. 

 software systems to log sensor data and for managing and analysing potentially large 

and complex datasets. 

Novel techniques are appearing in the course of phenotyping research within the frame of 

networks like DPPN (Deutsches Pflanzen Phänotypisierungsnetzwerk; 

http://www.dppn.de/dppn/DE/Home/home_node.html), EPPN (European Plant 

Phenotyping Network; http://www.plant-phenotyping-network.eu/) or IPPN (International 

Plant Phenotyping Network; http://www.plant-phenotyping.org/).  
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Field environment phenotyping systems 

 

Field–based systems always rely on the sensor-to-plant principle. The required 

components of field-based phenotyping systems are manly the same as the ones used in 

controlled environments. Compared to controlled environments like greenhouses and 

growing chambers field-based systems need to be robust enough to cope with harsh 

environmental influences (dust, vibration and weather conditions). This affects the sensor, 

the physical equipment and the construction framework. Three kinds of device approaches 

to position the sensor in the field can be distinguished: (1) ground-based, (2) aerial-based, 

and (3) satellite-based systems.  

Ground-based platforms include vehicles equipped with navigation GPS system device and 

sensors, they are often referred to as “phenomobiles” (Araus and Cairns, 2014). The 

vehicle the sensor system is attached to can either be a tractor (Andrade-Sanchez et al., 

2013; Braun et al., 2010; Llorens et al., 2011), an agricultural harvester (Montes et al., 

2007) or an independent vehicle (Berenstein et al., 2010; Calcante et al., 2012; Nuske et 

al., 2011).  

Aerial-based platforms include small airplanes or helicopters, blimps (helium-filled 

balloons) (Losos et al., 2013), and unmanned aerial platforms (UAP) such as polycopter.  

Further field-based systems include “phenotowers” (Rascher et al., 2011) or systems 

inspired by greenhouse applications like the LemnaTey Scanalyzer system (LemnaTec AG, 

Aachen, www.lemnatec.de) for field application. 

An automated field phenotyping platform has been introduced for the application in cotton 

(Gossypium barbadense L.). The system carried four sets of sensors to measure canopy 

height, reflectance and temperature simultaneously on four adjacent rows, enabling the 

collection of phenotypic data at a rate of 0.84 ha h
–1 

(Andrade-Sanchez et al., 2013). A 

high-throughput phenotyping platform employing light curtains and spectral reflectance 

sensors mounted on a tractor and evaluating the performance of different maize (Zea mays) 

genotypes under field conditions was developed (Montes et al., 2011). Furthermore a semi-

automatic system was developed to monitor micro-plots of wheat cultivars under field 

conditions. The system is based on a hyperspectral radiometer and two RGB cameras 

observing the canopy from ~1.5 m distance to the top of the canopy (Comar et al., 2012). 

Other applications have been introduced for the field phenotyping of maize 
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(Ruckelshausen et al., 2009) and small grain cereals (Busemeyer et al., 2013). A robot 

application for viticulture was suggested by Longo et al. 2011.  
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Table 2 Comparison of different sensors used in plant phenotyping. 
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GENERAL INTRODUCTION 

 

Applications of sensor technology in viticulture 

 

Due to the fact, that grapevine is a perennial plant and traits need to be screened 

under natural field conditions, most of the sensor-based methods developed and used in 

viticulture research are mainly field-based methods. Nevertheless it is much easier to 

develop sensor systems under controlled environmental conditions wherefore a set of such 

methods exists. Table 3 gives an overview over the sensor technology used in viticulture. 

On the basis of RGB images, programs with user-interaction like the GRA.LE.D (Bodor et 

al., 2012) or SuperAmpelo (Soldavini et al., 2009) offer the opportunity to analyse simply 

leave characters (Bodor et al., 2012; Michels et al., 2013) or as well further ampelographic 

traits like cluster, berry and seed characteristics (Soldavini et al., 2009). Further image 

analysis tools are available to detect cluster characteristic like cluster compactness (Cubero 

et al., 2015), berry size (Tardaguila et al., 2012; Tardaguila et al., 2013; Wycislo et al., 

2008) based on RGB images. To quantify the vitality and morphology of berries, 

fluorescence microscopy imaging and semi-automatical image analysis has been used to 

detect the shrivel index (berry area per berry perimeter) and tissue vitality of berries 

(Fuentes et al., 2010). A combination of VIS and NIR sensors (NIR spectrometer, 

GreenSeeker RT100 and Crop Circle) has been used to compute Plasmopara viticola 

infection on leaves collected in the field (Calcante et al., 2012). For the monitoring of 

grapevine ripening characteristics (berry colour, volume, uniformity, sugar and acidities) of 

single berries, a commercially available device (Dyostem, Seferis, Villeneuve les 

Maguelone Cedex, France) can be used in the laboratory.  

An intermediate step between the very controlled environments indoors and the sensor 

applications under field conditions are hand-held devices. They work with artificial 

backgrounds fixed to the sensor to guarantee a consistent distance object-to-sensor and to 

eliminate the natural background making image analysis easier. These setups are used to 

detect grapevine inflorescences (Diago et al., 2014) or grape clusters (Rabatel and Guizard, 

2007). The Multiplex (Force A, Paris, France) uses fluorescence to assess the grapevine 

health status (Lejealle et al., 2012), maturity (Agati et al., 2013) and physiological status 

(photosynthesis, photochemical reactions, secondary metabolites) (Cerovic et al., 1999). 

The two main traits assessed by sensor-based field applications, predominantly developed 

and used for precision viticulture so far, are yield and canopy characteristics.  
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First step to predict yield is to detect grape clusters in the image and to be able to 

distinguish between leave and grape clusters either automatically (Font et al., 2014; Liu et 

al., 2013; Reis et al., 2012) or by user interaction (Dey et al., 2012; Diago et al., 2012; 

Dunn and Martin, 2004). Counting of grape berries using laser scanners also showed good 

results of 84% accuracy (Djuricic et al., 2014). To get better yield prediction not only the 

detection of grape pixels is important, but also the measuring of berry size (Roscher et al., 

2014) or counting of detected berries is taking it a step further (Nuske et al., 2011). 

Recently they updated their method by using calibration data either from previous harvests 

or a small set of destructive handpicked samples (Nuske et al., 2014). Other studies used a 

combination of images with laser technologies (Grocholsky et al., 2011), terahertz time-

domain spectroscopy (Federici et al., 2009) as well as remote sensing approaches (Cunha 

et al., 2010) to detect and predict yield. 

Canopy performance, including canopy characterisation like vigour, size, density and 

shape are a key indicator of value in viticultural production and therefore one of the most 

sensor-based assed traits. In most approaches remote sensing is used to assess vine vigour, 

either based only on the multispectral satellite imagery (Johnson et al., 2003; Lamb, 2000; 

Llorens et al., 2011; Mazzetto et al., 2010; Strever, 2007) or in combination with VIS 

sensors (Fuentes et al., 2014) to detect the leafe area index (LAI). In some other studies a 

laser scanner approach is used to detect the canopy size and density (Grocholsky et al., 

2011; Llorens et al., 2011). 

Remote sensing is further used for the site-specific assessment of health status (Calcante et 

al., 2012; Mazzetto et al., 2010) whereas the gained information can be used for targeted 

spraying applications (Berenstein et al., 2010; Braun et al., 2010; Strever et al., 2012). 

Furthermore chlorophyll fluorescence imaging has been used to detect downy mildew 

infections (Cséfalvay et al., 2009). 

As another important trait of vineyard management, water stress status has been 

determined by using thermal IR images (Fuentes et al., 2012a; Jones et al., 2009; Möller et 

al., 2007). Nevertheless one of the most expensive tasks in vineyard management is vine 

pruning, therefore different studies intend to develop methods of image processing 

(McFarlane et al., 1997; Ming and Tien-Fu, 2006) and artificial intelligence (Corbett-

Davies et al., 2012) to automate this step. The detection of winter pruning wood as another 

important indicator of vine vigour has been carried out using a remote sensor approach 

(multi-spectral-radiometric) (Dobrowski et al., 2003) and a 2D laser scanner sensor 

(Tagarakis et al., 2013).  
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Table 3 Comparison of different sensors used in viticulture. 

Technique sensor parameter reference environment 

visible light RGB camera number 

- inflorescences 

 

- berries 

 

 

 

(Diago et al., 2014) 

(Grossetete et al., 2012) 

(Font et al., 2014) 

(Rabatel and Guizard, 2007) 

(Nuske et al., 2011 and  2014) 

(Grocholsky et al., 2011) 

 

controlled* 

controlled* 

controlled 

controlled* 

field 

field 

  size 

- leaves 

 

- cluster, seed 

- berries 

 

 

 

 

 

(Bodor et al., 2012) 

(Soldavini et al., 2009) 

(Soldavini et al., 2009) 

(Tardaguila et al., 2013) 

(Tardaguila et al., 2012) 

(Soldavini et al., 2009) 

(Wycislo et al., 2008) 

(Roscher et al., 2014) 

 

controlled 

controlled 

controlled 

controlled 

controlled 

controlled 

controlled 

field 

  colour of berries, 

seeds (maturity, 

browning index) 

(Rodríguez-Pulido et al., 2012) controlled 

  cluster compactness (Cubero et al., 2015) controlled 

  amount of pixel 

(fruit/leaves) 

(Diago et al., 2012) 

(Dunn and Martin, 2004) 

field 

field 

  LAI (Fuentes et al., 2014) field 

  health status 

- leaves 

 

 

- leaf disc 

 

(Li et al., 2012) 

(Meunkaewjinda et al., 2008) 

(Boso et al., 2004) 

(Peressotti et al., 2011) 

 

controlled 

controlled 

controlled 

controlled 

fluorescence imaging berry size (Fuentes et al., 2010) controlled 

  tissue vitality (Fuentes et al., 2010) controlled 

 non-imaging health status (Lejealle et al., 2012) 

(Cséfalvay et al., 2009) 

controlled* 

controlled* 

  maturity (Agati et al., 2013) controlled* 

  physiological status (Cerovic et al., 1999) controlled* 

thermal IR cameras water stress (Fuentes et al., 2012a) 

(Jones et al., 2009) 

(Möller et al., 2007) 

field 

field 

field 

spectral spectrometer 

non-imaging 

NDVI (Mazzetto et al., 2011) 

(Mazzetto et al., 2010) 

field 

field 

  vine vigour (Llorens et al., 2011) 

(Mazzetto et al., 2010) 

(Lamb, 2000) 

(Strever, 2007) 

(Johnson et al., 2003) 

field 

field 

field 

field 

field 

  pruning weight (Dobrowski et al., 2003) field 

 terahertz 

spectroscopy 

differentiate between 

cluster parameter  

(Federici et al., 2009) 

 

controlled 

laser  number of berries (Djuricic et al., 2014) 

(Grocholsky et al., 2011) 

field 

field 

  pruning weight (Tagarakis et al., 2013) field 

  canopy size (Grocholsky et al., 2011) field 

3D stereo 

camera 

system 

canopy dimensions (Klodt et al., 2015) field 

* hand-held devices 
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The technologies mentioned above represent either manually recording from a constant 

distance to the canopy (Diago et al., 2012; Diago et al., 2014; Fuentes et al., 2012a; 

Fuentes et al., 2014), mounted to a tractor (Braun et al., 2010; Llorens et al., 2011; 

Mazzetto et al., 2010), truck-crane (Möller et al., 2007) or include modified vehicles 

(Berenstein et al., 2010; Calcante et al., 2012; Nuske et al., 2011) equipped with global 

positioning systems (GPS) devices (Grocholsky et al., 2011; Mazzetto et al., 2011; Nuske 

et al., 2014). A robot application for viticulture was suggested by Longo et al. 2011. The 

U-Go robot was developed as a multipurpose vehicle with the aim to facilitate work during 

the season (harvesting, pruning, transportation of bins) (Longo et al., 2011). Its technical 

specification allows a remote control or autonomous motion using GPS waypoints (Longo 

et al., 2011). Automated analysis of the foliage distribution pattern in the canopy 

(Berenstein et al., 2010; Braun et al., 2010) are the foundation for selective spraying and 

spraying robots (Longo et al., 2012; Ogawa et al., 2006). 

Nevertheless, the existing platforms with corresponding sensor technology operate mainly 

on a whole field level but miss out on the opportunity to assess phenotypes on a single vine 

level, but this is urgently needed for modern phenotyping applications in grapevine 

breeding. 

The vineyard of the future (https://vineyardofthefuture.wordpress.com) on Waite campus 

in Adelaide, Australia, follows another approach. A one hectare vineyard which contains 

an advanced integrated vineyard monitoring and logging system to do online real-time 

measurements aims providing information about all vine responses at all times. The 

assessment of growth, plant health, water status and berry quality through a web-based 

system is using in-soil, in-vine and remote sensing technologies (Fuentes et al., 2012b). 

Nonetheless, all of these studies focus mainly on vineyard management, site-specific 

information to improve crop load, water or health status of the considered plot. Adequate 

methods for single vine evaluation to be used within the breeding programmes are still 

demanding. 

 

1.3 Yield parameters 

 

Yield is a commonly measured but poorly understood trait. As an example of a 

perennial plant, that has to adapt to yearly variations the underlying genetics of yield traits 
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is complex. Yield has an extremely quantitative character, both because of the number of 

segregating loci controlling all of the traits involved in yield and of the influence of non-

genetic factors like physiological and environmental factors (Conner et al., 1998; Fanizza 

et al., 2005; Garcia et al., 2000; King et al., 2000; Wang et al., 2000). A number of 

investigations have been conducted on the inheritance of yield and yield components in 

fruit tree species using classical biometrical approaches, and while these studies have been 

useful for making predictions on the genetic progress occurring in plant breeding 

programs, they have not provided information on individual genes influencing QTLs 

(Fanizza et al., 2005). Table 4 gives a summary of grapevine yield parameters and their 

underlying influencing factors. 

Fruit size and shape are two major factors determining yield and quality. The fruit shape is 

more important in table grape breeding (Wycislo et al., 2008) as the shape of the berries 

and the uniformity of the whole cluster are important quality traits and have great influence 

on consumer acceptability. Therefore berry size is the most frequently assessed yield 

parameter in genetic studies. The underlying variation of used progenies mostly segregated 

for the seedlessness trait. However, seedlessness is negatively correlated with berry size in 

grapevine (Fanizza et al., 2005) since seed tissues provide important hormones for fruit 

development (Coombe, 1960; Pérez et al., 2000). Due to the fact that berry size and 

seedlessness have strong interactions it is difficult to get stable QTLs for berry size 

(Cabezas et al., 2006; Doligez et al., 2002; Fanizza et al., 2005; Mejia et al., 2007; Mejia et 

al., 2011). As in most other fleshy fruits the developmental stages of grape berries follow a 

double sigmoid curve, corresponding to the three development stages (stage I: berry 

growth due to cell division; stage II: slow berry growth; stage III: berry growth due to cell 

enlargement) (Coombe, 1960). Fernandez et al. 2006a showed that cell enlargements might 

explain different berry sizes between three cultivars. In some clones the number of cells 

was also affected (Fernandez et al., 2006a; Fernandez et al., 2006b). Furthermore the berry 

size is also influenced by factors such as the berry location within the cluster, the number 

of berries per cluster and the plants source and sink ratio (Dai et al., 2009; Ollat et al., 

2002). Berry size has also been considered to influence wine composition and quality but it 

has also been concluded that the viticultural practices used to control yield in a vineyard 

may be more important than the yield or berry size values per se in determining the quality 

of the resulting grapes and wines (Matthews and Nuzzo, 2005). It has been shown that 

vineyard management can influence yield potential (Smart et al., 1990) by applying 

different methods like dormant pruning, shoot thinning before flowering and cluster 
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thinning at veraison for instance (Dunn et al., 2001). Higher shoot numbers per vine can 

decrease the number of clusters per shoot and the number of berries per cluster (Junquera 

et al., 2011). 

 

Table 4 Yield parameters in grapevine and main influence factors. 

 

Another important parameter influenced by several of the yield parameters listed in Table 

4, like number of berries per cluster and berry size, is cluster architecture. Botrytis, bunch 

rot of grapes, is an important disease of grape and grape cluster architecture may be an 

important variable in expressing the severity of bunch rot in the field (Vail and Marois, 

1991). 

Besides the aim of breeding to break down the genetics behind yield parameters, the 

seasonal variation in yield enhances the industries emphasis on forecasting and controlling 

their yield to achieve optimal yield and outcomes. Yield components measured for this 

purpose are: 

- bunches/bud during dormancy (Jones et al., 2013; Wisdom et al., 2004) 

- shoots and bunches per unit length of row approx. six weeks after budburst (Dunn 

and Martin, 2007) 

- berries per bunch, bunches per unit length of row and bunch weight at the onset of 

veraison (Tardaguila and Martinez de Toda, 2007)  

Yield parameters influences 

 genetic viticultural environmental 

vines per unit area 

 

 - inter-row,  

- planting distance 

 

shoots per vine 

 

 

 - pruning level,  

- number of fruiting branches,  

- desuckering 

 

clusters per shoot 

 

 

- variety  weather conditions during: 

- flower formation 

berries per cluster 

 

 

 

- variety  weather conditions during:  

- flower formation,  

- flowering 

berry size/ berry weight 

 

 

 

 

 

 

- variety  weather conditions during:  

- flowering,  

- period flowering-

beginning of ripening,  

- period beginning of 

ripening-harvest 

vine balance  
(generative/vegetative growth) 

- variety 

- rootstock  

- pruning during growth period 

- nutrition supply 

- health status 

- soil 
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- weight/vine, bunches/vine, weight/bunch, berries/bunch, weight/berry at harvest 

(Dunn and Martin, 2004) 

Modelling the yield forecast can also be done using the airborne pollen concentration 

(Besselat and Cour, 1990; Cunha et al., 2003). 

Within the breeding program yield parameter and the following quality assessments of 

berries, must and wine can first be recorded four to five years after the cross. In addition 

the amount of yield available for experimental assessment is limited. 

 

1.4 Objectives 

 

The general goal of this thesis was to set up a phenotyping pipeline for high-

throughput field phenotyping in modern grapevine breeding based on yield parameters. In 

particular the objectives were the: 

1) usage of non-destructive visible light sensors (RGB camera, MC camera) as cost-

efficient and fast sensors in different environments (laboratory and on a phenotyping 

platform). 

2) determination of yield parameters that could be detected using RGB images and 

image analysis. 

3) collection and validation of ground truth data (reference data) to assess the gained 

sensor data. Investigation of the possibility to record objective and precise 

phenotypic data of yield parameters by using RGB images and automated image 

analysis. 

4) set up of an automated data acquisition in the field and the guarantee of an automated 

data handling of the sensor data in cooperation with an interdisciplinary team. 

Establishment of an opportunity to record phenotypic data on a single vine level for 

grapevine breeding purposes. 

5) interpretation and evaluation of the gained phenotypic sensor data for grapevine 

breeding. 
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The aims of these developments are a precise and objective detection of parameter to 

increase the sample size and furthermore reduce the errors of assessment. These HT-

phenotyping methods aim at providing reliable data that can moreover be analysed in 

retrospective to increase grapevine breeding efficiency. 

 

1.5 Publications 

 
The present cumulative doctoral thesis consists of four scientific articles

5
. Three of 

these articles have been published (publication II and IV) or submitted (publication III) in 

peer reviewed academic journals. Additionally publication I was published as reviewed 

conference proceeding. Publication II is reproduced with the corresponding permission of 

Vitis, Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, 

Germany. The author’s pre-print version of publication I and III is reproduced with the 

corresponding permission of the International Society for Horticultural Science, Leuven 

Belgium (I) and John Wiley & Sons Ltd.West, Sussex United Kingdom (III). 

 

 

Publication I 

Kicherer, A., Roscher, R., Herzog, K., Förstner, W. and Töpfer, R. 2015. Image based 

Evaluation for the Detection of Cluster Parameters in Grapevine. 11th International 

Conference on Grapevine Breeding and Genetics. Acta Horticulturae. 1082:335-340. 

DOI: 10.17660/ActaHortic.2015.1082.46 

http://dx.doi.org/10.17660/ActaHortic.2015.1082.46 

 

Publication II 

Kicherer, A., Roscher, R., Herzog, K., Šimon, S., Förstner, W. and Töpfer, R. 2013. BAT 

(Berry Analysis Tool): A high-throughput image interpretation tool to acquire the 

number, diameter, and volume of grapevine berries. Vitis 52 (3):129-135. 

 

 

                                                      
5
 Each one of the following four chapters represents one article. The reference system and spelling of each 

journal, to which the article was submitted, is maintained. 
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Publication III 

Kicherer, A., Klodt, M., Sharifzadeh, S., Cremers, D., Töpfer, R. and Herzog, K. 2015. 

Automatic image based determination of pruning weight as a determinant for yield 

potential in grapevine management and breeding. Australian Journal of Grape and 

Wine Research. In revision. 

 

 

Publication IV 

Kicherer, A., Herzog, K., Pflanz, M., Wieland, M., Rüger, P., Kecke, S., Kuhlmann, H. and 

Töpfer, R. 2015. An automated phenotyping pipeline for application in grapevine 

research. Sensors 15 (3):4823-4836. 
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Abstract 

Automated image interpretation is a powerful instrument for the acquisition of 

objective and precise phenotypic data with high throughput. Cluster length, cluster width, 

berry size and cluster compactness are four important phenotypic traits with impact on 

cluster morphology, health status and yield. For the image-based evaluation of this 

grapevine cluster morphology traits, the automated Cluster Analysis Tool (CAT) was 

developed in Matlab
®
. The comparison of precise reference measurements with CAT 

ratings on 100 cluster of ‘Riesling’ and ‘Pinot Noir’ showed a significant correlation of 

r=0.94 (0.97) for cluster width, r=0.90 (0.95) for cluster length and r=0.61 (0.23) for berry 

size. Variation of compactness could be detected in a crossing population calculating a 

compactness factor. To assess grapevine cluster morphology traits under laboratory 

conditions the automated image interpretation tool CAT presents a fast and user-friendly 

tool. The present study provides an improved and relevant phenotyping method for 

grapevine breeding. It could also be applied in genetic and ampelographic studies. 

INTRODUCTION 

Cluster and berry morphology are two key parameters which have an impact on (1) 

cluster health status (cluster architecture and compactness), (2) size characteristics and (3) 

yield. Traditionally the manual measurement of yield components are evaluated by visual 

estimations using defined descriptors such as OIV standards (Anonymous, 2009). For 

example berry width (OIV 221), cluster length (OIV 202) and cluster width (OIV 203). 

These OIV descriptors imply the classification into five predefined notes (1 – very small; 3 

– small; 4 – medium; 7 – large; 9 – very large). A classification according to OIV 

descriptors is labour-intensive, requires trained people and the amount of samples and 

repetitions is restricted. In contrast, image based methods provide an automatic analysis of 

large sample sets, saving time and providing more objective information with the same or 

even increased accuracy. For viticulture, image analysis under laboratory conditions has so 

far mainly been applied for assessing the berry morphology. RGB images are used for 

characterisation of the number, size and volume of berries (Kicherer, et al., 2013) as well 

as berry weight (Tardaguila, et al., 2012), shape factors and compactness of the clusters 

(Wycislo, et al., 2008). The present study aims at the development of an easy image 

acquisition setup and an automated image interpretation tool in order to assess precise 

cluster morphology traits of grapevine under laboratory conditions. 

MATERIALS AND METHODS 

Plant Material 

Grape clusters of Vitis vinifera ssp. vinifera cultivars ‘Riesling’ and ‘Pinot Noir’ 

were sampled in the experimental vineyard of Geilweilerhof at Siebeldingen, Germany (N 
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49°21.747, E 8°04.678). One hundred clusters per cultivar were harvested at 

developmental stage BBCH 89 (berries ripe for harvest (Lorenz, et al., 1995)) and were 

used for image acquisition. 

In contrast to the established cultivars a F1-population (Gf.Ga-47-42 x Villard 

Blanc; 150 genotypes) shows large variability in berry size (OIV 221; notes 1-9) and grape 

cluster architecture. Therefore the population was used to detect the variability of cluster 

compactness using the CAT calculated values. Six clusters per genotype were harvested at 

BBCH 89, captured and analysed using the Cluster Analysis Tool (CAT). 

Image Acquisition 

A black box with a metal rod (4.1 mm) and a hook was used to capture a 

photograph of each cluster. An orange label (39 mm x 51 mm) was fixed at the rod next to 

the hanging cluster as a scale reference. One RGB image was captured per harvested 

cluster from the front by using a single-lens reflex camera (Canon
®
 EOS 40D) mounted on 

a camera stand. A white background was used to capture the ‘Pinot noir’ grapes. 

Reference Data 
As reference, the cluster length, cluster width and size of 30 berries were manually 

measured by analysing the images of the intact cluster with the semi-automated Trait Size 

Tool (TST) (Herzog, et al., 2014). 

Cluster Analysis Tool (CAT) Workflow 

The image interpretation tool CAT which features a graphical user interface (GUI) 

was developed in Matlab
®
 7.5 (MathWorks, Ismaning, Germany). The workflow 

comprises image processing tools and machine learning algorithms for classification. The 

classification of the image aims at the assignment of each pixel to either the class 'cluster' 

or 'background'. The image interpretation process includes three steps. 

1. Step One In order to determine cluster dimensions and the size parameters of single 

berries in mm, an orange label is used as a scale reference. It enables an automated 

calculation of the conversion ratio between mm and pixel. The label is detected 

automatically by template matching utilizing normalized cross correlation (Lewis, 1995). 

2. Step Two All pixels of an image are classified into 'background' or 'cluster' using Active 

Contours (Chan and Vese, 2001), software can be downloaded from 

http://www.mathworks.com/matlabcentral/fileexchange/19567-active-contour-

segmentation. In order to define an initial input mask for the Active Contours algorithm, 

the Circular Hough Transform (Peng, et al., 2007) was used for detection of single berries 

which are the most distinctive, round objects. Using the colour of the detected berries the 

contour of the berry cluster is found so that the inner part of the contour is at most similar 

to the colour of the detected berries.  

3. Step Three Objects like the hook are often assigned to the 'cluster'. Thus, a 

Morphological Opening is used which removes thin and or small objects with a diameter 

less than 5 mm (Haralick, et al., 1987). Moreover a morphological reconstruction-based 

Opening and Closing is used in order to estimate the number of visible berries in the 

image. Assuming the flash light causes bright spots on the berries, each area of light pixels 

(blob) surrounded by dark pixels can be detected and counted as one berry. The local 

maxima of the blobs are used as the centroids of the berries. If some of the centroids are 

missed, the centres of berries detected by Circular Hough Transform (see step two) are also 

used as centroids. Duplicate centroids are removed by introducing a minimum distance of 

5 mm between the centroids. Finally, the number of detected centroids is used for 
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estimation of the number of visible berries in the image. Dimensions of the berry clusters 

are derived from the determination of a bounding box around the classified cluster, which 

is parallel to the image axis. In addition to the diameter of detected berries obtained from 

the circle detector (see step two), the area of the classified cluster in the image is also 

deduced from the image using the obtained classification from step two. 

Finally, a summary of CAT results from all investigated images is given as a text 

file including the length and width of the bounding box (= length and width of the cluster 

in mm), the cluster area (mm²) and the berry size (mm). 

Cluster Compactness 
The cluster compactness was evaluated using the CAT calculated values: (1) area of 

the bounding box (cluster length x cluster width) and (2) cluster area. Compactness is 

defined as ‘bounding box area/cluster area’. The compactness ratio was afterwards 

classified into five notes: (1) very loose cluster, compactness factor  1.91; (2) loos, 

compactness factor 1.91> x 1.81, (3) medium, compactness factor 1.81> x 1.71, (4) 

dense, compactness factor 1.71> x 1.61 (5) very dense, compactness factor < 1.61. To 

validate the digital cluster compactness evaluation the clusters were also rated using the 

OIV 204 (bunch dense; notes 1-9) as a reference. 

Statistical Analysis 

Statistical analysis was performed using SAS 4.3 (SAS Institute, Cary, NC, USA). 

The Pearson correlation coefficient was used for data evaluation. 

RESULTS AND DISCUSSION 

The Cluster Analysis Tool (CAT) was developed for image-based phenotyping of 

cluster morphology. The RGB images from 100 ‘Riesling’ and ‘Pinot Noir’ clusters were 

automatically analysed applying CAT. Thus, the cluster dimension and berry size could be 

extracted. The CAT-based data was compared with reference data which was acquired with 

the Trait Size Tool (TST) from the same pictures used for the CAT analyse. The 

comparison of the cluster length revealed a significant correlation of r=0.90 for ‘Riesling’ 

(Fig.1 A) and r=0.95 for ‘Pinot Noir’ (Fig.1 D). Cluster width showed a significant 

correlation of r=0.94 (’Riesling’; Fig.1 B) and r=0.97(‘Pinot Noir’; Fig.1 E). Due to 

practical reasons of the cluster attachment in an upright position, the secondary cluster was 

also considered in the CAT compared to the OIV descriptors for cluster width (OIV 202) 

and cluster length (OIV 203). It thus proved important to attach the cluster straight in the 

image because the bounding box is set parallel to the image axis to acquire the cluster 

dimensions with the CAT. The automatic determination of the conversion ratio makes the 

system very flexible since it is independent of image format, image resolution or the 

distance between camera and object. Moreover, the system can be easily handled by other 

users since single parts, e.g. the template, are interchangeable. 

For validation of the CAT-calculated values of the berry size (diameter of detected 

berries), 30 berries per image where measured using the TST as reference data. Both, the 

CAT and the TST only consider visible berries in an image and miss out on the hidden 

ones. Comparison of TST measured berry sizes with the CAT-calculated values showed a 

significant correlation of r=0.61 (‘Riesling’; Fig.1 C) and r=0.23(‘Pinot Noir’; Fig.1 F). A 

reason for the rather low correlation of ‘Pinot noir’ berry size might be the very 

inhomogeneous berry size of the clone used (see picture in Fig.1). It could not be 

guaranteed that the automatically selected and measured berries of the CAT are equal to 

the ones measured by a person during the reference measurements using the interactive 

tool TST. In contrast the ‘Riesling’ berry size was more homogenous and therefore shows a 

better correlation. Top priority of the CAT was the validation of the cluster size. 
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Nevertheless, the berry size is a useful additional reference parameter. As it is difficult to 

detect the berry sizes in inhomogeneous clusters we recommend to destem such clusters 

and use programs like the Berry Analysing Tool (BAT) (Kicherer, et al., 2013) to obtain 

more reliable data of the berry size. 

Using the CAT-detected area of the bounding box and the visible area of the cluster, 

a ratio describing the compactness of the cluster was computed and used for the evaluation 

of a F1-population. The classification into five notes showed a significant correlation of 

r=0.55 compared to the OIV classification (OIV 204). Using the OIV notes the F1-

population was only determined as notes 3, 5 and 7 (Frequency 22, 58 and 41 genotypes). 

Appling the CAT based classification a higher variability could be achieved (Fig.2). This is 

a benefit when thinking about using these data for QTL analysis. 

CONCLUSION 

Cluster morphology is one of the most important traits influencing the health status 

of the grapes and the yield itself. The present study shows that an automated image 

interpretation tool like CAT provides a fast and user-friendly tool to assess cluster 

morphology traits of grapevine under laboratory conditions. 
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Figures 

 

Fig. 1 Correlation plots of fast automatic (Cluster Analysing Tool - CAT) and laborious 

semi-automatic (Trait Size Tool - TST) determined cluster data from 100 ‘Riesling’ 

(A, B, C) and 100 ‘Pinot Noir’ (D, E, F) images. A, D: Significant correlation of 

cluster length (r=0.90; r=0.95). B, E: Significant correlation of cluster width 

(r=0.94; r=0.97). C, F: Significant correlation of berry size (r=0.61; r=0.23). 
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Fig. 2. Frequency distribution of the compactness classes (1: very loose cluster, 

compactness factor  1.91; 2: loose, compactness factor 1.91> x 1.81, 3: medium, 

compactness factor 1.81> x 1.71, 4: dense, compactness factor 1.71> x 1.61 5: 

very dense, compactness factor < 1.61) in a crossing population. The compactness 

factor is calculated as the ratio of the CAT calculated values area of the bounding 

box (cluster length x cluster width) to the cluster area. Data is based on the mean of 

6 images per genotype of 150 individuals. Arrows indicate two representative 

cultivars (‘Riesling’, ‘Dornfelder’) for the respective class. 
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Summary 

 
QTL-analysis (quantitative trait loci) and marker 

development rely on efficient phenotyping techniques. 

Objectivity and precision of a phenotypic data evalua- tion 

is crucial but time consuming. In the present study a high-

throughput image interpretation tool was devel- oped to 

acquire automatically number, size, and volume of grape 

berries from RGB (red-green-blue) images. Individual 

berries of one cluster were placed on a black construction 

(300 x 300 mm) to take a RGB image from the top. The 

image interpretation of one dataset with an arbitrary 

number of images runs automatically us- ing the BAT 

(Berry-Analysis-Tool) developed in MATLAB. For 

validation of results, the number of berries was counted 

and their size was measured using a digital calliper. A 

measuring cylinder was used to determine reliably the 

berry volume by displacement of water. All placed berries 

could be counted by BAT 100 % correctly. Manual ratings 

compared with BAT ratings showed strong correlation of r 

= 0.96 for mean berry diameter/ image and r = 0.98 for 

cluster volume. 

 

K e y    w o r d s :    HT-phenotyping, image 

interpretation, grapevine berry size, berry morphology. 

 

 
Introduction 

 

The combination of high wine quality and longterm 

resistance against various fungal pathogens combined with 

good climatic adaptation reflects the major objectives in 

grapevine breeding (TÖPFER et al. 2011). Many traits of 

grapevine can only be evaluated in the vineyard being highly 

influenced by environmental factors and thus requiring several 

repetitions. Particularly for berry related traits it is 

cumbersome to separate genetic and environ- mental 

interactions due to the non-controlled environment. Yield is the 

most commonly measured trait in viticulture (FANIZZA et al. 

2005). It belongs to the most complex traits in grapevine 

breeding besides berry and wine quality and is influenced by 

numerous genetic loci (FANIZZA et al. 2005) and non-

genetic factors. 

Marker-assisted selection (MAS) in grapevine breeding 

has become a very valuable tool for early monitoring 

genetic loci for resistance in breeding material and 

is nowadays used routinely to screen seedlings in order to 

pyramide resistances (SCHWANDER  et al. 2012, EIBACH et 

al. 2007, FISCHER  et al. 2004). Besides identifying the most 

appropriate genotype, phenotyping of plant material is widely 

known as the very labour-intensive and time consuming part of this 

process. The variation in yield per vine is explained by the 

number of clusters per vine (60 %), the number of berries per 

cluster (30 %) and the berry size (10 %) (NUSKE  et al. 2011). 

Berry size is considered one of the most important characters 

concerning yield for both wine grape and table grape breeding. For 

quality reasons in wine grape breeding small to medium sized 

berries (width 

13-18 mm) are desired. For table grape cultivars grape productivity 

plays an important role in the table grape market, as seedlessness is 

especially demanded but negatively correlated to fruit size 

(DOLIGEZ et al. 2002, FANIZZA et al. 

2005). Currently, phenotyping of berry length and width is done 

according to OIV descriptors (OIV 220 and 221) at maturity on 

30 berries. Other traits like the cluster form and cluster size (OIV 

208 and 222) are rather vague and subjective for a proper scientific 

analysis and QTL detection. Using OIV descriptors, it is difficult 

to detect slight differences in fruit size, it is time-consuming, and 

expensive. Fine mapping of known QTL regions requires precise 

phenotypic data of berry features using a large number of fruits of a 

mapping population. The utilisation of manual measurements of 

fruit size is non-practical. Digital analysis promises a much faster, 

precise and less time-consuming technique to receive phenotypic 

data. 

To achieve large quantities of phenotypical data high- 

throughput phenotyping has recently been introduced to plant 

research. Therefore, computer vision has been used for fruit 

recognition. Focus was laid on grading, defect detection, 

classification and state of ripeness detection based on the 

appearance in the post harvest process (KODAGALI and BALAJI 

2012). Various sorting and grading tools for fruits and vegetables 

have been developed e.g. for apple (LEEMANS et al. 2002, 

THROOP et al. 2005, LI et al. 2002), date (AL OHALI 2011), 

peaches (ESEHAGHBEYGI et al. 2010), watermelon (SADRNIA  

et al. 2007), banana (WANG  et al. 

2009), sweet cherry (BEYER et al. 2002), tomato (BREWER et 

al. 2006, MORIMOTO et al. 2000) and oranges (FELLEGARI and 

NAVID 2011, BAMA et al. 2011). The methods used are based on 

colour, size and defect features which play an important role in the 

production of this fruits and vegetables. WYCISLO  et al. (2008) 

analyzed digital images using Sig- 
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maScan®  to characterise fruit shapes of table grapes. The 

major:minor ration, shape factors and the compactness value 

was detected out of RGB images. The commercially available 

maturity analysis system by Vivelys (DYOSTE 

2010) measures berry colour, volume and uniformity by a 

sensor and in addition it analysis e.g. sugar load and acidi- 

ties. 

In order to improve precision and efficiency of phenotyping 

methods in grapevine breeding, the present study aims at 

developing an automated image interpretation tool to acquire 

berry morphology traits, especially the number of berries per 

cluster and the mean berry diameter. Supplementary 

determined values of the berry diameter will be used to 

calculate single berry volume. 

 

 

Material and Methods 

 

P l a n t   m a t e r i a l :   Grape clusters were sampled in 

the vineyard of Geilweilerhof located in Siebeldingen and 

used for image acquisition. 100 clusters from the Vitis vinifera 

subspec. vinifera cultivars 'Riesling' and 'Müller- Thurgau' at 

BBCH 79 (phenological development stage scale; Majority of 

berries touching) (MEIER 2001) were used to validate the 

method regarding to berry number and sizes determination 

using BAT. 1,500 clusters from 130 

genotypes of a F1 mapping population ('Gf.Ga-47-42' x 

'Villard Blanc') were used to verify the berry volume calculated 

using BAT. All genotypes were harvested at BBCH 

89 (berries ripe for harvest) at 70 °Oechsle. In contrast to the 

established cultivars 'Riesling' and 'Müller-Thurgau' the genotypes of 

the F1-population showed large variability in berry shape (OIV 223; 

notes 1-4), berry sizes (OIV 221; notes 1-5) as well as in grape 

cluster architecture. 

I m a g e   a c q u i s i t i o n :  A black perforated met- al plate 

with a size of 300 x 300 mm (14 x 14 evenly arranged holes, 10 

mm diameter) was placed on a black tray of equal size with bolts 

positioned in all four edges giving the construction an entirely black 

colour. The perforation causes a considerable proportion of the 

berries to be separated without the need to exactly place each berry 

in one hole what would be too time-consuming. This construction 

was placed on a red background to permit an automatic 

identification of the construction boarders in order to de- rive the 

berry sizes in mm rather than in pixel. All berries of one cluster 

were removed from the rachis and placed on the black construction. 

RGB images were taken from the top using a single-lens reflex 

camera (Canon®  EOS 60D) fixed to a camera stand (Fig. 1). 

The number of berries per cluster (image) was counted and the 

diameter of berries (as described in OIV 221 (OIV 2009)) was 

measured using a digital calliper (Insize 

 

 
 

Fig. 1: Image acquisition, detection and quantification of grapevine berries using BAT algorithm. A: Image acquisition setup: Camera stand with a 

DSLR camera, black perforated metal plate (300 x 300 mm), black tray of equal size with bolts positioned in all four edges and the red background 

B: Original image of the perforated construction with berries C: Object Extraction: Image generated by MATLAB® with the detected berries (the number 

of contained berries in a region is colour-coded in order to distinguish the number of berries per region).  
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Co. Ltd.; DIGITAL CALIPER 300 mm; China). The meas- 

urements were taken as references to validate the BAT. 

Measurement accuracy was 1 mm. Due to measurement 
accuracy and practical reasons berry volume of one cluster 

(only berries) was raised instead of single berry volumes. 

Therefore a glass measuring cylinder, size of 1000 mL 
(10 mL scale steps) was used to record the water displace- 

ment. 
D a t a  a n a l y s i s :  Data sets of manually and soft- 

ware based values were analysed by Pearson correlation and 

ANOVA (Tukey Test). Statistical analyses were per- formed 

using SAS 4.3 (SAS Institute, Cary, NC, USA). 

B A T  ( B e r r y  a n a l y s i s  t o o l )  w o r k f l o w : 

The development of the image interpretation tool BAT 

was done using MATLAB®  7.5 (MathWorks, Ismaning, Ger- 

many). The image interpretation system comprised image 

processing tools and machine learning algorithms for clas- 

sification. A RGB image I is given, in which each pixel has an 

unknown label y , which is either "berry", "background" (black 

construction) or "red background". 

The image interpretation algorithm includes six steps 

starting with the detection of the construction boundary up to 

calculation of berry volume. 

S t e p  1 :  D e t e c t i o n  o f  t h e  c o n s t r u c t i 

o n b o u n d a r y  a n d  t h e  e l i m i n a t i o n  o f  t h 

e  r e d b a c k g r o u n d :  The images were converted 

to the HSV (hue-saturation-value) colour space and the 

hue and saturation channel are summed yielding a one-

dimensional image with a bright background and a dark 

metal plate (Fig. 2A). This procedure is more robust 

towards varying illumination effects within one image 

and between different recordings of the images than 

e.g. thresholding the RGB image. Each image, 

represented as matrix, is summed over all rows and 

second over all columns getting two onedimensional 

curves with high peaks. Since the background appears 

bright in the image and the metal plate dark, as can be

seen in Fig. 2A, all background pixels sum to a high value and the 

foreground pixel to a small value. In order to deter- mine the 

transition between the background and the metal plate, the gradients 

of the curves are computed, which are afterwards squared and 

smoothed. The obtained curve for image rows is shown in Fig. 2B 

and for image columns in Fig. 2C. 

The red background of the image was removed by cropping 

the image. In order to obtain berry diameter in mm, the detected 

‘background’ is used to get the Conversion Ratio c between mm 

and pixel. The construction has a defined length I and width w of 

300 x 300 mm and thus the ratio c is given by 
 

 
 

The automatic determination of the Conversion Ratio makes 

the system flexible, since it is independent of image format, image 

resolution or the distance between camera and the construction. 

S t e p  2 :  C l a s s i f i c a t i o n  o f  " b e r r y "  a n d " b a c k 

g r o u n d " :  Active Learning (SETTLES 2010) was applied in 

order to classify the whole image into the classes "berry" and 

"background" (black construction). The used Active Learning 

strategy approaches an automatic collection of a few, representative 

feature vectors for both classes. Using such training data a 

classification model is learned using Logistic Regression (BISHOP  

2006) which facilitate the assignment of each pixel to the class 

"berry" or "background". The training data for the class 

"background" was acquired from the four edges of the black 

construction, in which the bolts are positioned. The Circular Hough 

Trans- form (PENG et al. 2007) was used to acquire training data 

for the class "berry" by detecting distinctive, round objects.

 

 

 
 
Fig. 2: Sum of the hue and saturation channel (A) and the obtained curves of the squared smoothed gradients-image rows (B) and image columns (C). 

The two largest values (Peaks) in each curve indicate the border of the metal plate. The difference between the largest values is the length l and the 

width w of the construction given in pixel. 
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The advantage of Active Learning is the adaption of the 

model to changing image conditions, like different position or 

colour of the construction, different sizes or positions or 

colours of berries. 

S t e p    3 :    M o r p h o l o g i c a l    O p e r a t o r    t o r e 

m o v e   n o i s e :   The usage of opening, which is a 
morphological operator (HARALICK et al. 1987) allows for 

the removing of noise such as small parts of the rachis in the 

classification results. Using a disk-shaped structuring element 

of size  , regions with a radius less than three mm are 

removed. As we are looking at berries of BBCH 
79 or higher, objects which are smaller than three mm are 

assumed to be foreign objects like parts of the rachis, in- sects 

or berry parts. This value can be reduced, however, with the 
need of a good image quality and the removal of all impurities 

on the metal plate. Neighboured pixel of the same class are 

grouped into one region Rs, ı,...s,...,S where 

S is the total number of regions and s is the index of the 
considered region. One region that is classified as "berry" 

corresponds ideally one berry in the image. In this case the 
total number of berries equals the total number of regions S. 

However, if the berries touch each other, one region can 

comprise more berries which have to be separated (step 4, 
Fig. 3). 

S t e p  4 :  E s t i m a t i o n  o f  b e r r y  n u m b e r s : In 

the fourth step the total number of berries B is obtained by 

summing over the estimated number of berries in each region. 

For the determination of B in each region, Erosion is used as 

another Morphological Operator. Each region Rs  is 

successively eroded step-by-step with a disk-shaped 
structuring element of increasing size in order to separate 

connected subregions (Fig. 3B-D). The size of a structuring 

element is increased as long as the number of subregions in Rs 
does not decrease. The maximum number of subregions 

equals the number of berries in Rs  (Fig. 3D). All regions 

which number of subregions equals one are summarized in 

the set R’. 

S t e p   5 :   E s t i m a t i o n   o f   s i n g l e   b e r r y 

d i a m e t e r : In the fifth step the diameters are estimated 

from each region in R’. In this system the berry diameter is 

defined as the minor axis length of an ellipse fitted through all 

pixels in the region R’. Furthermore, the mean diameter d and 

the standard deviation σd is obtained. 

S t e p   6 :   C a l c u l a t i o n   o f   s i n g l e   b e r r y  

v o l u m e :For the determination of the volume of the  

berries they are supposed to be ellipsoids. Due to the two- 

dimensional data basis, two possibilities are considered for the 
experiments to calculate the volume of individual berries: either 
the berry shape is supposed to be (i) elliptical with the minor axis 

supposed to be equal. Therefore the following equation could be 

used for volume calculations where a1, a2, a3 are the three semi-
axis of an ellipsoid with the two minor axis a2 = a3. Or (ii) the 

berries are round, meaning that the three semi-axis of the ellipsoid 

are equal (a1 = a2 = a3). 

 

 
 

 

 

Results and Discussion 

 

The high-throughput image interpretation tool BAT was 

developed for automated image-based recording of the total number 

of berries per grape cluster, diameter of ber ries in mm and volume 

of individual berries in mL. 

V a l i d a t i o n  o f  d e t e c t e d  b e r r y  n u m b e r s a n d   

di a m e t e r  u s i n g  a u t o m a t e d  B A T :  Development stage 

BBCH 79 was chosen because berries have their typical shape but 

compared to BBCH 89 are not too soft to get inaccurate manual 

measurements due to the softness.100 RGB images were captured 

(one image per cluster) from 'Riesling' and 'Müller-Thurgau'. All 

images were analysed using BAT to verify detected berry number 

and diameter with reference evaluations. The number of all 

berries was detected 100 percent correct in each image. On 2,500 

berries the BAT-based measured berry diameter was compared to 

manually determined sizes (Fig. 4). The comparison revealed strong 

positive correlation at r = 0.96. Compared to the OIV method for 

the detection of berry width (OIV 221) not only 30 berries were 

measured, but the variation within the whole cluster was captured. 

Using OIV descriptors, it is difficult to detect slight differences in 

fruit size, e.g. OIV 221 (berry width) classifies 'Riesling' and 

'Müller-Thurgau' as note 3. BAT recorded significant differences 

between 'Riesling' and 'Müller-Thurgau'. The BAT measured berry 

diameter showed an average 0.3 mm overestimation compared to 

the manual measurements. The minimal overestimation is caused 

either by the manual 

measurement accuracy of 1 mm or due to inaccuracies during the 

image interpretation process. The results show that the estimated 

diameter of individual berries depends on its posture on the black 

construction due to the fact that berries

 

 
 

Fig. 3: Separation of single berries which are touched: Successive erosion with a disk-shaped structuring element of increasing size. A: Image detail of 

size 338 x 261 pixel of a detected region containing 6 berries. B: Classification result of the image detail after the opening. C: Erosion structuring 

element of size 15 pixel. D: Erosion structuring element of size 25 pixel, whereas all subregions Rs can be detected. 
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Fig. 4: Comparison of berry size (berry width) determined by manual 

measurements and by BAT. Error bars represent the standard deviation. 

An overestimation of 0.3 mm was observed. Difference of mean berry 

width between 'Riesling' and 'Müller- Thurgau' was 1.25 mm. 
 

 
are not really symmetric like circles. In fact, a berry is defined 

by three axis (a1, a2, a3) like an ellipsoid. Therefore, it cannot be 

guaranteed that the minor axis length a1 can be determined 

accurately for all berries. Instead, a diameter in the range [a1, a2] 

is obtained, in which a1 < a2 < a3. Thus, it must be noted that in 

practice there will be always an overestimation which extent 

depends on the roundness and symmetry of the berries as long as 

the minor axis is the entity which is meant to be measured. 

Nevertheless the extent of the overestimation generally is very 

small. 

 
C a l c u l a t i o n  o f  b e r r y  v o l u m e  f r o m  i m-                     

a g e: 1,500 grape clusters were destemmed and photo- graphed. To 

validate the BAT-calculated values of berry volume the single berry 

volume of one image (one image represents one cluster) was 

summed up and compared to the cluster volume measured manually. 

The berry shape can be assumed to be round or ellipsoid. 

Based on the statement that berry shape is ellipsoid the calculations 

of BAT showed an average 2 mL overestimation (1.7 %) of the 

cluster volume compared to the manual measurements. In 

comparison to that assuming the berry shape as round showed an 

average 7 mL underestimation (5.5 %) of the cluster volume. Both 

BAT calculations (round and ellipsoid shape volume) showed no 

significant difference compared with the manual measurements of 

the cluster volume. However, the BAT calculation of 'round shape' 

volume showed significant differences in comparison with the BAT 

calculation of 'ellipsoid shape' volume. Most of the analysed 

genotypes of the mapping population 

'Gf.Ga.47-42' x 'Villard Blanc' possess a slightly ellipsoid berry 

shape which may cause a bigger calculation error assuming the 

berries are round. Furthermore as mentioned before the berry 

diameter is slightly overestimated and as we are using that value to 

calculate the volume it is not surprising that the ellipsoid volume is 

also slightly over- estimated. The 2 mL variance in calculation of 

ellipsoid volume could be explained due to manual measurement 

uncertainties which are maybe caused by using a measuring cylinder 

with an accuracy of only 10 mL. Comparison of manually measured 

volume data with BAT-calculated values (ellipsoid berry shape) 

showed strong positive correlation of 0.98 (Fig. 5). Assuming 

round berry shape the correlation between manually measured data 

and BAT- calculated values also showed strong positive correlation 

of 0.98 (data not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Showing a correlation plot of the manually measured and BAT-calculated ellipsoid cluster volume (r = 0.98) from 130 F1 plants of the mapping 

population 'Gf.Ga 47-42' x 'Villard Blanc'. Each point represents the volume of one cluster/image. The density ellipse encompasses 95 % of the data 

points. 
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Altogether the obtained BAT-results showed strong 

correlations and only a minimal divergence to the manually 

received data. BAT is a fast image interpretation tool to 

acquire large and precise fruit trait data with high-through- put. 

BAT enables an automated and precise acquisition of three 

important phenotypic traits: the berry number, berry diameter 

and berry volume. In this study only green berries were used. 

To detect dark berries the construction needs to be painted 

white because the colour contrast of the berries and the metal 

plate as well as the metal plate and the background needs to be 

strong. Otherwise the circle detection step fails to proper 

identify representative berries or the boundary detection step 

fails resulting in an incorrect conversion ratio. In comparison 

to the study of WYCISLO et al. (2008) describing the 

detection of fruit shape based on 10 berries and giving results 

in pixel, BAT permits the investigation of an unlimited 

number of berries resulting in the detection of the whole 

variation. Another crucial ad- vantage of BAT is the export of 

berry diameter and berry volume as numbers with dimensional 

units (mm or ml in- stead of pixels). No machine like the 

Dyostem is needed. Since the automatic determination of the 

conversion ratio from pixel to mm the system is flexible 

regarding the used camera, image ratio and resolution and the 

distance between camera and construction. There is no need to 

cut the berry half before imaging as it is suggested in the 

current protocol of the "Tomato Analyzer" (BREWER et al. 

2006). 

In contrast to manual measurements, the image inter- 

pretation algorithm needs a much shorter period of time with 

equal accuracy. For example, the manual recording of 300 

berries of one 'Riesling' cluster including counting of 

berries, measuring of one diameter per berry using digital 

calliper and determination of berry volume takes about 30 

min. The application of BAT starts immediately after 

importing an image folder, in which all images of the folder 

were analysed automatically. The computation time depends 

on the specification of the used computer. It re- quires about 

one minute for analysing one image tested on a 64 bit system 

on common PC hardware (2 x 2.66GHz Intel Core2 Dou). 

Cluster volume could be detected by dip- ping the whole cluster 

(berries still on rachis) into a measuring cylinder obtaining the 

volume as water displacement. Nevertheless, berry number per 

cluster and berry diameter could not be detected in that step. 

Therefore, BAT offers the major advantage. It makes it 

possible to analyse multiple objects in one image at the same 

time. 

 

 

 

Conclusion 

 
 

The breeding of new grapevine varieties with regard to 

the yield depends on acquisition of different yield parameter. 

The number and size of berries per cluster are one of the most 

important parameters influencing the yield of grapevine. The 

present study shows that the fully-automatic interpretation of 

images by the utilisation of BAT is a fast, user-friendly and 

cheap procedure to supply precise phenotypic features of 

berries with dimensional units. It requires the sampling of 

berries, destemming and position- 

ing on a coloured construction in the lab and the taking of only one 

image from the top. Those phenotypic data are the basis for further 

investigations, e.g. QTL analyses or yield estimation. However, 

field-based phenotyping methods will be necessary to acquire 

further yield parameter (e.g. grape cluster per grapevine) in a non-

destructive manner. 
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Abstract 

Background and Aims: Monitoring vines for yield potential and vine balance is an 

important tool not only in vineyard management but also in grapevine breeding. Vine 

balance is defined as a relation between vegetative and generative growth. It can be 

expressed as relation between grape yield and the weight of dormant pruning wood. In 

contrast to vineyard management for grapevine breeding emphasis is usually laid on the 

evaluation of individual seedlings instead of screening whole vineyards with the same 

cultivar. In this study we calculated the weight of dormant pruning wood by the assistance 

of an automated image-based method for estimating the area of dormant pruning wood. 

The evaluation of digital images in combination with depth map calculation and image 

segmentation is a new and non-invasive tool for objective data acquisition. 

Methods and Results: The proposed method was tested on a set of seedlings planted at JKI, 

Institute for Grapevine Breeding Geilweilerhof, Germany. All images taken in the field 

were geo-referenced and manual segmentation was used to validate the automated method. 

Classification of the seedlings was done using yield parameters, vine balance indices and 

ripening values. Finally, 13 out of 138 investigated genotypes could be identified which 

fulfil the requirements concerning yield features and balanced vines from a breeding point 

of view. 

Conclusion: The pruning area obtained using image based methods is an accurate, 

inexpensive and easy method to estimate pruning weight compared with the manual time-

consuming measurements. Together with the yield parameters it is a suitable method for 

seedling evaluation and can also be used in precision viticulture. 

Significance of the Study: This study demonstrates an image based evaluation of the 

pruning weight to be a highly valuable tool for grapevine research and grapevine breeding. 

Moreover, the tool might be used by industry to monitor vine balance. The key findings 

mailto:anna.kicherer@jki.bund.de
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reported have the potential to increase grapevine breeding efficiency by using an accurate 

and objective phenotyping method. 

Key words: automated image segmentation, dense depth maps, grapevine breeding, 

pruning area, vine balance, Vitis vinifera 

Introduction 

Major objectives in wine grape breeding are superior wine quality at an optimal yield 

combined with high disease resistance, and a good climatic adaption. A balanced and 

stable yield with a preferably medium to late maturity belongs to important prerequisites 

for producing high wine quality in the European northern temperate grape growing areas 

(Töpfer et al. 2011). In terms of wine making yield and quality are negatively correlated. 

To assess the traits mentioned within grapevine breeding programs, adequate concepts are 

demanding in particular for single vine evaluation. Concepts which grapevine breeders use 

to evaluate yield in a seedling selection are borrowed from experiments of vineyard 

management practice with existing varieties. Yield components evaluated in this kind of 

studies are (1) yield per vine (kg) or more detailed (2) the number of clusters per vine plus 

the berries per cluster and berry weight (g) (Clingeleffer et al. 2004,Clingeleffer et al. 

2001,Dunn et al. 2001). The validation of long-term datasets of yield components on 

different varieties in Australia showed that the seasonal variation in yield accounted for 

60 % of variation for clusters per vine, 30 % to berries per cluster, and respectively 10 % 

for berry weight (Clingeleffer et al. 2001). Due to the fact that plant material is limited at 

the seedling stage yield potential cannot be sufficiently evaluated by determining just the 

parameters listed. In early stages of breeding programs only one genotype of a potential 

new variety is available but nevertheless the yield potential of this single vine needs to be 

evaluated in relation to wine quality. Therefore it would be advantageous to evaluate in 

addition (1) maximum crop level (the amount of grapes a vine of a given size can bring to 

maturity) and (2) vine balance. Vine balance can be examined by the use of vine indices 

like the ratio of crop weight to pruning weight which is applied in viticultural practice 

(Kliewer and Dokoozlian 2005,Poni et al. 2007). The determination of dormant pruning 

wood weight is usually done by manual measurement of the weight of pruned wood which 

is rather time-consuming. Efforts have been made to use a four-band aerial sensor (ADAR 

5500) post-veraison to determine pruning weights (Dobrowski et al. 2003). A 2D laser 

scanner sensor has been used to map winter canes on a 10 x 20 m grid basis prior to 

pruning (Tagarakis et al. 2013). For high-throughput and objective acquisition of pruning 

weight covering a large set of single vines (i.e. seedlings) a fast ground-based sensor 

method is required. The use of cameras as optical sensors facilitates fast, low cost, and 

robust data recording in the field (Herzog et al. 2014). To avoid the use of an artificial 

background 3D stereo reconstruction and calculation of depth maps is suitable (Klodt et al. 

2015).  

Here we describe a non-invasive image based method to predict the pruning weight out of 

images by using automated depth segmentation and minor user interactions. The focus is 

on pruning weight and crop level for seedling selection.  
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Materials and Methods 

Plant material  

Tests involved 138 ungrafted seedlings planted in 1996 located at the experimental 

vineyards of JKI, Institute for Grapevine Breeding Geilweilerhof in Siebeldingen, 

Germany (N 49°13.005 E 8°02.671). The use of a set of seedlings consisting of different 

genotypes, respectively phenotypes guarantees a large variation in the plant material for 

image interpretation. Inter-row distance of trellis trained grapevines was 2.0 m, grapevine 

spacing was 1.0 m and rows were planted in a north-south direction. All vines observed in 

the experiment were surveyed using a Real-Time-Kinematic (RTK)-GPS system (Trimble
®

 

SPS852, Geo System GmbH, Jena, Germany) with 2 cm accuracy in order to link the 

gained sensor data to single grapevines. 

Sensor and sensor data 

Images were taken semi-automatically directly in the field using the extended Prototype-

Image-Acquisition-System (PIAS) (Herzog et al. 2014) following the 2013 growing 

season. Therefore the PIAS was equipped with a multi-camera-system (MCS) consisting of 

two monochrome cameras (AVT GT-2450; objective: CVO 8 mm; 2448 x 2050 pixels) 

and one Red-Green-Blue (RGB) camera (AVT GT-2450C; objective: Schneider KMP-IR 

CINEGON 8 mm; 2448 x 2050 pixels). For the acquisition of geo-referenced images the 

software IGG-GEOTAGGER and a RTK-GPS system was used. The camera positions had 

a 10 cm difference between all cameras. The MCS was fixed in the middle of the PIAS 

with a distance of at least 1.0 m from the grapevine. Images were captured under natural 

illumination conditions with manually controlled exposure.  

Reference evaluation 

Yield components (yield/vine, cluster/vine) have been evaluated in the growing season 

2013 for each genotype. Pruning weights (PW) for each of the 138 vines were obtained in 

the dormant period following the 2013 growing season and were used as ground truth for 

regression analysis. A subset of the field images was manually segmented and the pruning 

area PA (%) was used as reference data to verify the sensor data. The Ravaz index 

(yield/pruning weight) (Ravaz 1903) and the YiPa index (yield/pruning area) have been 

calculated. To draw a conclusion on the crop level of single genotypes, Brix values were 

used as index indicating the grape ripeness and sugar content. Brix was recorded during the 

ripening period using Fourier transform infrared spectroscopy (FTIR).  

Experimental design 

Within the present study two experiments have been performed.  

Experiment (a): Development of an image based non-invasive detection method for 

pruning area (PA).  



45 

Kicherer et al. 2014. Australian Journal of Grape and Wine Research, In revision 

 

(a1) Automated image segmentation. Two monochrome images (MCS) captured with real 

background in the field (non-invasive).  

(a2) Manual image segmentation. One RGB image (MCS) captured with a white artificial 

background in the field (non-invasive).  

Experiment (b): An application example of the new method in grapevine breeding. Using 

the detected PA (YiPa index) and reference values (yield components, PW, Ravaz index) 

for the validation of a seedling selection.  

Image-based phenotyping of pruning area 

(a1) For the development of the automated image segmentation method a set of 39 vine 

images was used. Two monochrome images and one RGB image per vine (MCS) were 

captured with real background. Dense depth maps were calculated for each image pair and 

a subsequent segmentation step resulting in a partitioning of the image domain into 

foreground and background. The foreground class corresponds to the plant in the 

foreground and the background corresponds to the rest of the image. The area of the 

foreground provides the surface area (PA) of the visible part of the plant. Surface areas 

were computed using the dense depth reconstruction for all points in the foreground class. 

The complete method is described in Klodt et al. (2015). 

(a2) Manual image segmentation. The same set of 39 vines was captured with a white 

artificial background. The RGB image (MCS) was used for the manual segmentation into 

the classes `background` and `foreground`(PA). CorelDraw X3 (Corel Corporation, 

Ottawa, Ontario, Canada) was used for the pixel-wise annotation of the two classes. To 

evaluate the automated image segmentation (a1) the percentage of the two classes was 

determined. 

Statistical analysis 

The statistical analysis was performed using SAS Enterprise Guide 5.1 (SAS Institute, 

Cary, NC, USA). The Pearson correlation coefficient was calculated. Linear regression 

analysis was performed to compute the regression line with a corresponding coefficient of 

determination R
2
 as well as the Root-Mean-Squared-Error (RMSE). The RMSE is a 

function of the sum of squared residuals and the number of observations n minus the 

number of parameters p (1 parameter= PA). yi is PW and ý represents the predicted PW 

calculated with the regression line. 

Results and Discussion 

Pruning area PA vs. pruning weight PW 

RMSE  
         

   
 (1)  
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The relationship between PW and PA (Figure 2) was investigated for the automated depth 

segmentation of images (a1) applying linear regression analysis. The manual image 

segmentation (a2) served as reference dataset. For both the determination coefficient R
2
 

and the correlation with the PW was calculated. The PA gained through the non-invasive 

manual segmentation (a2) showed a correlation of r=0.91 (r
2
=0.83) and the automated 

segmentation (a1) correlated with r=0.61 (r
2
=0.44). Root-Mean-Squared-Error was 

respectively RMSE=0.23 (a1) and RMSE=0.12 (a2) (Figure 2). The RMSE indicates that on 

average the predicted PW differs from the real PW about 230 g for automated 

segmentation and 120 g for manual segmentation. Thus, both image-based methods to 

detect PA showed good correlations with the measured PW. Whereas correlation between 

the two methods (a1; a2) was r=0.77.  

Figure 3 shows the comparison of two analysed vines. The PW of the two vines was 

different (vine 1=0.15 kg; vine 2=0.62 kg), whereas the automatically detected PA was 

comparable (vine 1=9.8 %; vine 2=9.7 %). The automated segmentation lags behind on the 

detection of vines with thin shoots and lots of tendrils, these small objects could be easier 

segmented with the manual segmentation. The automated segmentation of thin and small 

objects using the applied algorithms is difficult because of the very homogeneous 

background as described by Herzog et al. (2014). This might be improved by incorporating 

prior knowledge about the scene structure to the segmentation step. A reconstruction 

algorithm that is specialized to fine-scaled features might help to improve segmentation 

results because thin features represent a dominant part of the prevailing scenes. Other 

possible improvements include the use of additional information from the RGB images to 

help to better distinguish between the foreground plant and the background. Currently, the 

segmentation is based only on the depth information. Especially the wires in the 

foreground cannot be distinguished from the plant in the current version of the program. 

Here, RGB information might provide useful additional information for a reliable 

separation by considering the different colour distributions of wires and stem. Furthermore, 

a part of the dormant wood of vine 2 is not visible in the monochrome image (Figure 3) 

which can cause underestimated PA detection due to manually exposed images. This shall 

be improved by using an automated system like the phenotyping robot PHENObot as 

showed by Kicherer et al. (2015). In addition, trunk size and perennial parts of the vine 

may vary from vine to vine. To improve the PA estimation a second image acquisition 

after pruning might be helpful to remove this second measurement from the first one and 

therefore get more accurate PA values. 

Validation of a seedling selection 

Experiment (b) shows an example of how the new method to detect PA developed in 

experiment (a) could be used in grapevine breeding. The evaluation of seedlings aims at 

finding the genotype that could be a superior selection and potential new variety. 

Therefore, the steps of the validation followed parameters used in viticulture to assess 

established varieties. Four parameters have been used to evaluate yield potential in a set of 

138 seedlings: (1) yield (kg) per vine, (2) cluster per vine, (3) vine balance (using PW, PA 

for the Ravaz and YiPa index) and (4) crop level.  
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Table 1 gives an overview of the range of selection criteria used to validate the seedlings. 

Within the set of 138 genotypes (1) yield per vine varied from 0.03 kg to 6.51kg, (2) 

clusters per vine ranged from one cluster per vine up to 38 clusters per vine and the Ravaz 

index (3) was between 0.08-25.33 (PW 0.007-1.45 kg). The YiPa index in the subset of 39 

genotypes covered a range of 0.003-0.68 (PA 4.2-14.7 %).  

The maximum crop level (4) is defined as the amount of grapes a vine of a given size can 

bring to maturity. To validate the crop level we looked at the relationship between the time 

of ripening and the ripening index (Brix values). There are four different classes one can 

distinguish: class 1 contains genotypes with a small crop level which leads to accelerate 

ripening and a logarithmic curve shape. Class 2 includes the desired genotype to be 

selected with a crop level just below the maximum crop level. For class 3 and class 4 the 

time of ripening is linearly dependent upon the crop level whereas class three has an 

increased crop level and is slow ripening and class 4 is above the maximal crop level and 

never ripens (Figure 4). The distribution of classes over the whole set (138 genotypes) was 

8 % in class 4, 16 % in class 3, 19 % in class 1 and 57 % in class 2. 

Breeding goals for wine grapes concerning yield traits vary from vine yield smaller than 

1 kgm
-²2

 to more than 1.5  kgm
-²2

 (Töpfer et al. 2011). Berry sizes from small to large, 

berries per cluster from less than 200 to more than 300 and the number of clusters from 2 

to 4 per cane depending on the desired goal (Töpfer et al. 2011). As the German vine law 

specifies maximum vine yield depending on the growing region and wine quality, we used 

the maximum yield of 14,000 kgha
-1

 as breeding goal to validate our seedlings. According 

to the desired breeding goal this value can be adapted any time. The amount of 14,000 

kgha
-1

 grapes means an average vine yield of 2.8 kg per vine. For this first evaluation step 

we excluded all genotypes producing less than 1.7 kg and of more than 3.5 kg grapes per 

vine. It has been shown that clusters per vine accounts for 60 % of the yield variation 

between the years in viticulture (Clingeleffer et al. 2001). Therefore the number of clusters 

per vine has been chosen as second criterion for the validation. The desired number of 

clusters per vine genotype was set to 12 - 18 clusters. The third selection criterion was vine 

balance which can be directly measured through pruning weight and yields at harvest. The 

dormant pruning weight can indicate the level of vegetative growth and whether a vine is 

of high, moderate, or low vigour. The most common way used to detect the relationship 

between vegetative and generative growth is the Ravaz index (yield/pruning weight). 

Using the data gained with the new automated method we calculated an additional index: 

the YiPa index (yield/pruning area) which is inspired by the Ravaz index, using the 

pruning area detected with the image-based method (a1) described earlier instead of the 

actual pruning weight. Generally, vines with Ravaz index levels between 5 - 10 are 

considered in the optimal range (Bravdo et al. 1984,Bravdo et al. 1985). But these levels 

can also vary depending on the cluster size and growing conditions (Kliewer and 

Dokoozlian 2005). For this selection example we chose genotypes varying between 5 – 11 

(Ravaz index) and 0.1 - 0.3 (YiPa index). The targeted range of YiPa index was set using a 

box plot to display the variation of the YiPa values. Therefore, the lower first quartile (0.1) 

and the upper third quartile (0.3) were chosen as target range for this trait. YiPa index 
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could only be calculated for the subset of 39 genotypes for which automated image 

segmentation was done. Applying the first three selection criteria on the full set of 138 

genotypes 17 genotypes matched all three. Three of them were also included in the subset 

of 39 vines in which the PA (a1) was calculated automatically and all three endorsed the 

selection of genotypes using the three criteria (yield/vine, cluster/vine, Ravaz index). 

Applying the fourth step of selection criteria, (4) crop level to the set of 17 genotypes 

selected by the three selection criteria the distribution was as followed: classes 1 and 4 

contained one genotype each, two genotypes have been assigned to class 3 and 13 

genotypes met all four selection criteria for yield potential proposed in this study 

(Figure 4). With regard to the climate change slowly ripening genotypes assigned to class 3 

can also be consider valuable for breeding purposes. The criteria used for validating the set 

of seedlings is one example set of parameters and can always be adapted to changing 

breeding goals or scientific questions. The desired range of traits can also be used to 

control the amount of selected genotypes. One would not like to narrow down the amount 

too much and therefore lose interesting genotypes. On the other hand the selection window 

should not be to wide that too many genotypes will be selected. Besides the criteria chosen 

other interesting yield criteria are the number of clusters per shoot, the number of berries 

per cluster or the berry size. It will be challenging to set up algorithms to automatically 

monitor these traits under non experimental conditions. Therefore, the method presented is 

a good first step to assist breeding based on sensor techniques. Image acquisition in this 

study was done using the PIAS in combination with manual exposure of geo-referenced 

images. Using an autonomous platform like the PHENObot (Kicherer et al. 2015) can open 

up new opportunities and an even higher level of automation making it possible to screen a 

larger set of vines in a more objective way. 

Conclusions 

Utilizing an image based method to detect pruning weight it was shown that the pruning 

area detected automatically using depth segmentation was linearly correlated with the field 

measurements of pruning weight in the set of 39 different genotypes. Additionally, it was 

principally shown in this study that this new inexpensive and time saving method together 

with other selection criteria is suitable to validate the yield potential of a seedling 

selections. 
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Figure 1 Workflow of automated image based depth segmentation and detection of 

pruning area (PA).  
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Figure 2 Pruning area (%) vs. ground truth pruning weight (kg). A subset of 39 grapevine 

images was used to fit a linear function. The results of the automated depth segmentation 

and of the reference (manual segmentation) are shown. y = linear regression line; R
2 

= 

determination coefficient; RMSE = Root-Mean-Squared-Error; *** = p-value <0.001. 
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Figure 3 Comparison of the image based detection of pruning area (PA) of two different 

vines in the field. (A) Original monochrome image. (B) Manual image segmentation of the 

PA used as reference. (C) Automated depth segmentation and detection of PA. Both vines 

showed considerable differences for their pruning weight (PW) of 0.15 kg (vine 1) and 

0.62 kg (vine 2) but comparable PAs. 
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Figure 4 Time of ripening vs. ripening index relationship of exemplary genotypes. There 

are four different classes describing the various crop levels: 1= low crop level, accelerated 

ripening; 2= the desired crop level; 3= increased crop level, slow ripening, 4= above 

maximal crop level, never ripening). Three selected genotypes that meet all selection 

criteria (yield/vine 1.7-3.5 kg; Cluster/vine 12-18; Ravaz index 5-11; YiPa index 0.15-

0.30) are displayed in the graph. 
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Table 1 Overview of the selection criteria for the evaluation of the seedling selection: (1) yield (kg) 

per vine, (2) cluster per vine, (3) vine balance (using PW, PA for the Ravaz/YiPa index). The range 

or the criteria detected in the screening, the targeted range for this study, and the number of 

evaluated and selected genotypes. 17 genotypes of the population met all criteria (yield/vine, 

cluster/vine, Ravaz index). A set of 39 images was used to detect the PA automatically and out of 

these results the YiPa index was calculated. 3 of the 18 genotypes also met this criterion. 

 

range observed range    desired 

number of 

evaluated 

genotypes 

number of 

selected 

genotypes 

(1) yield/vine  0.03-6.51 kg 1.7-3.5 kg 138 49   

(2) cluster/vine  1-38 12-18 138 56 17  

(3) Ravaz index  0.08-25.33 5-11 138 42   

(3) YiPa index 0.003-0.68 0.1-0.3 39 19   

PW 0.007-1.45 kg - 138 -   

PA 4.2-14.7 % - 39 -   
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Abstract: Due to its perennial nature and size, the acquisition of phenotypic data in grapevine 

research is almost exclusively restricted to the field and done by visual estimation. This kind of 

evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, 

objectivity, automation and more precision of phenotypic data evaluation are needed to increase the 

number of samples, manage grapevine repositories, enable genetic research of new phenotypic 

traits and, therefore, increase the efficiency in plant research. In the present study, an automated 

field phenotyping pipeline was setup and applied in a plot 
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of genetic resources. The application of the PHENObot allows image acquisition from at least 250 

individual grapevines per hour directly in the field without user interaction. Data management is 

handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in 

Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, 

berry size and color, within a large set of plants. The application of the PHENObot represents an 

automated tool for high-throughput sampling of image data in the field. The automated analysis of 

these images facilitates the generation of objective and precise phenotypic data on a larger scale. 

Keywords: robot; geoinformation; high-throughput analysis; image acquisition; plant 

phenotyping; grapevine breeding; Vitis vinifera 

 

1. Introduction 

With the fast development of genotyping methods to support grapevine breeding based on SSR 

(Simple Sequence Repeats) [1,2] or SNP (Single Nucleotide Polymorphism) analyses, including next 

generation DNA sequencing [3], genotyping efficiency has been greatly improved and costs have 

been reduced contemporaneously. However, plant phenotyping methods have only slowly improved 

during the last few decades, becoming now a major bottleneck. Therefore, the lack of sufficient 

phenotypic data and phenotyping methods constrains the possibility to reveal the genetics of 

quantitative traits, such as yield, growth and adaption to abiotic or biotic stresses. The development 

and implementation of  

high-throughput phenotyping platforms is therefore a key tool to improve the efficiency of grapevine 

(Vitis vinifera L. subsp. vinifera) or, more generally, plant breeding. In recent years, much effort 

has been made to build up such platforms, which allow the assessment of large quantities of 

phenotypic data under controlled environments [4–9]. Although these systems enable a detailed 

non-invasive plant assessment throughout the plant life cycle under controlled conditions, they 

neglect information about the  

genotype-environment interactions and do not take horticultural or viticultural plants into account. 

However, grapevine, for example, as a rather large perennial plant, needs to be evaluated directly in 

the field. Several studies of the implementation of new techniques for an improved management of 

vineyards in practical viticulture [10–14] have been conducted in recent years. Yield estimation is 

one of the most important traits in precision viticulture due to annual and spatial variations. The 

published studies aimed to improve yield estimation and forecasting by detecting bunches of grapes, 

berries [15–18] or the number of inflorescences [19] in images. Ground-based sensor data used in 

precision viticulture are than either recoded from a constant distance to the canopy [16,19–21], 

mounted to a tractor [10–12], truck crane [22] or include modified vehicles [13,15,23] equipped 

with global positioning systems (GPS) devices [18,24,25]. Another approach is the application of a 

field phenotyping robot. Such systems have already been introduced for application in maize [26] and 

small grain cereals [27]. A robot application for viticulture was suggested by Longo et al. [28]. The 

U-Go (Unmanned Ground Outdoor) robot was developed as a multipurpose vehicle with the aim of 

facilitating work during the season (harvesting, pruning, transportation of bins) [28]. Furthermore, 

the opportunity to be equipped with a modular remote sprayer [29] is given. Its technical 

specification allows remote control or autonomous motion using GPS  
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waypoints [28]. Nonetheless, all of these studies focus mainly on vineyard management, site-

specific information to improve crop load, water or the health status of the considered plot. In 

contrast, grapevine breeding aims at the phenotyping of single grapevines, whereby genetic 

resources and large sets of breeding material need to be screened. That implies that in one 

experimental field plot, each plant can be a different genotype, showing its distinct phenotype, which 

needs to be assessed individually with high precision. Not only the resolution of phenotypic data 

towards one single grapevine may differ, also the variation of traits within breeding material is 

considerably higher than in commercial vineyards. Important phenotypic traits in grapevine breeding 

are the detection of fruit parameters, e.g., the berry size and color of berries. Current assessment of 

phenotypes in breeding programs relies largely on visual estimations, using the BBCH (phenological 

development stages of a plant; stands for Biologische Bundesanstalt, Bundessortenamt und 

CHemische Industrie) scale [30] or OIV (International Organization of Vine and Wine) descriptors 

[31]. These systems are laborious, time-consuming and, therefore, expensive. The data obtained are 

subjective and can vary significantly when evaluated by different persons. The biggest limitation, 

however, is the needed simultaneous screening of vines from several hectares of experimental 

vineyards, which limits a detailed evaluation of traits to a rather small number of breeding strains. 

The application of non-invasive, high-throughput sensor technologies is required to increase the 

efficiency of grapevine breeding by increasing the phenotyping efficiency (number of plants per 

time), improving the quality of phenotypic data recording and reducing the error variation. Such 

new methods progressively increase the amount of data that needs to be handled. 

First steps towards a high-throughput phenotyping pipeline in grapevine breeding have been 

introduced by Herzog et al. [32]. The study implemented a Prototype Image Acquisition System 

(PIAS) for  

semi-automated capturing of geo-referenced images and a semi-automated image analysis tool to 

phenotype berry size. An automated phenotyping platform in grapevine breeding is needed to 

screen for phenotypic traits on a single-plant-level in a reasonable time, unlike the application in 

precision farming, whereas the overall appearance of a plot or at least single areas of a plot are of 

greatest interest. 

Here, we describe the setup of an updated and expanded phenotyping pipeline involving automated 

data acquisition in the field, automated data management and data analysis. The challenges of this 

pipeline are the combination of: (1) automated simultaneous triggering of all cameras at a 

predefined position in the field; (2) automated acquisition of geo-referenced images; (3) data 

management via a database; and (4) automated image analysis for objective and precise 

phenotyping of the berry size and color. Moreover, we demonstrate the application of the pipeline 

in the grapevine repository at Geilweilerhof. 

 

2. Material and Methods  

2.1. Plant Material 

The application of the phenotyping pipeline involved 2700 grapevines representing 970 accessions 

from the grapevine repository at the experimental vineyards of Geilweilerhof located in 

Siebeldingen, Germany (N 49°21.747, E 8°04.678). Interrow distance was 2.0 m, and grapevine 

spacing was 1.0 m. Rows were planted in a north-south direction. Colored size reference labels 

were fixed to the wires and used to scale the images.  
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2.2. Automated Image Acquisition 

For the automated image acquisition directly in the field, the PHENObot (Phenotyping robot) was 

developed [33]. This phenotyping platform consists of a chain vehicle containing a control unit and 

a camera-light unit in combination with an industrial computer. In order to operate in a harsh 

outdoor environment and to enable the transportation and navigation of the camera-light unit for the 

non-destructive inspection of phenotypic grapevine traits, the chain vehicle had to meet certain 

requirements: a lifting capability up to 250 kg, low vibration drive at a speed between 4 to 6 km·h
−1

, 

an easily adjustable mounting system for the sensors, a navigation system based on GPS 

coordinates, the ability for path planning, as well as fulfilling safety standards [33]. For targeted 

image acquisition, path planning is needed for the PHENObot. Therefore, precise GPS positions of 

individual vines are necessary and, so, all grapevines have been surveyed. The camera-light unit 

used on the PHENObot consists of three monochrome cameras (AVT GT-2450; objective: CVO 8 

mm; 2448 × 2050 pixels), one RGB camera (AVT  

GT-2450C; objective: Schneider KMP-IR CINEGON 8 mm; 2448 × 2050 pixels) and one NIR 

camera (AVT MANTA; objective: Schneider KMP-IR CINEGON 8 mm; 1388 × 1038). To enable 

an adequate illumination for standardized image acquisition, a lightning unit containing eight LED 

bars (12 LEDs; ODLW300 series; Smart vision lights, Muskegon, MI, USA) was combined with 

the camera unit (for the setup, see Figure 1A). The components are connected with the image 

acquisition computer by a fast Ethernet network (GigE). All cameras are synchronously triggered 

using this network, and the images are transmitted immediately to the PC. The lightning unit is 

triggered by one of the monochrome cameras. For configuration and monitoring of the image 

acquisition process, a software application (IggGeotagger.Ext) has been developed fulfilling two 

main tasks: the communication task handles the communication between the control unit of the 

PHENObot and the image acquisition computer; the image acquisition task controls the cameras 

and the image transport and storage. The application is also used for visualization of the images 

and for setting the camera parameters (screenshot in Figure 1). A single image acquisition cycle 

performs several steps (see Figure 2). The communication task waits for a message from the 

PHENObot control unit. As soon as the PHENObot has reached a predefined position, it sends a 

specific message containing the position, the orientation and the corresponding plant ID to the 

computer. Then the communication task starts the image acquisition task, which triggers all 

cameras, receives the images, generates the filenames for the images 

(plantID_camera_cameraID_datetime) and saves them to the hard drive. Additionally, the position 

and orientation information is written directly into the file header of the image. When the image 

acquisition task has finished, the communication task sends an acknowledgment message to the 

PHENObot control, signaling that it can move to the next position. One hundred forty grapevines 

have been assessed to verify the image section: (1) includes the whole bunch area of each grapevine 

assessed, and (2) remains the same when repeatedly approached. The PHENObot was stopped at the 

surveyed position of the grapevine and under the consideration of the training direction (trained to the 

south or north, respectively). Moreover, the 140 grapevines have been approached 4 times in a row. 
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Figure 1. Graphical user interface of the IggGeotagger.Ext. The software manages the 
communication between the control unit of the PHENObot and the image acquisition PC, triggers 
the cameras and controls the image transport and storage. It is preferentially used for the 
visualization of captured images and for setting the camera parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Communication and image acquisition task within the IggGeotagger.Ext software. The 
communication task handles the communication between the control unit of the PHENObot and the 
image acquisition PC; the image acquisition task controls the cameras and the image transport and 
storage. 
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2.3. Data Management 

All 2700 grapevines of the genetic repository have been surveyed using a RTK (real-time-

kinematic)-GPS system (Trimble
®
 SPS852, Geo Systems GmbH, Jena, Germany) with 2-cm 

accuracy. The geo-information of each grapevine and the associated plant ID is stored in the central 

database, PLA (Plant Location Administration)—A common management tool for experimental 

areas in the Julius Kühn-Institut. All images delivered by the IggGeotagger.Ext are imported into the 

database, IMAGEdata. Based on the image names, which contain the plant ID, every image is 

uniquely assigned to a single grapevine. For this assignment, the PLA is used. PLA, as well as 

IMAGEdata work with geographical data (UTM). The aim of IMAGEdata is to have a powerful and 

easy to use tool for managing the images as a basis for further evaluation. These databases can be 

used by modern Web 2.0 interfaces and web services. Current technologies allow safe operation and 

offer modern user interfaces. 

2.4. Image Analysis 

Image analysis was conducted by using the MATLAB
®
-based tool, BIVcolor (Berries in Vineyards-

color). Based on a one-class classification framework determining grapevine berry sizes, some 

slight modifications have been done (MATLAB 2012b and Image Processing Toolbox, The 

Mathworks, Natick, MA, USA) on the Berries in Vineyards (BIV) algorithm [34]. This was 

targeted to separately record mean RGB values of each single berry according to their color 

channels (RGB) and their position within the corresponding image. The data were written loop-

wise into a tab-limited text file corresponding to the image file analyzed and finally stored in a 

SQL-database (Access 2010, Microsoft, Redmond, WA, USA). The known position of berries 

within a trait later on provides clustering to check berry patterns and outliers.  

A set of 500 images, including 235 different accessions and n = 1,300,900 segmented single 

berries, was used for color information assessment. The mean of the RGB values of all berries 

detected in one image were used for statistical analysis. As reference data, the berry color was assessed 

as five classes (1 = black; 2 = red; 3 = rose; 4 = grey; 5 = green). 

2.5. Statistical Analysis 

Statistical analysis was conducted using the software R Version 3.1.1 (R Foundation for 

Statistical Computing, Vienna, Austria). Linear discriminate analysis (LDA) was performed to 

predict the berry color class using the RGB values as predictor variables. 

 

3. Results and Discussion 

3.1. Field Application of the Phenotyping Robot 

A phenotyping pipeline has been set up and consists of the following components: (1) data 

acquisition; (2) data management; and (3) data analysis (Figure 3). Data acquisition was done 

automatically using the PHENObot. Each image was linked to one plant, respectively one 

genotype, without any post-processing. Applying the PHENObot image data from 2700 grapevines 

representing 970 grapevine accessions has been done. Automated data recording for these large set 

of plants was  
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completed within 12 h. The image acquisition of one grapevine took on average 15 s. Although the 

camera was equipped with a lightning unit, it was impossible to take standardized images on sunny 

days (Figure 4). Consequently, the image acquisition in the grapevine repository was done at night 

due to uniform light conditions. This has also been reported to work best for images taken in 

commercial vineyards to estimate yield [18]. 

Two pre-test drives consisting of 140 grapevines have been done. The first one to ascertain the 

image section comprises the whole bunch zone of each grapevine assessed and the second one to 

make sure the same image section is captured each time a grapevine is approached. The image 

section was best when the stopping position of the PHENObot was shifted 25 cm south or north in 

accordance with the training direction in order to enable one to see as much of the bunch zone as 

possible. The 140 grapevines were approached four times, and the image section stayed the same 

for each grapevine and all four repetitions. The comparison of the GPS position logged at the 

image acquisition point for the four drives showed a difference of 1–2 cm, which is within the 

accuracy of the GPS system. 

 

Figure 3. Phenotyping pipeline in grapevine breeding. (a) Data acquisition using the PHENObot 
consisting of a robotic platform, a multi-camera-system and a geo-information system; (b) data 
management of the sensor data is achieved by a database (IMAGEdata); (c) data analysis through 
the application of MATLAB

®
-based tools, e.g., BIVcolor (Berry in Vineyards-color), to extract the 

phenotypic data; (d) the phenotyping pipeline was developed for application in grapevine breeding. 
This enables the phenotyping of large sets of plant material from genetic resources or breeding 
material. 
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Figure 4. Comparison of images taken during the day and at night. Three examples of vines 
photographed on a sunny day and at night. All images were captured using the PHENObot with the 
lightning unit on. Image acquisition at night enables standardized conditions, which are very 
important for robust automated image analysis and comparable phenotyping results, e.g., with 
regard to the determination of berry colors. 

 

3.2. Image Analysis 

Images have been analyzed using the MATLAB
®
-based tool, BIVcolor. The tool enables the 

automated extraction of the phenotypic traits, berry size and color. The berry size is one of the most 

important fruit parameters integrated for seedling selection in breeding programs. The BIVcolor 

evaluated berry size ranging from 9.8 mm to 13.9 mm. The acquisition of the berry color is 

important for the characterization of genetic repositories or the phenotyping of mapping 

populations for genetic analysis. Initially, the color of grapes can be classified according to the 

presence or absence of anthocyanin in the berry skin, as either black or green. As a result of natural 

hybridization and human selection, the grape skin color is very diverse nowadays, ranging from 

green-yellow, grey, rose, red to black. The reference assessment for berry color in the set of 500 

images showed a distribution of: 202 (Class 1 = black), 200 (Class 5 = green), 39 (Class 4 = grey), 

37 (Class 2 = red) and 22 (Class 3 = rose) (Figure 5a). Linear discriminant analysis (LDA) using 

three predictor variables (red, green and blue color values) was used to predict the class of berry 

color. Table 1 shows the cross-validation of the real vs. predicted color class. The percentage of the 

correct prediction of black (197 berries; 97%) and green (178 berries; 89%) berries was very high. 

Some of the green berries were predicted as grey, but in most cases, grey berries were predicted as 

grey (28 berries; 71%). Thirteen images (59%) visually assessed as rose berries have been 

predicted as red. The difference between red and rose berries can be difficult to discern no matter 

whether one predicts the class doing visual estimations (Figure 5a) or if one uses RGB values 

(Figure 5b,c). Due to the fact that RGB values of these two classes are very similar and overlapping 

(Figure 5b,c), it was not possible to distinguish these two classes in our study. One can clearly 

distinguish between black, green, grey and red/rose berries, and this is exactly what can be used for 

the evaluation of genetic resources and breeding material, but also for the management of  
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grapevine repositories. Usually, three grapevines of one accession are planted next to each other, 

through the image-based color detection planting mistakes based on wrong berry color can be 

uncovered, for instance: 

 

 

Figure 5. Distance plots of single RGB values indicating the fitness of the color model used for 
LDA. Prediction of berry color classes was done using the image-based detected RGB values. LDA 
used three parameters (red, green and blue color values) and, as the ground truth, the visually assessed 
berry color. (a) Berry color was visually assessed as five classes: Class 1 = black; Class 2 = red; Class 3 
= rose; Class 4 = grey; Class 5 = green; (b) distance plot of R values vs. G values; (c) distance plot 
of G values vs. B values.  
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Table 1. Cross-validation of the real berry color classes assessed by visual estimation 

and the color classes predicted with the LDA. 

 Real Color Classes 

Predicted Color Classes Black Green Grey Red Rose 

black 197 7 2 5 3 

green 5 178 7 0 0 

grey 0 15 28 2 3 

red 0 0 1 26 13 

rose 0 0 1 4 3 

From previous work presented by Roscher et al. [34], it is known that the acquisition of images in 

the field and automated image analysis in order to determine berry sizes is about 24-times faster 

compared to the application of a caliper to measure the diameter of 50 berries per grapevine. The image 

analysis runs automatically and needs no user interaction after starting the program. Thus, the analysis 

can be performed simultaneously as daily work within the common breeding program. With the 

extension of the BIV tool [34] to BIVcolor, we gained information about an additional phenotypic trait 

that can be extracted from the images without losing any time for evaluations. Another advantage is that 

images can always be analyzed retrospectively when new tools come along. 

 

3.3. Future Work 

The phenotyping pipeline has been successfully tested in grapevine breeding. So far, only the RGB 

images are used for automated image analysis. The camera unit consisting of five cameras (one 

RGB, three monochrome and one NIR camera) offers more opportunities. It enables the generation 

of 3D information using the monochrome cameras [32]; furthermore, it is suitable to use the NIR 

information for vitality indices. In addition, it is conceivable that the sensor unit of the PHENObot is 

going to be extended by additional sensors, like lasers, multi- or hyper-spectral sensors. There are plans 

to connect the IMAGEdata database with other existing databases, like VIVC (Vitis International 

Variety Catalogue [35]) and the European Vitis Database [36], to complete the linkage of available 

information.  

An important stage in grapevine development is the beginning of berry ripening, namely veraison. 

This is the time when the berries start to soften and colored cultivars start to change their color, 

e.g., from green to black. It is conceivable that BIVcolor can be used to detect that date if images 

are taken continuously throughout the growing period. 

 

4. Conclusions 

A setup of a phenotyping pipeline has been introduced for grapevine breeding and to support the 

management of a grapevine repository. A robotic platform, the PHENObot, was built to enable the 

automatic image acquisition directly in the field. In order to facilitate the management of the data 

gained by automated image acquisition, an image database was developed. Compared to human 

visual assessments, a larger set of grapevines can be screened automatically, and the data revealed 

are objective and precise. 
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6. General discussion 

 
Plant phenotyping is typically known as the most laborious and technically 

challenging part in viticulture research. Screenings often need repetition across multiple 

environments or they have to be done regularly over a certain period of time, mostly for 

more than one season. In breeding applications phenotyping needs to be fast, cheap and 

simple often testing only for easy traits. Maintaining the important and valuable plant 

material is a precondition rather than using it for destructive tests. Therefore, current 

phenotyping methods are either to some extent subjective, visual estimations or they 

require destructive sampling. Furthermore, if the allelic variation needs to be screened e.g. 

for genotyping of mapping populations, this phenotyping work needs to be done much 

more precisely. Combining novel technologies like imaging, spectroscopy, image analysis, 

robotics and high-performance computer systems the phenotyping bottleneck can be 

addressed. Applying these novel techniques in controlled conditions is challenging but 

phenotyping at the field level is even more challenging in many respects compared to the 

controlled environments. For the perennial grapevine field phenotyping of the majority of 

traits is mandatory and the evaluation of quality traits requires conditions relevant for 

practice. In grapevine breeding it is essential to be able to assess the phenotype of vines on 

a single plant level. 

 

6.1 Challenges of phenotyping grapevine 

 

To assess grapevine yield parameters in the field using modern phenotyping methods 

several challenges were faced during this work: (1) variation of the trait, (2) light 

environment, (3) similar background and (4) occlusion of traits, which will be discussed in 

detail in the following section. 
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Figure 2 Variation of yield parameters. A Variation of different vines captured directly in the field 

showing differences in colour, shape and size. B-D Variation acquired in the laboratory for analysis 

using different image analysing tool. Images shown in B and C can be analysed using the CAT 

(Kicherer et al., 2015c). The BAT (Kicherer et al., 2013) can be applied to analyse images from 

section D. 

 

The phenotypic traits are highly variable depending on the genotype and the genotype-

environment interaction. With regard to yield parameters the variation of the trait (Figure 

2) can be challenging for the development of image analysis algorithms. Yield parameters 

for example can vary with regard to cluster size and architecture (Cubero et al., 2011; 

Kicherer et al., 2015c), berry size (Kicherer et al., 2013; Tardaguila et al., 2012; Wycislo et 

al., 2008), shape and colour (Kicherer et al., 2015a; Wycislo et al., 2008) (Figure 2). 

Furthermore, the colour of traits and the surrounding area can be very similar in terms of 
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early berry developmental stages prior to veraison for coloured (red, rose, black) varieties 

or throughout the whole season for white varieties. Therefore, an image analysis based 

only on colour features (Diago et al., 2012; Dunn and Martin, 2004) or shape (Rabatel and 

Guizard, 2007) or texture (Grossetete et al., 2012) can be insufficient. A combination of 

features is crucial (Nuske et al., 2014; Roscher et al., 2014). 

The acquisition of sensor data can be influenced by the high variability of light quality and 

quantity and can therefore pose a challenge to image-based measurement systems in the 

fields. Light conditions are permanently changing from one recording to the next or within 

the screening of one set of vines (Figure3 A). Backlighting can be a problem, but even if 

the sun conditions are good or the light is diffuse the shading of the canopy (Figure3 A-2) 

can be a challenge for image analysis. As shown equally in these studies using a camera 

sensor system the light quantity and quality can be improved through an artificial light unit 

and the image acquisition at night (Font et al., 2014; Kicherer et al., 2015a; Nuske et al., 

2014). Another approach to overcome the light problematic could be the use of a grape 

harvester or a tunnel sprayer as carrier platforms for a camera-based sensor system. With 

some adjustments the machines could be converted into more standardized field 

phenotyping carrier platforms equipped with artificial light units and different sensors, 

operating at any time of the day without being influenced through natural light 

environment changes and providing a standardized background at the same time. One 

disadvantage might be the aspect of plant movement while driving, therefore a stop and go 

approach must be implemented. However, compared to automated phenotyping robots 

(Kicherer et al., 2015a; Longo et al., 2011) at present the chances for automating these two 

approaches are rather low based on costs. 

A standardized background is nonexistent for HT-field-phenotyping applications (Figure 

3B) therefore the segmentation of an image into plant structure and background is a critical 

and difficult step in an image analysis framework. Phenotypic evaluations during early 

stages of development are particularly affected (Figure 3 B-1). This challenge can either be 

overcome by implying an artificial background either manually carried (Herzog et al., 

2014; Kicherer et al., 2015a) or platform-based (harvester, tunnel sprayer) as mentioned 

before or through the application of computer vision-based methods (Herzog et al. 2014; 

Kicherer et al., 2015b; Klodt et al., 2015) extracting different levels of foreground and 

background of an image by using a depth map reconstruction. 
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Figure 3 Challenges of image acquisition under field environment conditions. A quantity and 

quality of light (1=backlighting; 2=shading through the canopy). B similar background (1=early 

development stage BBCH 55; 2=later development stage BBCH 79). C occlusion through canopy 

or other grapes (1-2=early development stage BBCH 65; 3-4=later development stage close to 

ripening BBCH 85).  
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The detected amount of fruit using sensors can be negatively influenced because leaves 

and other grapes can mask the real amount of fruit on the vine (Figure 3 C). Approaches of 

a complete defoliation of the fruit zone enable a more accurate detection of the amount of 

fruits but on the other hand simultaneously increase the background problematic (Figure C-

4). Such extreme defoliation in the fruiting zone is in any case artificial and not applicable 

to viticulture leaving a problem of masking of a certain amount of grapes. 

Compared to phenotyping approaches under controlled environments some additional 

challenges of grapevine field phenotyping need to be considered. The establishment of 

grapevines for instance takes three to four years till first yield is measurable. Grafting of 

grapevine has an impact on its growth and development behaviour under field conditions 

which cannot be simulated under controlled conditions and should not be neglected. 

Finally quality trait considerations are only relevant if plants are grown under field 

conditions.  

Field conditions represent the plants “natural” environment with daily and seasonally 

varying environmental parameters such as light, temperature, and water. Field conditions 

can be very heterogeneous (soil, fertilisation, light interception) and the inability to control 

environmental factors makes interpretation of results difficult. On the other hand results 

from controlled environment are far away from the influences plants will meet in the field. 

Therefore, the transmission of such results to plant breeding and plant production is also 

difficult (Araus and Cairns, 2014). Soil environment, pot size, water and nutrition 

limitation under controlled environments is one problem (Passioura, 2006; Poorter et al., 

2012). Moreover, vines do not grow isolated in the field, they form a canopy and interact 

with each other. This further complicates the ability to mimic field conditions in a 

controlled setup and makes phenotyping on a field level very important. Since we are not 

able to control the soil and environmental conditions in the field, it is important to at least 

have comparable vineyard practice routines including plant protection, fertilisation, 

pruning and canopy management, to maximize standardization of field phenotyping. 

Winter pruning can have an influence on yield parameters such as clusters per vine. To be 

able to compare different genotypes within the screening process, vines need to be pruned 

to the same amount of buds per cane or the cane needs to be cut to same length as 

genotypes can have different internodes length. Canopy management can influence the 

vine balance, shading, and light interception during the season, therefore shoot trimming, 

desuckering and cluster thinning should be done consistently. 
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6.2 Approaches towards effective data acquisition 

 

Effective data acquisition is influenced by the set up of a phenotyping pipeline. The 

choice of sensor is based on the trait that has to be evaluated. Besides the selection of the 

environment (growth chamber, greenhouse, foil tunnel, and field) in which the trait should 

be screened it is crucial to determine a time interval for the evaluation. Data acquisition 

can be done using different platforms (fully automated indoor applications and ground-

based, aerial-based or satellite-based outdoor applications). Furthermore, data handling and 

the method for data analysis can influence the efficiency of data acquisition. 

The main focus of this study was the use and development of modern phenotyping 

approaches taking phenotyping of yield parameters as an example. The first objective was 

the use of visible light sensors as cost-efficient and fast sensors. This was realized in two 

different approaches on a laboratory and a field level. In a first step towards HT 

phenotyping yield parameters were broken down using a controlled environment concept 

of RGB image analysis (CAT (Kicherer et al., 2015c) and BAT (Kicherer et al., 2013)) and 

in a second step a camera system was used on the field phenotyping platform. The general 

goal of this scientific work was the set up of a field phenotyping pipeline for grapevine 

breeding. The realization of this goal led to the first phenotyping pipeline for field 

application in grapevine breeding. Data acquisition was done automatically using the 

PHENObot. This phenotyping platform consists of a chain vehicle containing a control 

unit and a camera-light unit in combination with an industrial computer (Kicherer et al., 

2015a). Every image is uniquely assigned to a single grapevine due to the geo-information 

and the associated plant ID. All images are stored in a database based on the image names, 

which contain the plant ID. Image analysis was done using the MATLAB
®
-based tool, 

BIVcolor (Berries in Vineyards-color) (Kicherer et al., 2015a). 
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Sensors 

 

In our approach visible light sensors have been used to capture yield parameters. On 

the one hand a SLR camera has been used for the image acquisition in the laboratory under 

controlled environment (Kicherer et al., 2013; Kicherer et al., 2015c) on the other hand a 

multi-camera-system has been used on the PHENObot for image acquisition. The multi-

camera-system consists of three monochrome (MC) cameras, one RGB camera and one 

NIR camera. To enable an adequate illumination for standardized image acquisition, a 

lightning unit containing eight LED bars was combined with the camera unit (Kicherer et 

al., 2015a). According to the desired application, the available sensors for effective data 

acquisition in modern plant phenotyping can have different advantages and disadvantages. 

Using VIS sensors enables a fast 2D–imaging at an affordable cost level, enabling not only 

the determination of traits such as size based on geometric information, but also 

radiometric information (MC, RGB,NIR). Therefore, the use of visible light sensors to 

evaluate yield parameters under controlled and field environments in grapevine are the best 

available. In addition to the acquisition of 2D information 3D depth information can be 

helpful. 

3D-imaging based on the multi-camera-system on the PHENObot was used to remove the 

background within the automated detection of dormant pruning wood area (Kicherer et al., 

2015b). It is conceivable that 3D depth information gained through a stereo vision 

approach can also be used to further improve the size evaluation of the BIV (Roscher et al., 

2014), respectively the BIVcolor (Kicherer et al., 2015a). Besides the stereo vision 

approach, laser scanners provide a high 3D accuracy that enable the construction of plant 

parts and their modelling (Paulus et al., 2014). But on the other hand complex data 

reconstruction is required and for some laser instruments a specific illumination is needed, 

moreover long acquisition times are needed what makes field application even more 

difficult (Dhondt et al,. 2013). 

Furthermore, the NIR camera within the multi-camera-system of the PHENObot could be 

used to remove objects with low reflectance and high absorbance in near-infrared in the 

image like the sky or the ground. The challenge is to match the two images from the 

different cameras due to the different size of their sensors. Nevertheless, the registration of 

both images is possible using a suitable matching algorithm and an interest operator to find 
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corresponding points in both images (McGlone et al., 2004). Moreover, if the relative 

orientation of both cameras is known beforehand, the images can be matched directly to 

each other. 

 

Sensor platforms for field applications 

 

Vineyards consist of perennial plants trained as vertical crops. Therefore, a ground-

based evaluation of yield parameters is urgently crucial. The PHENObot (Kicherer et al., 

2015a; Schwarz et al., 2013) consists of an automated, ground-based, tracked vehicle 

system. Tracked systems like that use one or more pairs of tracks, which rotate 

simultaneously. These are usually slower but have the ability to overcome obstacles like 

rocks or rough uneven grounds easier, which is crucial to operate in the vineyard. Due to 

the large surface contact area tracked systems have a high stability on the one hand and 

simultaneously a higher energy need. In return these systems are able to carry for instance 

200-500 kg (Longo et al., 2011). Currently the PHENObot stops for image acquisition. The 

efficiency of data acquisition could be improved through a real-time image acquisition 

system capturing images or respectively videos while moving. Therefore, a more 

expensive hardware would be needed and software application would need to be adjusted 

to real time image capturing. Furthermore, it would be more difficult to link images to 

single vines as the platform would move during image acquisition. 

Other existing designs for multi-terrain automated ground-based vehicles are wheeled 

(Nasa Facts, http://www.jpl.nasa.gov/news/fact_sheets/mars03rovers.pdf; Herzog et al., 

2014b) and legged systems (Playter et al., 2006), each having their own strengths and 

weaknesses. For choosing the system with the highest efficiency to carry out the intended 

task, four main aspects need to be considered: (1) mobility, a combination of speed and 

manoeuvrability. Adequate speed to complete the task and manoeuvrability to avoid and 

overcame obstacles. (2) stability to keep the equilibrium when standing still and during 

movement. (3) power consumption of the system and (4) costs for installation. 

Wheeled systems are the most popular systems because they are cheap and simple. 

Generally they have a higher speed than tracked or legged systems, while the 

manoeuvrability depends on the system. They are best suited for even terrains, whereas 

equilibrium can be a problem in rough terrains. Additionally, in an early stage of 
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automation (prototype stage) a tractor for instance (Herzog et al., 2014) can still pull a 

system. 

Legged systems can be slow or fast depending on the system, their ability to overcome 

obstacles is high whereby the stability and the costs are dependent on the number of legs. 

The most commonly ground-based sensor systems can be tractor pulled like the 

BreedVision approach (Busemeyer et al., 2013) or just be mounted to an agriculture 

vehicle (Braun et al., 2010; Llorens et al., 2011; Mazzetto et al., 2010). 

Ground-based phenotyping field platforms enable data acquisition at a plot level requiring 

little post-processing but simultaneous measuring of all plots at one time is not possible. 

Despite that they are considerably faster than a comparable manual data acquisition, thus 

being much more efficient and powerful. Compared to ground-based systems areal 

platforms enable rapid characterization of many plots within a short amount of time (only 

minutes). It always depends on the research question that needs to be addressed. For some 

traits like the yield evaluation in viticulture a top view of the whole vineyard is insufficient 

as the side view of individual vines is desired. For monitoring questions in vineyards like 

for specific diseases as e.g. Esca areal platforms might be very useful and efficient. 

 

Yield parameters 

 

One objective of this study was the determination of grapevine yield parameters, 

such as: vines per unit area, cluster per vine (determined through shoots per vine and 

clusters per shoot), berries per cluster, cluster and berry size, respectively weight, using 

RGB images and image analysis. 

Approaches to dissect the yield parameters berry size and shape are mainly set in the 

laboratory using image-based methods (Kicherer et al., 2015c; Kicherer et al., 2013; 

Tardaguila et al., 2013; Wycislo et al., 2008). As a first step towards HT phenotyping of 

yield parameters in grapevine breeding, approaches like the CAT (Kicherer et al., 2015c) 

or BAT (Kicherer et al., 2013) provide lots of valuable detailed information on single yield 

parameters, even if destructive harvest of grape clusters is needed. Both tools work fully 

automatic, providing four (CAT: cluster length, cluster width, berry size and cluster 

compactness), respectively three parameters (BAT: berry number, size and volume) per 

image at once, therefore being faster compared to manual measurements. These precise 

and detailed data are particularly essential for genetic analysis to describe the variation 
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between different genotypes. Another procedure was introduced by Federici et al. 2009, 

using a laboratory terahertz imaging system to differentiate individual grape berries from 

stems, branches and leaves. With a time requirement of roughly 1 h to image a 7 cm² area 

(Federici et al., 2009), this method is way too slow. 

The evaluation of yield variance of a set of vines is frequently used in precision viticulture 

(Clingeleffer et al., 2001; Nuske et al., 2014) and can be split into three main yield 

components:  

- number of clusters per vine. Contributes approximately 60% of the variance. 

- number of berries per cluster. Contributes approximately 30% of the variance. 

- berry size. Contributes approximately 10% of the variance. 

The assessment of the exact number of clusters per vine is difficult, no matter if sensor-

based or visual estimation approaches are used, especially late in the season due to 

occlusion through leaves and other grape clusters. Some efforts have been made to detect 

this parameter although it was not based on counting the number of clusters but more on 

calculating the amount of fruit pixels (Dunn and Martin, 2004). Diago et al. 2012 estimated 

leaf and yield areas in different defoliation and yield thinning steps to calculate the amount 

of grapes on the vine. Font et al. 2014 counted the number of berries on individual red 

clusters, captured under field conditions. 

Another approach is to combine the two parameters, number of clusters per vine and 

berries per cluster, into one measurement, counting the number of berries per vine (Nuske 

et al., 2011; Nuske et al., 2014). This method captures only the visible berries, missing out 

on the occluded ones. However, yield estimations in this study captured up to 75% of 

spatial yield variance with an average error between 3% and 11% of total yield (Nuske et 

al., 2014). Furthermore, some approaches have been conducted in the field using hand-held 

devices to detect the number of berries per single clusters (Rabatel and Guizard, 2007) 

whereas Grossetete et al. 2012 introduced a Smartphone application for the counting of 

flowers of single inflorescences in images taken at night. Diago et al. 2013 showed that 

counting flowers on an inflorescence is possible using a hand-held device with an artificial 

background and a camera unit. A next step would be the assessment of inflorescences on a 

whole vine level to gain information of the number of inflorescences per vine and the 

number of flowers per inflorescence. This should be done at an early stage of development 

like BBCH 53-55 and can then be used to forecast the number of clusters per vine, 

respectively yield per vine. Furthermore, a method like this could be very helpful for 
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thinning decisions in minimal pruning systems (Walg, 2014) where yield reduction using a 

grape harvester is essential in an early development stage. 

Roscher et al. 2014 implemented the first automatic tool to detect the berry size out of 

images taken in the field. The characterization of multiple traits in a single pass is a crucial 

step to increase the sample throughput. Therefore this tool was extended to additionally 

assess the berry colour by Kicherer et al. 2015a. 

As with most perennial plants, vineyard yield fluctuates significantly from year to year and 

is largely determined by bud fruitfulness. The induction and differentiation of 

inflorescences primordial for next year`s crop begins soon after bud-break of the current 

season (Cunha et al., 2010). The microclimate around and within the canopy could be 

related to fruitfulness, therefore Cunha et al. 2010 used a satellite-based remote sensing 

approach for the detection of NDVI in the previous season and used it to detect yield. The 

prediction model explained 77-88% of inter-annual variability in wine yield. 

Although vine balance is not strictly a yield parameter it is indeed closely related to yield 

and was therefore considered in this thesis. Vine balance is defined as the relation between 

vegetative and generative growth. It can be expressed as relation between grape yield and 

the dormant pruning wood weight. The assessment of dormant pruning wood weight is 

traditionally a very time consuming and laborious task done manually in the field. For fast, 

low cost, and robust, high-throughput and objective acquisition of pruning weight a fast 

ground-based sensor method using cameras was developed by (Kicherer et al., 2015b). To 

avoid the use of an artificial background, a 3D stereo reconstruction and calculation of 

depth maps approach has been used. So far stereoscopic approaches have been used to 

construct plant models (Andersen et al., 2005; Biskup et al., 2007; Biskup et al., 2009), for 

reconstruction of aerial images (Kuschk and Cremers, 2013) or driver assistance systems 

(Ranftl et al., 2012). Capturing pruning wood in a vineyard images are not taken from 

above but within the row, with a bunch of disturbing, similar looking vines in the 

background. The application of stereo vision methods to remove the background was first 

introduced by Herzog et al. 2014 and Klodt et al. 2015 in an approach to acquire grapevine 

canopy dimensions. This method has been adopted to detect the much smaller parts of 

grapevine dormant pruning wood (Kicherer et al., 2015b). It was shown that the 

automatically image-based detected pruning area using depth segmentation was linearly 

correlated with the field measurements of pruning weight. Additionally, it was principally 

shown in this study that this new inexpensive and time saving method together with other 

selection criteria is suitable to validate the yield potential of seedling selections. Further 
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efforts have been made to detect the dormant pruning wood weight using remote sensing 

(Dobrowski et al., 2003) or laser scanner (Tagarakis et al., 2013). Whereas the resolution 

of 1 x 2 m in the remote sensing approach is too big to evaluate on a single vine level and 

the laser scanner approach is too time-consuming compared with the a stereo vision system 

used by Kicherer et al. 2015b.  

 

6.3 Approaches towards effective data 

management and analysis 

 

An additional important objective of this thesis was the automated data handling 

within the phenotyping pipeline. The application of the PHENObot (Kicherer et al., 2015a) 

within the grapevine repository at Geilweilerhof showed that the quantity of data that 

needs to be stored and the processing requirements need to be taken into consideration. A 

set of five images (one RGB, three MC and one NIR image) generates 30MB of data, 

screening around 3000 vines sums up to 90 GB for a onetime screening. This number can 

increase very fast by increasing the sample number, the frequency of screenings 

throughout the season, the amount of sensors or the type of sensors. For the organization of 

sensor data the linkage to the geo-reference in the field can be useful (Andrade-Sanchez et 

al., 2013; Hall et al., 2002; Llorens et al., 2011). It has been shown in this scientific work 

that using databases (IMAGEdata and PLA) to handle images and geo-references is the 

best way to link images to single vines in the field, respectively single genotypes (Kicherer 

et al.,2015a). Furthermore, it is planned to connect the existing databases, like VIVC (Vitis 

International Variety Catalogue; http://www.vivc.de/) and the European Vitis Database 

(http://www.eu-vitis.de/index.php), to complete the linkage of available information. 

The development of wireless sensor networks to characterise the environmental conditions 

(climatic and soil moister status) to enable real-time monitoring would be helpful to 

increase the efficiency of data acquisition in the field (Araus and Cairns, 2014). As part of 

the CROP.SENSe.net project a quality management system for HT phenotyping 

experiments was established (http://www.fz-juelich.de/ibg/ibg-

2/DE/Projekte/_bund/cropsense_net/cropsense_net_d1/D1_node.html) combining the basic 

data of the experiments, plant history as well as phenotypic and genotypic data. 
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The extraction of phenotypic traits from HT phenotyping experiments requires an 

automated image analysis framework in order to extract important relevant biological 

information from the images. In the best case scenario a huge number of phenotypic traits 

are quantified from a single image to increase the efficiency as shown for CAT (Kicherer 

et al., 2015c), BAT (Kicherer et al., 2013) and BIVcolor (Kicherer et al., 2015a). The most 

labour intensive step within the process of developing an automated image interpretation 

tool is the automation itself. Image processing usually includes four steps: (1) 

preprocessing, (2) image segmentation, (3) feature extraction, and (4) postprocessing. 

Preprocessing is done to make images from different cameras or acquired at different times 

throughout the development stage comparable by correction of the orientation, adjusting 

the brightness and irregular illumination, reducing the noises of images, and adapt different 

zoom changes (Klukas et al., 2014). Within the image segmentation step regions of interest 

are separated from the background. Based on these results different plant features like the 

size, shape, texture or colour are extracted from the image data. Postprocessing mainly 

contains summarizing of the results and statistic analysis. 

A set of software applications has been developed to analyse at a whole plant level (De 

Vylder et al., 2012; Green et al., 2012; Hartmann et al., 2011; Klukas et al., 2014) or on 

base of different plant organs (Pound et al., 2013; Tanabata et al., 2012; Weight et al., 

2008) in controlled environments. This software uses different algorithms to detect a wide 

range of plant architectural and physiological parameters from images captured with 

camera sensors. In field based phenotyping there is not that much software available. Most 

of the tools are designated to that special set up and question of one specific trait and are 

not yet able to detect as much different traits in one image than the ones developed for 

controlled environments. 

Due to the variety of existing tools and the lack of a central repository it is challenging for 

researchers to identify, the software that is best suited for their research. Therefore an 

online database of image analysis software tools (Lobet et al., 2013) has recently been 

established comprising mainly tools to analyse images acquired under controlled 

environments (growth chambers, greenhouses). Furthermore an open source framework for 

high-throughput plant phenotyping, the Integrated Analysis Platform (IAP) has been 

published (Klukas et al., 2014). Comparable database or frameworks for sensor data 

(images, spectral data) acquired in the field is required. Although it is going to be difficult 

to provide an overall solution as different plant species require different setups to acquire 

different desired traits. A start could be the establishing of so-called “benchmarks” as done 
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the first time for a set of grapevine images by Kicherer et al. 2015a. A benchmark is a set 

of images and associated results that has been used to establish a new image-analysing 

tool, which is available for the scientific community. These benchmarks are commonly 

used within the image analysing community to compare and test different algorithms for a 

specific trait. If the same set of images is used to test different methods to extract a 

phenotypic trait the methods are more comparable and reliable and it is possible to decide 

which methods work best on this set of images.  

The methods used need to be rapid and robust as well as the equipment. Instruments need 

to be robust to environmental conditions like temperature, humidity and dust. Data 

modelling and bioinformatics are becoming crucial to reduce the complexity of the 

phenotypic landscape and to generate new hypotheses (Fiorani and Schurr, 2013). A good 

data management routine is essential. For some of the numbers obtained through sensor-

based approaches we do not even have a physical concept of what they mean in terms of 

plant performance (Cobb et al., 2013). Most of the data gained is just a mathematical 

transformation of numbers. Some linear combinations of them might have some significant 

correlations with important traits, for reasons we do not yet understand (Araus and Cairns, 

2014). Multispectral imaging for example provides information about plant parts and 

physiological stage that is not visible to humans. For the validation of the biological utility 

of gained sensor data the acquisition of “ground-truth” data is therefore strongly required. 

This can be done by conventionally used instruments, laboratory evaluations or traditional 

visual estimations. Furthermore the standardization of the implemented phenotyping 

method is crucial to ensure reliability of the data collection.  

Eventually, integrating competences through building interdisciplinary teams including 

plant biologist, physicists, mathematicians and engineers is very important to achieve a 

successful plant phenotyping set up. 
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6.4 Further applications for grapevine breeding 

 

Another aim of this thesis was the interpretation and evaluation of such gained sensor 

data for grapevine breeding. The utilization of modern phenotyping methods has been 

shown to help evaluating the yield potential of seedling selections (Kicherer et al., 2015b) 

and the phenotyping pipeline can be used to assess a grapevine repository for the two 

important traits berry size and berry colour (Kicherer et. al., 2015a). Furthermore the 

information captured with CAT (Kicherer et al., 2015c) and BAT (Kicherer et al., 2013) 

can be used for QTL analysis. This section refers to the opportunity of further applications 

in grapevine breeding concerning additional sensors, different platforms and further traits. 

 

Sensors 

 

In addition to the extraction of the berry colour (Kicherer et al., 2015a) RGB images 

can be used to quantify the senescence, arising from nutrition deficiencies, toxicities or 

pathogen infection as shown in barley (Hordeum vulgare L.) (Schnurbusch et al., 2010). 

Although VIS offers no advantage in sensitivity over the detection of symptoms by eye, it 

provides an HT-technique to quantify areas of lesions or chlorotic areas of leaves. 

Compared to other sensors the physiological information is limited. In contrast the 

detection of fluorescence can provide more information on the photosystem II and 

photochemistry in vivo whereas fluorescence measurements on whole plants or shoot 

analyses can be complicated and pre acclimatization of plants is required. Whereas thermal 

and spectral imaging sensors passively acquire radiation and reflectance data, fluorescence 

is actively recorded at specific wavelength after induction by laser or light (Dhondt et al., 

2013). 

2D thermal-imaging enables a rapid measurement method to determine information on 

transpiration and heat dissipation but these measurements are influenced by numerous 

factors and sound physics based interpretation of results is needed. 
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A large amount of information is provided by generating spectral 2D information (NIR, 

multi- or hyperspectral). The sensors are capable of scanning wavebands of interest at a 

high resolution, in particular around the peak of green reflectance at 550 nm, water 

absorption bands in near-infrared and mid-infrared region (Ustin and Gamon, 2010), strong 

bands at 970 nm, 1,200 nm, 1,450 nm, 1,930 nm, and 2,500 nm (Knipling, 1970; Munns et 

al., 2010). Spectral information is often used to calculate vegetation indices reducing the 

multi-wave–band data at each image pixel to a single numerical value (index) to describe 

the vegetation vigour. The most commonly used index is the Normalized Difference 

Vegetation Index (NDVI) using the reflectance of the vegetation at red and near-infrared 

wavelengths. A disadvantage of this sensor is the extensive calibration needed, they are 

more expensive and they create a large set of image data, especially hyperspectral (more 

than 10 wavebands per pixel) data interpretation is very complex. 

Other recently applied sensors in modern plant phenotyping like X-ray, MRI, and PET 

(Fiorani and Schurr, 2013) facilitate root analyses and the dissection of macroscopic traits 

with the possibility to link them to microscopic ones. These methods are very expensive 

and can only be used in controlled environments so far. 

 

Sensor platforms for field applications 

 

In addition to the ground-based approaches, represented through the PHENObot 

(Kicherer et al., 2015a), remote satellite-based and aerial concepts are available. Remote 

sensing traditionally describes measuring features on the earth surface using satellite and 

aircraft–mounted sensors (Hall et al., 2002). The size of the sensor (number of image-

forming pixels) and the distance from the ground, respectively the object, contribute to 

determine the pixel size on the ground (object) and the overall displayed image section 

(Hall et al., 2002). For satellite-based platforms that means for example operating at a 

height of 705 km above the earth’s surface (American Landsat satellite), recording a 185 x 

185 km section with a 30 x 30 m pixel size. Compared to that the French SPOT satellite 

orbits at 832 km, generating full scenes of 60 x 60 km and a 20 m pixel or moreover high-

resolution satellites can provide a 4 m resolution (IKONOS) (Hall et al., 2002). However, 

the cost of such data in most cases remains a significant disadvantage to its widespread use 

(Lamb et al., 2001). 
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Sensors on manned airborne platforms are used 3 km above the ground can therefore 

deliver 1-2 m pixels and scenes of 100 ha (Lamb, 2000) which is closer to desired 

resolution of grapevine management but not grapevine breeding where sensor data needs to 

be broken down to a single vine level. When using remote satellite information it is also 

important to reconsider how often data acquisition needs to be done as the typical 

commercial satellites have a revisit interval of 15-25 days, respectively (Hall et al., 2002). 

Aircraft or ground-based platforms have the advantage on the other hand that they can 

theoretically be operated at any time and have the added advantage to not being influenced 

by a high cloud base. 

Remote sensing sensors placed on unmanned aerial vehicles (UAVs) could fill this gap, 

providing low-cost approaches with a greater flight control and autonomy (Araus and 

Cairns, 2014) and a better ground pixle size for grapevine breeding approaches of single 

vine monitoring. 

 

Traits 

 

One of the most important breeding goals in grapevine breeding is the resistance to 

different disease. Therefore, the screening for resistances is a main task within the breeding 

program. In a classical breeding approach (Figure 1) the resistance screening for 

Plasmopara viticola and Erysiphe necator are done in the greenhouses by inoculation and 

the following visual screening, besides MAS and MABC (marker assisted back crossing), 

for staging of resistance or defining crossing parents. At this stage of the breeding program 

it would be helpful to have a non-invasive and sensor-based method to quantify disease 

symptoms on the plants in the greenhouse. On the other hand, the evaluation of disease 

infection under field conditions would be interesting not only for breeding purposes but 

also for vineyard management decisions. Some efforts have been made to quantify 

Erysiphe necator and Plasmopara viticola infected leaves (Boso et al., 2004; Li et al., 

2012) and leaf discs (Peressotti et al., 2011) using image analysis. In addition, 

Meunkaewjinda et al. 2008 proposed an image processing approach to classify infected 

grapevine leaves into three classes. Moreover, chlorophyll fluorescence has been used to 

detect pre-symptomatic Plasmopara viticola infection on potted grapevines (Cséfalvay et 

al., 2009). The detection of disease in the field is difficult as the different diseases can 

show different signs and symptoms depending on the grape variety, the stage of grape 
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development, and the severity of the disease. Furthermore, multiple diseases might be 

present at once and other symptoms like sunburn, nutrition deficit or other abiotic stresses 

might be masking the disease symptoms. Remote sensing approaches using the NDVI to 

monitor canopy health and vigour showed a good correlation to identify rows with 

Plasmopara viticola infections (Mazzetto et al., 2010). Methods to identify diseases should 

be able to take more than two diseases into account and at its best being able to distinguish 

between different diseases. Multi- and hyperspectral approaches are most likely the 

promising methods in that case. 

Cluster architecture is another parameter not only influencing the yield but also responsible 

for the health status as Botrytis, grape bunch rot, is one of the biggest problems in 

viticulture linked to a especially high risk with compact cluster architecture. The 

evaluation of cluster architecture has only been done under controlled environments so far 

(Cubero et al., 2015; Kicherer et al., 2015c). With the utilization of CAT (Kicherer et al., 

2015c) the compactness of a clusters can be fast and easily detected and used for genetic 

studies. 

Quality assessment of grapevine is closely linked to yield parameters. Indicators of 

ripeness like the phenolics, flavonoids, sugars, acids and aroma compounds are important 

traits. By measuring chlorophyll fluorescence the amount of anthocyanins and therefore the 

different degrees of pigmentation in olives (Agati et al., 2005) and grapes (Agati et al., 

2013) has been detected during ripening. The chlorophyll index measured on grapes with 

the Multiplex was inversely correlated in a linear manner to the total soluble solids (°Brix), 

Agati et al. 2013 suggested that it could, therefore, be used as a new index of so-called 

technological maturity. 

Biomass, germination time, and growth rate depend on the seed mass (Fiorani and Schurr, 

2013). The germination rate of grapevine seeds is around 50%, therefore, using sensor 

assisted selection the quantitative detection of germination, respectively seed mass, could 

be an interesting trait for grapevine breeding. Knowing which seeds will germinate and 

which won’t can save time and costs. Moreover, quantitative analyses of this trait may 

reveal that small differences in seed mass can explain variation in relative growth rates that 

would normally be interoperated otherwise as shown in Arabidopsis (Tholen et al., 2004).  

The phenological stages of grapevines are influenced by several environmental factors and 

viticultural practice. Measuring the phenological stage of grapevines is important to 
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evaluate the effects of the local environment and climatic changes and subsequently wine 

quality. Identification of the developmental stage is basically done by visual estimation 

using the BBCH scale (Lorenz et al., 1995). Stages that would be interesting for breeding 

are the time of bud burst, flowering, veraison and ripening. Under controlled environments 

first steps have been made to determine ripening using fluorescence (Agati et al., 2013) 

and images of single berries (Rodríguez-Pulido et al., 2012). Kicherer et al. 2015a 

suggested that the BIVcolor could be used to detect the time of veraison in the field. A 

semi-automated approach to quantify bud burst in images acquired in the field was 

suggested by Herzog et al. 2015. In table grape production the variation of the time of 

ripening is important to staggering harvest along growing seasons, expanding production 

towards periods when fruits get higher value in the market. Furthermore, a variation in 

ripening can be used for a breeding adaption to climatic and geographical conditions. 

Identifying the genetic factors responsible for phenological and fertility variation may also 

help to improve the understanding of yield parameters. 

 

6.5 Conclusion and outlook 

 

In the context of high-throughput phenotyping, the present work implemented 

several valuable laboratory tools to break down yield parameters for genetic studies. 

Furthermore the first automated field phenotyping pipeline for grapevine breeding was 

developed. The pipeline consists of an automatic robotic platform to acquire geo-

referenced images under field conditions, an image database to handle the data 

management, and an image analysis framework for the fully automated extraction of 

phenotypic traits. In particular, the berry size and colour has been assessed in a grapevine 

repository to show the functionality of the automated, precise and non-invasive 

phenotyping method and pipeline as a possible tool of sensor assisted selection. 

In this particular setup the utilization of the PHENObot enables the assessment of 20 times 

more individuals compared to manual assessments of berry size. With this analysis proof 

of principle was demonstrated. The pilot pipeline provides the basis for further 

development of additional evaluation modules as well as the integration of additional 

sensors. The overall goal of effective data acquisition is to acquire several traits at once 

saving time. Therefore, the introduction of additional sensors to be able to detect different 
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traits within one run is a desirable goal. Through doubling the set of sensors to screen both 

wine rows at the same time, the efficiency of plant phenotyping in grapevine breeding 

could be improved even more. Field phenotyping of appropriated parameters starting at 

this point with using the tools introduced in this study should become an integral and key 

component in the grapevine breeding process to increase the efficiency of future breeding 

programs. 
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