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SUMMARY 

 

Drought stress as a trait with increasing importance in the background of climate change 

is an important factor limiting barley yield. Induced by drought, leaf senescence may 

occur prematurely, leading to a stop of photosynthesis and to an early translocation of 

stored assimilates into grains. For barley breeding, the identification of quantitative trait 

loci (QTL) involved in drought stress and leaf senescence may be an advantage as 

reliable phenotyping for drought stress is difficult to achieve. Therefore, the aim of the 

present thesis was to identify markers associated to drought stress response and 

drought stress induced leaf senescence in juvenile barley through genome wide 

association studies (GWAS), which will facilitate efficient marker based selection 

procedures. In a first step, a screening method was developed for analysing drought 

stress response and early leaf senescence in juvenile barley. Next, in semi controlled 

greenhouse pot experiments 156 winter barley genotypes were analysed in early 

developmental stages under control and drought stress treatment. Drought application 

started at the primary leaf stage and continued for a four weeks stress period. These 

experiments were used for phenotyping six physiological parameters (biomass yield, leaf 

colour, electron transport rate at photosystem II, osmolality, content of free proline and 

total content of soluble sugars), as well as for gene expression analysis of genes 

involved in drought stress and leaf senescence. Significant genotypic and treatment 

effects were detected for all phenotypic traits and gene expression data. Based on these 

data and on 3,212 SNP markers of the Illumina 9k iSelect Chip, GWAS were conducted 

to detect QTL and expression QTL (eQTL). In total, 47 significant QTL were identified for 

the traits analysed under drought stress conditions and 15 significant eQTL were found 

for the relative expression of the 14 genes involved in these traits. Under drought stress 

conditions, two major QTL regions overlapping for different traits such as biomass yield 

and leaf colour were detected on chromosome 2H at 50 cM and on chromosome 5H at 

45 cM. In these QTL, genes coding for proteins involved in drought stress or leaf 

senescence were identified. Four of these genes showed a differential expression and 

thus, eQTL were detected. One eQTL for TRIUR3 coincides with the phenotypic QTL on 

chromosome 5H. After validation respective markers BOPA1_9766-787 and 

SCRI_RS_102075 may be used in future barley breeding programmes for improving 

tolerance to drought stress and leaf senescence. 

Keywords: Barley, Drought stress, Leaf senescence, QTL, eQTL  
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ZUSAMMENFASSUNG 

 

Im Rahmen des Klimawandels kommt der Toleranz gegenüber Trockenstress eine 

steigende Bedeutung zu. Durch die durch Trockenstress ausgelöste frühzeitige 

Blattseneszenz kommt es zu einem Abbruch der Photosynthese und frühzeitig zu 

Umlagerungsprozessen von gespeicherten Assimilaten in das Korn. Da eine 

Phänotypisierung auf Trockenstress und Seneszenz in den Züchtungsprozess der 

Gerste nur schwer zu integrieren ist, sind markergestützte Selektionsverfahren von 

Vorteil. Ziel dieser Arbeit war es daher, mittels genomweiter Assoziationsstudien 

(GWAS) Marker zu identifizieren, die mit Trockenstress-, oder 

Blattseneszenzparametern in juveniler Gerste assoziiert sind. Für die Phänotypisierung 

hinsichtlich der Reaktion auf Trockenstress und dadurch induzierter Blattseneszenz, 

wurde ein Screening- Verfahren entwickelt, welches eine verlässliche Erfassung dieser 

Merkmale erlaubt. 156 Wintergerstengenotypen wurden in frühen Entwicklungsstadien 

im Gewächshaus unter Kontroll- und Stressbedingungen analysiert. Die 

Trockenstressapplikation erfolgte vom Primärblattstadium für 4 Wochen. In diesen 

Versuchen wurden sechs physiologische Merkmale erfasst (Biomasse, Blattfarbe, 

Elektronentransportrate am Photosystem II, Osmolalität, Gehalt an freien Prolin und der 

Gesamtgehalt an löslichen Zuckern), sowie Expressionsstudien für Gene welche in die 

Trockenstressreaktion bzw. die Seneszenz involviert sind, durchgeführt. Für diese 

Merkmale und die Expression der 14 ausgewählten Gene konnten signifikante Genotyp- 

und Behandlungseffekte nachgewiesen werden. Anhand dieser Daten und 3.212 SNP 

Markern des Illumina 9k iSelect Chips wurden GWAS durchgeführt, um Genomregionen 

(QTL und eQTL) zu lokalisieren. Insgesamt konnten für die physiologischen Merkmale 

47 QTL für die Reaktion auf Trockenstress, und weiterhin 15 eQTL identifiziert werden. 

Dabei wurden zwei Haupt- QTL-Regionen auf Chromosom 2H bei 50 cM und 5H bei 45 

cM lokalisiert, in denen einige QTL für unterschiedliche Parameter, wie Biomasse und 

Blattfarbe nachgewiesen wurden. In diesen QTL-Regionen wurden Proteine identifiziert, 

die im Zusammenhang mit Trockenstress und Blattseneszenz stehen. Vier der 

regulierenden Gene zeigten eine differentielle Expression und es wurden entsprechend 

eQTL identifiziert. Ein eQTL für TRIUR3 stimmte mit dem, mittels phänotypischer Daten 

identifizierten QTL auf Chromosom 5H überein. Die assoziierten Marker BOPA1_9766-

787 und SCRI_RS_102075 können nach Validierung geeignete Marker für eine 

Selektion auf Trockenstresstoleranz und Blattseneszenz in der Gerstenzüchtung 

darstellen.   Schlagwörter: Gerste, Trockenstress, Blattseneszenz, QTL, eQTL
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1 GENERAL INTRODUCTION 

 

The present thesis is concerned with the identification of quantitative trait loci and 

candidate genes involved in leaf senescence and drought stress tolerance in juvenile 

barley (Hordeum vulgare L.) through genome wide association studies (GWAS).  

 

1.1 BARLEY 

About 10,000 years ago, barley was domesticated and used as a crop plant. The origin 

of barley cultivation and domestication was evidenced by archaeological findings of 

barley seeds in the Fertile Crescent, which still is the centre of diversity (Harlan and 

Zohary 1966). It was proven that domesticated barley (Hordeum vulgare ssp. vulgare L.) 

traces back to Hordeum vulgare ssp. spontaneum C. Koch. In comparison to wild barley, 

cultivated barley has larger seeds, a non-brittle rachis, plants are shorter with larger flag 

leaves and ear width, endosperm grooves are less pronounced and in contrast to H. 

spontaneum, six rowed ears are known in cultivated barley, which arose independently 

by a loss of function mutations of Vrs1 (Badr et al. 2000; Salamini et al. 2002; Sang 

2009). Furthermore, barley genotypes with naked kernels are especially suited for 

human consumption caused by a mutation in the gene Nud (Taketa et al. 2008). A non-

brittle rachis is inherited from the dominant, complementary genes Btr1 and Btr2 

(Pourkheirandish et al. 2015; Senthil and Komatsuda 2005). However, studies on barley 

domestication are still ongoing. Recently, it was reported that plants with a non-brittle 

rachis were selected twice, spatially and temporally independent from each other 

(Pourkheirandish et al. 2015). 

The genus Hordeum of the tribe Triticeae consists of about 30 species, which can be 

crossed to cultivated barley with a different success rate and are grouped in three gene 

pools based on crossability (von Bothmer et al. 2003). The primary gene pool consists of 

cultivated barley (H. vulgare ssp. vulgare) and its wild progenitor (H. vulgare ssp. 

spontaneum). Crosses within the primary gene pool can be conducted easily and 

unrestricted gene transfer is possible. The secondary gene pool of cultivated barley is 

exclusively represented by H. bulbosum. Crosses with H. vulgare are possible with 

difficulties only and often result in haploid plants. Therefore, H. bulbosum has been used 

to produce doubled haploids in barley for a long time (Devaux et al. 1993). All other 
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species of the genus Hordeum are included in the tertiary gene pool, in which crosses 

and gene transfer of valuable alleles to H. vulgare are almost impossible. For breeding 

the diversity present in H. vulgare ssp. spontaneum and H. bulbosum are a valuable 

source to improve resistance against pathogens or tolerance against abiotic stress 

(Forster et al. 2000). As an example, resistance genes Rrs16
Hb

 (scald i.e. 

Rhynchopsorium secalis) and Rym16
Hb

 (soil-borne viruses e.g. BaYMV and BaMMV) 

were transferred from H. bulbosum to H. vulgare (Pickering et al. 2006; Ruge-Wehling et 

al. 2006).  

H. vulgare L. is a self fertilising species with an annual life cycle and a diploid genome 

(2n = 2x = 14) with seven chromosomes (1H – 7H). For barley, winter and spring types 

are known, differing in their vernalisation requirements (Roberts et al. 1988). Winter 

barley is mainly used for animal feed, whereas spring barley is applied for malting. To a 

small extent, barley is also used for direct human nutrition. Nevertheless, new barley 

cultivars were developed containing an increased β-glucan content and a desirable 

starch composition, which makes barley interesting as an alternative to wheat based 

foods (Ames and Rhymer 2008). Moreover, health claims were defined as β-glucan 

soluble fibre of barley reduces the plasma cholesterol level and thereby causes a risk of 

heart disease (Behall et al. 2004; Rowlands and Hoadley 2006). Because of this wide 

range of usage and its wide adaptation to diverse growing conditions, barley is the fourth 

most important cereal crop in the world next to wheat, maize and rice. In 2013, barley 

was grown on about 50 million hectare with a production of 143.9 million tonnes 

worldwide. Thereof, Europe produces 60% and Germany is the second largest producer 

in the world next to the Russian Federation, with a harvest amount of 10.3 million tonnes 

(FAOSTAT 2014).  

Besides being a major crop plant, barley is to some extent a model species for monocots 

in genome research, due to its genome size of 5.1 Gbp, which is smaller than that of 

wheat (17 Gbp) and rye (8 Gbp). The first genetic map based on molecular markers was 

constructed applying restriction fragment length polymorphism (RFLP) markers (Graner 

et al. 1991). Based on polymerase chain reaction (PCR) marker technologies, which 

were developed in the 1990s, this reliable but expensive and time consuming marker 

development was replaced by amplified fragment length polymorphism (AFLP) and 

random amplified polymorphic DNA (RAPD) marker techniques (Qi et al. 1998; Russell 

et al. 1997; Waugh et al. 1997). Regarding the dominant nature of AFLP markers, simple 

sequence repeat (SSR) markers were established, which are codominant (Ramsay et al. 

2000; Thiel et al. 2003; Varshney et al. 2007). Further on, diversity array technology 
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(DArT) markers (Wenzl et al. 2004) and single nucleotide polymorphism (SNP) markers 

(Comadran et al. 2012; Silvar et al. 2011b) were developed, which have a higher 

throughput. Based on these maps, a consensus map involving more than 6000 markers 

has been developed (Silvar et al. 2015). Often, a combination of different markers was 

used for the construction of barley genetic maps (Hearnden et al. 2007; Wenzl et al. 

2006). Genomic data of barley is stored in open source databases such as the 

Barleymap tool (Cantalapiedra et al. 2015) including the barley POPSEQ map (Mascher 

et al. 2013a) and the barley physical map covering 4.98 Gbp of the genome. This first 

draft sequence of the barley genome, the barley gene space, was published by the 

international barley sequencing consortium (IBSC) in 2012 (Mayer et al. 2012). Besides 

this, genomic information known from other monocot species can be easily used in 

barley via the genome zipper (Mayer et al. 2011). These genomic resources provide a 

good basis for further basic and applied research on barley, e.g. by novel techniques 

such as exome capture (Mascher et al. 2013b). 

 

1.2 DROUGHT STRESS 

Global agriculture is and will have to deal with a growing world population and a 

simultaneous increase of drought periods (Tester and Langridge 2010). Drought, defined 

as limited and insufficient water availability, is the most important abiotic stress factor in 

crop production worldwide and will become even more important due to climate change 

(Coumou and Robinson 2013; El Hafid et al. 1998). Up to now, a lot of climate models 

were published on the impact of climate change on crop yield and agricultural production 

(White et al. 2011). Climate models were simulated for amounts of global warming 

ranging from <2°C, 2- 3°C, or >3°C (Pachauri and Meyer 2014; Scholze et al. 2006). 

Impacts of national ecosystems and risks associated with global warming depend on the 

amount of temperature increase (Adger et al. 2003). Despite losses of yield up to 8.1% 

caused by heat and 5.2% by drought worldwide (Lesk et al. 2016), cereal grain yields 

have to increase at least by 70% till 2050 to feed the earth´s growing population 

(Tweeten and Thompson 2009). Therefore, an important aim in recent breeding is to 

develop drought tolerant cultivars using most recent breeding techniques (Tuberosa and 

Salvi 2006). Especially barley is highly suitable for breeding for drought tolerance 

because of the large genetic diversity, which makes it widely adapted to different 

environmental conditions, e.g. abiotic stresses like drought (Amri et al. 2005; Dawson et 
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al. 2015; Nevo et al. 2012). This is further an advantage, as drought often occurs along 

with other abiotic stresses such as heat (Cattivelli et al. 2011).  

In contrast to non crop plants, for crop plants it is most important to not only withstand 

drought periods but also to maintain high yields production (Araus et al. 2002; Richards 

1996; Sinclair 2011). Generally, plants respond differentially to drought stress on the 

physiological, biochemical and molecular level (Reddy et al. 2004). They have developed 

strategies for adjustment comprising drought escape, avoidance and tolerance (Turner 

1986; Verslues and Juenger 2011), which vary between species, cultivars (Rampino et 

al. 2006) and developmental stages (Szira et al. 2008). Over many generations, plants 

became adapted to drought by escape, i.e. fulfilling their life cycle before drought occurs. 

This is achieved through faster growth and maturity, as well as through early flowering 

(Franks et al. 2007) or a short grain filling period (Yang and Zhang 2006). In avoidance 

of drought stress, plants compensate water deficits for example through early vigour, as 

well as low biomass production (Blum 1996; Jamieson et al. 1995). Furthermore, 

acquisition of water is optimised by a large and deep root system and by early closure of 

stomata (González et al. 1999; Pace et al. 1999). Moreover, osmoprotectants are 

accumulated in the cells and transported in the vacuoles to maintain turgor and to 

increase osmotic potential for continuous water uptake (Blum 1989; Fricke et al. 1994; 

González et al. 2008). Osmotic adjustment is achieved, e.g. by the accumulation of 

amino acids such as proline or soluble sugars in the cells, as well as by inorganic ions 

like Ca
2+ 

in vacuoles (Bajji et al. 2001; Sperdouli and Moustakas 2012). The content of 

osmoprotectants increases under drought stress conditions, e.g. in leaves (Sayed et al. 

2012; Teulat et al. 2001). Drought tolerance or desiccation tolerance enables plants to 

survive drought periods by protecting cells against dehydration through reduced cell 

expansion and elasticity of the cells (Martínez et al. 2007). Also, maintenance of 

photosynthesis during drought periods is important to withstand dehydration (Chaves et 

al. 2009) and to minimise yield losses. Through a delay of chlorophyll degradation under 

drought, plants are photosythetically active for a longer time and can produce higher 

yields. A clearly positive correlation between chlorophyll content and chlorophyll 

fluorescence determined by non-invasive measurements (Mamnouie et al. 2010; Silva et 

al. 2007) and yield was observed (Kassahun et al. 2009; Verma et al. 2004; Zivcak et al. 

2008). For the evaluation of the complex drought stress response, the analysis of a 

range of physiological parameters, also in combination, is useful. Therefore, high 

throughput phenotyping facilities, e.g. of LemnaTec were developed in the last years (de 

Souza 2010). Actually, a combination of spectral reflectance, fluorescence and thermal 
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imaging are applied (Munns et al. 2010). New phenotyping methods like remote sensing 

and robotic assisted imaging platforms will be included in high throughput systems in the 

future (Fahlgren et al. 2015).  

Abscisic acid (ABA) is of prime importance in the response of plants to drought stress. 

This phytohormone stands at the beginning of the regulation of a lot of drought stress 

response mechanisms (Bray 1997). It initiates root growth, inhibits tillering and promotes 

stomatal closure. Furthermore, it transfers the drought stress signal from stress 

perception to gene expression (Zhang et al. 2006). Besides gene expression, 

transcription factors are regulated by ABA like bZIP, MYB and zinc finger genes, too 

(Bhargava and Sawant 2013). Moreover, ABA regulates aquaporins, which are tunnel 

proteins influencing water balance in the cell. They are important for the trans membrane 

water potential gradient (Morillon and Chrispeels 2001). Another protein family are the 

late embryogenesis abundant (LEA) proteins, which are accumulated in response to 

dehydration or ABA treatment, including for example heat shock proteins or proteins 

encoded by the HvA1 gene (Xu et al. 1996). Dehydrines (Dhn) are LEA proteins, too. 

They protect other proteins and membranes against dehydration triggered changes in 

structure (Borovskii et al. 2002; Campbell and Close 1997). Moreover, protein 

modifications are discussed as drought tolerance mechanisms and this was recently 

verified by N-terminal acetylation induced by ABA in Arabidopsis thaliana (Linster et al. 

2015). Molecular responses to drought can be regulated also independently of ABA, for 

example by WRKY transcription factors such as WRKY38 in barley (Marè et al. 2004).  

In order to analyse drought stress response at the molecular level genes coding for 

proteins involved in drought stress response can be identified for example by gene 

expression analysis and tested for functional analysis in transgenic plants (Babu et al. 

2004; Sivamani et al. 2000). In barley, a lot of expression profiles for the response to 

drought have been published (Guo et al. 2009; Hazen et al. 2003). Some were based on 

high throughput microarrays (Korenková et al. 2015; Talamè et al. 2007). Besides this, 

RNASeq, which is a cDNA sequencing technology is an efficient tool for expression 

profiling (Deyholos 2010; Wang et al. 2009). Most of the genes identified to be involved 

in drought stress are summarised in the database DroughtDB (Alter et al. 2015). In 

addition to gene identification of the DNA and cDNA level, proteins involved in drought 

stress can be identified by 2D PAGE gel electrophoresis (Ashoub et al. 2013; 

Wendelboe‐Nelson and Morris 2012), followed by mass spectrometry (Østergaard et al. 

2002). Drought related proteins are collected in databases, too, such as the plant stress 
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protein database (PSPDB) linked to the UniProt information platform (Kumar et al. 2014; 

UniProt 2008). 

Due to the complex response of plants to drought stress, tolerance to drought stress 

follows a quantitative mode of inheritance and is therefore difficult to select for in plant 

breeding (Araus et al. 2002). With open source knowledge and high throughput 

techniques, information on drought stress mechanisms can be gained more rapidly in the 

future and the above mentioned techniques allow for the rapid development of molecular 

markers facilitating an efficient marker based selection procedure for drought stress 

tolerance (Forster et al. 2000; Nevo and Chen 2010). 

 

1.3 LEAF SENESCENCE 

Another quantitative trait important for development and reproduction of plants is 

senescence. As plants are sessile organisms, they developed mechanisms for 

adaptation to unfavourable environmental conditions, which affect the timing of 

senescence. In final stages of plant development, senescence processes occur as a kind 

of programmed cell death (PCD) (Lim et al. 2007; Thomas 2013). In contrast to PCD, 

senescence proceeds over a much longer time period and till the “point of no return” leaf 

senescence is completely reversible (Thomas et al. 2003). Senescence includes 

organised, genetically regulated degradation processes. These lead to a repression of 

photosynthetically functional gene products and therewith to a destruction of chlorophyll 

(Hörtensteiner 2006; Miersch et al. 2000), as well as a degradation of proteins, 

carbohydrates, lipids, ribonucleic acids (RNA) and cell membranes (Buchanan-Wollaston 

1997). Redundant nitrogen is saved for recycling. A lot of the underlying molecular 

mechanisms for recycling and regulation are still unknown (Buchanan-Wollaston et al. 

2003; Fischer 2012). 

Senescence can be subdivided into whole plant and organ senescence (Leopold 1961). 

In perennial plants like trees senescence concerns only single organs such as the 

flowers, fruits or leaves and the whole plant survives (organ senescence). Annual and 

biannual plants like Arabidopsis thaliana or Hordeum vulgare display senescence on the 

whole plant, resulting in the dieback of the whole plant (whole plant senescence). All 

resources are translocated to the seeds for reproduction. Whole plant senescence 

occurs at the leaves firstly and is subclassified into three steps (Munne-Bosch and 

Alegre 2004; Yoshida 2003). The first phase is the initiation phase, in which 
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developmental processes are stopped or delayed and a shift in gene expression begins. 

In the second reorganisation phase degradation processes are induced, e.g. through the 

reduction of photosynthesis. Nutrients and metabolites are translocated to “sink” organs 

and a lot of senescence associated genes are expressed. In the last terminal phase, a 

disruption of organelles as well as cell death, similar to apoptosis, occurs. For crop plants 

like barley, the second phase is the most important step determining the quality and 

quantity of yield (Gregersen et al. 2013). Only through a regulated rearrangement of 

nutrients and metabolites at a defined developmental stage, yield development can 

proceed correctly (Munne-Bosch and Alegre 2004). Hence, leaf senescence is an 

important trait for crop improvement (Gan 2014). 

During the whole complex process of leaf senescence a lot of regulatory mechanisms 

occur at the molecular level (Buchanan-Wollaston 1997; Yoshida 2003). Up to 6,000 

genes are differentially expressed under leaf senescence (Breeze et al. 2011). These 

senescence associated genes (SAG) are regulated spatially and temporally, mostly by 

transcription factors. A lot of transcription factors are activated through a specific binding 

at cis DNA elements of the promoter of target genes, or through the remodelling of 

chromatin structures (Humbeck 2013). Transcription factors are subclassified into up to 

20 families, such as WRKY, NAC, zinc finger, MYB and AP2-EREBP (Balazadeh et al. 

2008; Buchanan-Wollaston et al. 2005). Thereof, until now only a few of these functions 

are known, whereas WRKY transcription factors are well studied (Rushton et al. 2010; 

Ülker and Somssich 2004). Moreover, phytohormones like ABA, cytokinins, or salicylic 

acid are active in early senescence and interact together in networks (Gepstein and Glick 

2013; Jibran et al. 2013). Also, micro RNAs can influence and regulate leaf senescence 

by cleavage or translation suppression (Naqvi et al. 2011; Sarwat et al. 2013). 

Senescence processes are initiated by different developmental factors, such as 

reproductive stage and age. Furthermore, environmental factors such as pathogens, or 

abiotic factors like drought, light and nutrient deficiency can influence senescence 

(Buchanan-Wollaston et al. 2005; Lim et al. 2007). Leaf senescence often occurs as a 

consequence of drought stress (Munne-Bosch and Alegre 2004; Rivero et al. 2007). 

Furthermore, leaf senescence is mediated by endogenous factors like phytohormones or 

reactive oxygen species (ROS). Often, senescence is accelerated and prematurely 

introduced in response to abiotic stresses (Gepstein and Glick 2013). In this context, 

delayed senescence can be beneficial under abiotic stress conditions (Borrell et al. 

2000). Though persistent photosynthetic activity, more time is available for carbohydrate 

gain and translocation processes, whereby plants can generate a higher yield. 
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Regulatory mechanisms for drought stress response and leaf senescence are 

overlapping or reacting in the same way. Transcription factors are described to be mostly 

similar for drought stress and leaf senescence genes (Nakashima et al. 2012; Simpson 

et al. 2003). Consequently, a few physiological traits are applied not only to determine 

drought stress tolerance, but also leaf senescence. These include stay green parameters 

such as leaf colour or chlorophyll fluorescence (Li et al. 2006; Netto et al. 2005; Thomas 

and Howarth 2000), as well as the total content of soluble sugars (Rosa et al. 2009; 

Wingler et al. 2006). 

 

1.4 GENOME WIDE ASSOCIATION STUDIES (GWAS) 

Conventional breeding by crossing of cultivars with desirable traits followed by long 

lasting selection processes for traits of interests is time consuming, in inbreeding species 

like barley. Today, this process can be abridged by using doubled haploid (DH) lines 

(Kuhlmann and Foroughi-Wehr 1989) and marker assisted selection (MAS) (Collard et al. 

2005; Friedt et al. 2012). In MAS, molecular markers linked to traits of interest are used 

instead of phenotypic evaluation in the field. The advantage of this technique is that 

breeders can directly select genotypes which have the favourable alleles in early 

developmental stages, e.g. for resistances, independently from the occurrence of 

respective pathogens in the field. 

Since the 1990s, markers have been developed and used for genotyping of barley lines 

and for construction of genetic maps (Agarwal et al. 2008). Today, SNP assays are 

commonly used in barley research enabling comparison of the results of different 

studies. SNP can be identified in high throughput array technologies like the Infinium 

iSelect SNP assay by Illumina (Comadran et al. 2012), the Axiom technology by 

Affymetrix (Thomson 2014) or genotyping by sequencing (GBS) (Elshire et al. 2011; 

Poland et al. 2012). For generating these chips, sequence information is required which 

can be easily generated today through next generation sequencing (NGS) (Ganal et al. 

2012; Varshney et al. 2009). Through SNP markers, several genetic maps were 

constructed, e.g. by Comadran et al. (2012) or Muñoz-Amatriaín et al. (2014) and 

recently a consensus map was published (Silvar et al. 2015). 

To connect markers with phenotypic information, segregation analyses or recent genome 

wide association studies (GWAS) are utilised. In both approaches, loci influencing the 

trait of interest are identified in the genome. Whereas the identification of quantitative 
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trait loci (QTL) was limited in former times to segregating bi-parental populations such as 

doubled haploid (DH) populations, recombinant inbreed lines (RILs), backcrossing 

populations, or F2-populations (Collard et al. 2005), GWAS originally derived from human 

genetics and based on non related genotypes has been introduced into plant science. 

Advantages of GWAS in comparison to QTL analysis in bi-parental populations are a 

saving of time, as no segregating populations are required, and a more representative 

genetic background of a large set of diverse genotypes (Korte and Farlow 2013). For 

both approaches, studies were conducted in barley. On the one hand, genomic regions 

were identified by QTL analysis (Galal et al. 2014; Pillen et al. 2003; Saal et al. 2011; 

Sayed et al. 2012; von Korff et al. 2005; Yin et al. 2005) and on the other hand by 

GWAS, for example for agronomic traits (Kraakman et al. 2004; Lex et al. 2014; Pasam 

et al. 2012; Rode et al. 2012), abiotic stress tolerance (Ingvordsen et al. 2015; Long et al. 

2013; Rostoks et al. 2005) and resistance to biotic stress (Massman et al. 2011; Roy et 

al. 2010). Recently, combined approaches were developed: firstly, the nested 

association mapping (NAM), which analyses associations for multiple families, mostly 

consisting of RILs (Yu et al. 2008) and secondly, the multi parent advanced generation 

inter cross (MAGIC) method, in which a population consisting of multiple crossings of 

diverse parents is utilised (Cavanagh et al. 2008). These approaches are applied de 

novo in barley, too (Maurer et al. 2015; Maurer et al. 2016; Sannemann et al. 2015). 

Nowadays, genome wide association studies are commonly applied in genomics to 

detect and localise QTL. With this approach, multiple quantitative traits can be analysed 

in huge sets of diverse and non-related genotypes. Among others, yield, nutrient use 

efficiency and drought stress tolerance are quantitative traits. Favourable alleles and 

their impact can be quantified with GWAS, combining phenotypic data in form of variation 

between genotypes (phenotype) and marker based genetic maps based on sequence 

polymorphisms (genotype). Statistical methods such as general linear models (GLM) or 

mixed linear models (MLM) are applied to detect associations between a phenotype and 

a genotype, as well as QTL effects. In addition to the genetic map, genotypic and 

phenotypic data, the population structure and kinship are included as cofactors (Zhu et 

al. 2008) in order to avoid the detection of false positive associations. The population 

structure can be analysed by genomic control (GC) with markers independent of the trait 

of interest (Devlin et al. 2001), by structure association (SA) subdividing genotypes into 

subpopulations with a defined probability for each genotype (q matrix) (Pritchard et al. 

2000) and by principal component analysis (PCA), in which genotypes are clustered 

statistically along principal components (Price et al. 2006). In dependence on population 
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structure, a further characterisation of the association panel should be conducted by an 

analysis of the degree of linkage disequilibrium (LD) (Breseghello and Sorrells 2006; 

Mackay and Powell 2007). LD provides a value for non-random associations of alleles at 

different loci and the level of LD e.g. depends on the species, allele frequency and the 

loci investigated (Slatkin 2008). 

GWAS can be conducted not only with phenotypic data, also QTL associated to gene 

expression (eQTL), proteins (pQTL), or metabolites (mQTL) can be identified by 

genetical genomics approaches using current high throughput molecular profiling 

technologies (Jansen et al. 2009; Langridge and Fleury 2011). This implies a lot of 

advantages and profits for gene network analysis and for the identification and validation 

of candidate genes (Wayne and McIntyre 2002; Westra and Franke 2014). An analysis to 

identify QTL for phenotypic traits may be conducted firstly, followed by a more detailed 

investigation of regulatory mechanisms through eQTL, pQTL or mQTL (Chitwood and 

Sinha 2013). An advantage of organisms with open source genomic information such as 

barley is the comparability with reference genomes, gene ontology, or protein networks. 

This way, e.g. eQTL can be subdivided into cis and trans regulated eQTL (Druka et al. 

2010; Li et al. 2010; Michaelson et al. 2009). In barley, several eQTL (Chen et al. 2010; 

Jia et al. 2011; Wise et al. 2014) and pQTL (Iimure et al. 2015; Witzel et al. 2011) studies 

were conducted, whereas no mQTL were published so far. 

It has been demonstrated that GWAS is particularly suitable for complex quantitative 

traits like drought stress tolerance. Many QTL based on physiological data (Fan et al. 

2015; Forster et al. 2004; Honsdorf et al. 2014; Varshney et al. 2012) and on gene 

expression data (Hübner et al. 2015; Potokina et al. 2006) were identified in barley. As 

senescence is a quantitative trait, too, few QTL were published also on leaf senescence 

in barley (Emebiri 2013; Guo et al. 2008; Mickelson et al. 2003). 
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1.5 HYPOTHESIS AND OBJECTIVES 

In order to cope with drought periods expected to increase in number, intensity and 

duration due to climate change, the aim of this thesis was to get a better understanding 

of drought tolerance and senescence mechanisms in juvenile barley and to identify 

markers suited to be used in marker based selection procedures.  

The thesis was built on the hypotheses that (i) genetic variation with respect to drought 

stress tolerance and leaf senescence in juvenile stages is present in winter barley, that 

(ii) QTL and candidate genes involved in these traits can be identified by genome wide 

association studies (GWAS), and (iii) that genes involved are differentially expressed 

between drought stress and well-watered treatment as well as between tolerant and non-

tolerant genotypes.  

In order to get detailed information thereon, (i) a reliable method to screen for differences 

in drought stress and leaf senescence was developed, (ii) genome wide association 

studies (GWAS) based on these data and genotypic data derived from the 9k iSelect 

Chip were conducted and (iii) expression analysis and eQTL analyses were performed.   



Original papers 

 

 

14 

2 ORIGINAL PAPERS 

 

This thesis includes three publications concerning the identification of QTL and candidate 

genes involved in drought stress tolerance and leaf senescence in juvenile barley 

through genome wide association studies. The first one introduces the methods of 

phenotyping while the other two papers deal with QTL and eQTL detection. 

 

2.1 EXPERIMENTAL DESIGN TO DETERMINE DROUGHT STRESS RESPONSE 

AND EARLY LEAF SENESCENCE IN BARLEY (HORDEUM VULGARE L.) 

This publication presents the methodical approach to receive reliable phenotypic data on 

drought stress response and leaf senescence in juvenile barley, which is a prerequisite 

to identify QTL and candidate genes involved in these traits.   S. 15 ff. 

 

2.2 IDENTIFICATION OF GENOMIC REGIONS INVOLVED IN TOLERANCE TO 

DROUGHT STRESS AND DROUGHT STRESS INDUCED LEAF SENESCENCE 

IN JUVENILE BARLEY 

This is one of only a few papers published on drought stress in early developmental 

stages of barley. By analysing six traits for drought stress and leaf senescence as 

described in Chapter 2.1, marker trait associations were detected and QTL as well as 

proteins involved were identified.       S. 31 ff. 

 

2.3 EXPRESSION PROFILING OF GENES INVOLVED IN DROUGHT STRESS AND 

LEAF SENESCENCE IN JUVENILE BARLEY 

The third publication is a genetical genomics approach based on the same association 

panel described in Chapter 2.2. Through gene expression analyses, cis and trans eQTL 

involved in drought stress response and early leaf senescence were detected. 

           S. 46 ff. 
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3 GENERAL DISCUSSION 

 

The determined physiological traits turned out to be suitable to assess drought stress 

response and early leaf senescence in the experimental design described. Based on 

these, 47 QTL involved in drought stress response and 15 eQTL were identified by 

GWAS. Thereof, two interesting SNP markers, i.e. BOPA1_9766-787 and 

SCRI_RS_102075 were detected on the barley chromosome 5H at 45 cM, which may be 

used in barley breeding for marker based selection concerning drought stress.  

The following chapter aims at discussing aspects of experiments which are not covered 

in detail in the published papers.  

 

3.1 DROUGHT STRESS EXPERIMENTS 

Depending on the research aim, different systems can be used for drought stress 

application, all differing in their possibilities to control the environment (Poorter et al. 

2012). Growth chamber experiments allow for the replication of experiments independent 

of environmental conditions multiple times per year. The environment can be optimised 

and controlled, resulting in a high reproducibility of experiments (Poorter et al. 2012). In 

greenhouse facilities, conditions are only partially controlled and thus, they depend to 

some extent on environmental conditions. Whereas temperature and lighting can be 

regulated, day length and light intensity are factors depending on outside conditions and 

are influencing plant performance. Within both facilities, drought stress can be applied 

through a stop of watering in pot experiments or through the use of stress inducing 

solutions, e.g. polyethylene glycol (PEG) in hydro cultures (Blum 1989) or even in in vitro 

cultures. With both methods, a defined stress level can be achieved. However, it is 

easier to preserve a continuous stress level with hydroponics. While in a hydroponic 

system, it is easy to analyse roots, the disadvantage of this system is a lack of oxygen 

availability for roots even with ventilation (Mexal et al. 1975; Munns et al. 2010), which 

makes conditions incommensurable to the field. To fast phenotype for drought stress, 

single leaves or leaf pieces can be stressed as well, e.g. with PEG (Ibarra-Caballero et 

al. 1988; Trotel et al. 1996). Unfortunately, results of these analyses are often not 

comparable to the whole plant response (Anyia et al. 2007; Balvanera et al. 2006). 
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In general, watering is conducted manually in these experiments, whereas newly 

developed systems, e.g. Lemna tec allow to regulate watering automatically (Eberius and 

Lima-Guerra 2009) and plants are moving through the greenhouse on conveyor belts 

which optimises lighting. Another advantage of this system is the measurement of 

parameters during rotation in the greenhouse. For example, the whole plant leaf area as 

well as leaf colour and chlorophyll fluorescence can be measured automatically with 

camera systems over the course of time (Chen et al. 2014; Honsdorf et al. 2014; 

Neumann et al. 2015).  

In the field, drought can be initiated under natural conditions in locations with low rainfall 

or by withholding water through rainout shelters (Yahdjian and Sala 2002). These are foil 

tunnels or roofs which protect field trails against precipitation. On the one hand, plants 

grow under nearly natural conditions with all abiotic and biotic factors except rainfall, but 

on the other hand, under stationary rainout shelters effects such as higher temperatures 

and lower radiation occur (Fay et al. 2000; Poorter et al. 2012; Yahdjian and Sala 2002), 

which influence plant development and yield. Therefore, movable shelters have been 

developed to minimise environmental effects (Chauhan et al. 1997; Dugas and Upchurch 

1984).  

For the present studies on barley, greenhouse experiments were chosen as a 

compromise between climate chambers and field. Thus, all experiments conducted for 

this thesis were accomplished in semi controlled greenhouse facilities. In contrast to field 

experiments, temperature, as well as lighting, can be controlled under these conditions to 

a limited extent. Nevertheless, annual and seasonal variation had an influence on the 

experiments and the growth of plants. To account for annual effects, experiments were 

replicated in several years. Seasonal variations were partially excluded by conducting 

the three years pot trails once a year under comparable conditions regarding day length. 

Pot experiments were replicated in three (autumn), or two years (spring) respectively, 

therefore. Autumn pot experiments (experimental design A) were conducted for the 

drought stress parameters biomass yield (BY), osmolality (OA), content of free proline 

(CFP) and total content of soluble sugars (CSS), whereas spring pot experiments 

(experimental design B) were adapted to determine the leaf senescence parameters leaf 

colour (SPAD), electron transport rate at PSII (ETR) (Chapter 2.1 and 2.2) and BY for 

comparison (Table 1). Whereas temperature was balanced relatively well between the 

experiments, differences in light intensity were higher especially in experiments 

conducted in spring (Table 1). For example, the spring pot experiment in 2013 showed 

high light intensity and consequently biomass production was higher in this experiment 
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compared to the other experiments (Table 1). Due to the fact that measurements and 

analyses of physiological parameters were done on primary leaves, lighting conditions 

within the plant stand is an important factor. Within greenhouse trials, guaranteeing equal 

light perception at the primary leaves is difficult, as plants on greenhouse benches are 

shading each other and the position of the plants on the benches have a large influence 

on continuous lighting. Moving around the benches, this effect was minimised in our 

experiments. However, differences in growth between well-watered and drought stressed 

plants strongly influenced lighting on the primary leaves. Thus, light deficiency induced 

leaf senescence in the control variant overlapped with drought stress induced leaf 

senescence on the primary leaf. Therefore, all leaves except the primary leaf per plant 

were tied up to reduce shading on the primary leaf at which the measurement of leaf 

senescence parameters in spring pot experiments was conducted (Chapter 2.1). 

 

TABLE 1: Temperature and light intensity of the greenhouse trials and biomass yield in the 

control treatment. 

Parameters   2011 2012 2013 2013 2014 

 
  Autumn Autumn Autumn Spring Spring 

Outside temperature in °C Mean 11.4 10.5 10 -0.6 7 

  Min -0.5 1.7 -1.2 -14.6 -3.4 

  Max 22.4 20.9 18 9.4 18.5 

Inside temperature in °C Mean 21.7 21.2 21.3 20.5 21 

  Min 17.6 17.8 17.9 17.6 18 

  Max 31.1 27.8 30.7 26.7 26.1 

Outside light intensity in klx Mean 6.2 5.1 4.5 8.3 6.6 

  Min 0 0 0 0 0 

  Max 46.3 46.1 46.1 54.6 46.5 

Biomass yield (dry weight) in g Mean 13.6 9.2 9.3 21.4 10.7 

 
Min 9.5 4.9 4.5 19.0 7.3 

 
Max 18.2 12.6 13.6 25.8 13.7 

 

For the drought application, watering was stopped until a defined stress level for the 

detection of drought stress response and drought stress induced leaf senescence was 

reached. Stress intensity was set to 20% of the maximum water capacity of the soil 

according to primary experiments and literature on severe drought conditions for barley 

(Guo et al. 2009; Ivandic et al. 2000; Samarah 2005). For a four weeks stress phase, the 

stress level was maintained through manual watering. 
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Results of this thesis concerning phenotyping and QTL detection are based on the 

experimental design in the greenhouse. Between different systems, such as field trails or 

climate chamber experiments results and especially QTL regions can differ strongly. 

Therefore, in order to get information on the transferability of these results a subset of 

the most tolerant and non-tolerant genotypes may be analysed in field trials in rainout 

shelters. 

Additionally, different developmental stages can be analysed in each of the systems 

described above. Most of the barley yield is defined by the conditions during the 

generative stages and thus, many studies on drought stress are focused on stress during 

flowering and grain filling (Blum 2005; Guo et al. 2008; Samarah 2005; Varshney et al. 

2012). However, drought periods can also occur in autumn and early spring during the 

juvenile stage and can lead to yield losses (El Hafid et al. 1998; Rosenzweig et al. 2001). 

Moreover, detection of molecular markers for drought stress response and stay green 

traits in early developmental stages is an advantage in the time consuming breeding 

procedures (Korzun 2002; Richards 1996). Therefore, early developmental stages were 

analysed in this study. Here, differences between drought stress reactions of different 

genotypes and different traits can be identified as the basis of the development of 

molecular markers (Table 1 and Table 2, Chapter 2.2). For comparison to other 

developmental stages, further experiments should be conducted till the generative stage. 

 

3.2 PHYSIOLOGICAL PARAMETERS 

Already in early developmental stages of barley, physiological parameters indicated a 

differential drought stress response for the set of genotypes analysed (Table 1 and Table 

2, Chapter 2.2). Therefore, these parameters are suitable for phenotyping drought 

tolerance and early leaf senescence. By analysing osmo-protectants, i.e. soluble sugars 

(CSS) and free proline (CFP), as well as the overall osmolality (OA), the plant response 

was documented regarding cell metabolism and turgor maintenance under drought 

(Blum 1989; Delauney and Verma 1993; Teulat et al. 2001). Furthermore, limited growth 

under drought was determined by investigating the aboveground biomass yield (BY). In 

addition, a decrease in chlorophyll and photosynthesis activity under drought stress 

induced leaf senescence was observed through the measurement of leaf colour (SPAD) 

and the electron transport rate at PSII (ETR) (Table 1, Chapter 2.2). In this respect, the 

above ground biomass and the leaf colour turned out to be of special importance 
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because of the high heritability, the significant correlation of both traits and the number of 

QTL detected (Table 1, Table 3 and Figure 2, Chapter 2.2). 

As in juvenile stages grain yield cannot be analysed, total biomass yield (BY) was 

measured at the end of the experiments instead. BY was regarded as the total biomass 

above ground in dry weight at 36 das (days after sowing) on juvenile barley plants 

(BBCH 36). Plants which were able to generate high biomass yield under drought stress 

periods may have metabolic advantages and may save resources for grain yield 

development. It has been observed that vegetative biomass is highly correlated to yield 

parameters in terminal stages in barley and wheat (Boukerrou and Rasmusson 1990; 

Saleem 2003). Nevertheless, biomass is influenced to a larger extent by drought stress 

in juvenile stages, whereas in terminal drought stress this effect is not so pronounced 

(Jamieson et al. 1995). Moreover, the less biomass is influenced by drought, the more 

the reduction is compensable by growth during re-watering (Skirycz and Inze 2010). 

Therefore, minimising biomass losses through drought stress may be a major goal in 

plant breeding to optimise grain yield development, and so biomass above ground is a 

trait of interest while analysing drought response (Saleem 2003; Salekdeh et al. 2009). 

Another physiological parameter of prime importance is the leaf colour (SPAD), 

representing the status of leaf senescence by indirect measurement of the chlorophyll 

content. To prove the relation between SPAD values and chlorophyll content, the 

chlorophyll content was analysed according to Arnon (1949) with samples of one spring 

pot experiment (experimental design B) and of 28 selected genotypes differing in leaf 

senescence. The aim was to calculate a regression curve, which can be used for a 

chlorophyll estimation of the pot experiments conducted within this thesis and for future 

experiments. For chlorophyll content, a clear significant decrease under drought stress 

was measured, which significantly correlated to the SPAD leaf colour with r=0.86 in both 

treatments. The best fit was represented by a quadratic regression following the formula:  

                            

Whereas some studies figured out linear relationships (Champbell et al. 1990; Rodriguez 

and Miller 2000), results obtained on wheat, which is related to barley confirmed the 

quadratic regression (Cartelat et al. 2005). The high correlation indicates that leaf colour 

is a highly suitable trait to indirectly measure the chlorophyll content and thus, crucial for 

analysing stay green effects. Moreover, the measured leaf colour values turned out to be 

significantly correlated to the relative expression of most of the analysed genes for leaf 

senescence (Table 3, Chapter 2.3). Therefore, it may be concluded that SPAD values 

were suitable to represent the status of drought stress induced leaf senescence. 
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3.3  TOLERANCE RANKING 

Analysing 156 genotypes (Additional file 1, Appendix), including German elite cultivars 

and selected genotypes of the Spanish Barley Core Collection (SBCC) a huge variation 

between genotypes was identified concerning drought stress response and drought 

stress induced leaf senescence (Table 2, Chapter 2.2). Combining phenotypic data 

(Chapter 2.2) and relative expression data (Chapter 2.3), a tolerance ranking was done 

to identify genotypes displaying delayed drought stress induced leaf senescence or 

drought stress response and ultimately, an increased drought stress tolerance.  

The tolerance ranking of the 156 analysed genotypes was conducted based on the 

relative drought susceptibility index (DSI, Table 1, Chapter 2.2) of all six physiological 

parameters. Two of these parameters, BY and SPAD DSI values are shown in Figure 1A 

and Figure 1B. Genotypes revealing a DSI close to one are highly susceptible to drought 

and those close to zero or showing a negative value are tolerant (Fischer and Maurer 

1978). Looking at all physiological traits, several tolerant and non-tolerant genotypes 

were detected. The same genotypes with values close to zero for all traits were Cosima, 

Candesse and some of the SBCC (SBCC 65, 80, 119, 136), which were classified as 

drought tolerant (Figure 1A, 1B). In contrast, Alraune, Tafeno, Trixi and SBCC 89 were 

classified as drought sensitive genotypes (Figure 1A, 1B).  

In addition to the tolerance ranking with DSI, a tolerance ranking with the relative 

expression of the 14 selected genes for each genotype (Table 1, Chapter 2.3) was 

conducted as well. Expression data for two of these genes, AVP1 and TRIUR3 are 

displayed in Figure 1C and Figure 1D. Tolerant genotypes are characterised by a high 

expression relative to the control treatment and in contrast, sensitive genotypes are 

characterised by a low expression relative to the control, e.g. for those genes which were 

described to be up-regulated under drought stress, and the other way around for genes 

which were down-regulated under drought stress (Degenkolbe et al. 2009; Ermolayev et 

al. 2003). Also, with this ranking the most tolerant and non-tolerant genotypes were 

identified, which were the same for more than 10 out of the 14 genes analysed. Utilising 

this approach, Candesse, Grete, Anastasia, Birgit, as well as some genotypes out of the 

SBCC (28, 119 and 136) turned out to be drought tolerant, whereas Babylone and Petra 

were classified as sensitive (Figure 1C, 1D).  
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FIGURE 1: Tolerance ranking of phenotypic (exemplarily shown for DSI BY [A] and DSI 

SPAD [B]) and expression data (exemplarily shown for AVP1 [C] and TRIUR3 [D]). The 

drought tolerant and sensitive genotypes detected in one approach only are coloured blue, 

whereas genotypes highlighted red were found in both rankings. 
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Comparing the ranking with DSI, with this obtained on relative expression, three drought 

tolerant genotypes are the same in both rankings and were marked in red in Figure 1A 

and Figure 1B for the physiological ranking and in Figure 1C and Figure 1D for the 

ranking using the expression data (Figure 1). These genotypes are Candesse, SBCC 

119 and SBCC 136 (Figure 1), which may be specially suited for future barley breeding 

concerning drought stress tolerance and leaf senescence. Thereof, Candesse is a six 

rowed German cultivar which is highly susceptible to net blotch (Pyrenophtora teres f. 

teres) (König et al. 2013). However, it is also described as high yielding in extreme 

weather conditions, e.g. heavy rainfall in autumn or heat and drought in spring and 

summer (Völkel 2003). The yield potential of the SBCC (28 - 35 dt/ha) is generally lower 

than that of the German cultivars (60 - 70 dt/ha) (DESTATIS 2015), but the two identified 

drought tolerant genotypes, SBCC 119 and SBCC 136 are described to reach a high 

yield (22.38 - 24.5 dt/ha) under drought stress conditions compared to other genotypes 

of the SBCC (Lasa 2008). 

The best ranked genotypes showing over expression of drought tolerance genes may be 

used in further studies on the genetic basis of drought stress tolerance in barley. 

Furthermore, based on correlations of the relative leaf colour (DSI SPAD) representing 

changes in leaf senescence, to the relative expression of senescence associated genes 

(Table 3, Chapter 2.3) the best ranked genotypes may be used for further studies on leaf 

senescence in barley.  

 

3.4  THE SPANISH BARLEY CORE COLLECTION (SBCC) 

Before the emergence of modern breeding, diversity in barley with respect to tolerance to 

drought and other abiotic stresses used to be higher (Ullrich 2011; Zamir 2001). 

Therefore, this diversity may still exist in landraces derived from geographical regions, 

where these traits are of prime importance. Therefore, genotypes of the SBCC (Igartua 

et al. 1998) were included in the present study. For barley breeding purposes, the SBCC 

is of special interest as this germplasm collection consists of old barley accessions and 

landraces collected in Spain prior to the emergence of modern barley breeding. Thus, 

the genetic diversity is much higher and lost features such as abiotic stress tolerances or 

biotic stress resistances may have been preserved. During the 1980s, the SBCC was 

created containing 175 barley lines which were developed from 2000 barley accessions 

collected in Spain. This core collection was further on genotyped (Silvar et al. 2011b) and 



General discussion 

 

 

66 

phenotyped for vegetative plant parameters, plant diseases and yield as well as yield 

under abiotic stress (Lasa et al. 2001; Silvar et al. 2010; Silvar et al. 2011a). All 

information on the SBCC is summarised online at: 

http://161.111.227.80/EEAD/barley/index.php?lng=1. 

In every pot experiment, differences of the SBCC to the German cultivars were detected. 

A huge amount of genotypes of the SBCC was classified as drought tolerant genotypes 

concerning the relative phenotypic (DSI) and expression data (Figure 1). In comparison 

to the German cultivars, differences in the drought stress reaction were detected 

especially for SPAD and ETR represented by negative relative values (Table 1, Chapter 

2.2 and Figure 1A, 1B). For these traits, unexpected higher values were found in the 

drought stress treatment. In comparison to the control treatment, delayed leaf 

senescence could be observed, while primary leaves stayed green. This fact is 

supported by allelic differences, which were found in the highest significantly associated 

markers and markers explaining the highest phenotypic variance for respective traits 

between genotypes of the SBCC and the German cultivars (Additional file 2, Appendix). 

This can also be observed when taking into account all SNP in a principal component 

analysis (PCA) in which most of the SBCC represent an own subpopulation of the set of 

analysed genotypes separated from the German cultivars by the principal component 2 

(Figure 2). Furthermore, the German cultivars were separated by the principal 

component 1 in two-rowed and six-rowed genotypes (Figure 2). Thus, the PCA 

subdivided the analysed set of winter barley genotypes in two-rowed and six-rowed 

genotypes as well as accessions of the SBCC. All genotypes of the SBCC are six–

rowed, except for SBCC 148, which is grouped closer to the German two-rowed 

genotypes (Additional file 1, Appendix and Figure 2).  

As other studies show (Hamblin et al. 2010; Rostoks et al. 2006), components of the 

population structure differentiate depending on origin, row number and growth habit 

(spring, winter). The linkage disequilibrium is highly dependent on population structure. 

While the geographic region explains the highest percentage of molecular diversity 

(Malysheva-Otto et al. 2006), the row number and diversity of the set influences the LD, 

too. The effect of the row number was analysed separately for two- (10.75 cM) and six-

rowed barley (8.24 cM), each showing higher LD values compared to the whole set (7.35 

cM) (Rode et al. 2012). A high LD was also calculated for winter barley genotypes (7.35 

cM) (Rode et al. 2012) and spring barley genotypes (20 cM), which consists only of six-

rowed barley genotypes (Kraakman et al. 2006). The diverse set in the present study, 

including six-rowed and two-rowed German cultivars in addition to genotypes of the 

http://161.111.227.80/EEAD/barley/index.php?lng=1
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SBCC, revealed a lower LD of 2.52 cM (Chapter 2.2), which does not only result in a 

higher resolution, but also the need for a higher marker density in comparison to the 

study of Rode et al. (2012), which was based on 1536 markers. 

 

 

FIGURE 2: Principal component analysis (PCA) of the set of analysed genotypes utilising the 

dissimilarity matrix calculated out of the SNP marker set. 

 

3.5  QUANTITATIVE TRAIT LOCI (QTL) 

Genome wide association studies (GWAS) were conducted applying phenotypic data for 

drought stress response and leaf senescence, as well as relative expression data of 

genes differentially regulated by drought stress or leaf senescence. A lot of studies were 

carried out, e.g. in barley and wheat on the identification of quantitative trait loci (QTL) 

involved in the response to different abiotic stresses (Ashraf 2010; Cattivelli et al. 2008; 
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Nevo and Chen 2010). A huge amount of respective QTL were published but most of 

them have not been validated until now (Salvi and Tuberosa 2015). In the present study, 

both QTL (Chapter 2.2) and accompanying expression quantitative trait loci (eQTL, 

Chapter 2.3) involved in drought stress tolerance and drought stress induced leaf 

senescence were analysed. With the phenotypic data of the six physiological traits, 47 

QTL, which were distributed over all barley chromosomes were observed under stress 

conditions for all physiological traits except content of free proline (CFP) (Table 4, 

Chapter 2.2 and Figure 3). In comparison, 15 eQTL were found for the relative 

expression of 10 out of the 14 differentially expressed genes analysed, which were 

located on all barley chromosomes except chromosome 4H (Table 4, Chapter 2.3 and 

Figure 3). Three of these 10 genes were drought stress related genes, four genes were 

involved in leaf senescence and three were genes coding for proteins detected in GWAS 

(Table 1, Chapter 2.3). Interestingly, most eQTL were located close to QTL, except 

GAD3 on barley chromosome 1H (Figure 3). 

The eQTL for the relative expression of the genes coding for proteins identified was 

based on QTL analyses of physiological traits, which were mostly located close to the 

respective QTL. For instance, the eQTL for the relative expression of TRIUR 3, which is 

a gene identified out of a marker associated to SPAD was located close to the QTL for 

SPAD on chromosome 5H at 45 cM (Figure 3). TRIUR3 is described as a gene coding 

for abscisic acid- inducible protein kinase which is involved in dehydration stress 

response (Anderberg and Walker-Simmons 1992). However, abscisic acid as a 

phytohormone also promotes chlorophyll breakdown and leads to leaf senescence (Lim 

et al. 2007). Thus, a connection to the QTL for SPAD as a characteristic of leaf 

senescence is provided. The same holds true for AVP1, which was identified out of the 

marker associated to BY, and the eQTL for the relative expression of this gene was 

located near to the QTL for BY on 5H at 60 cM (Figure 3). AVP1 is described as a 

homolog to the HVP1 gene in barley on chromosome 7H (Shavrukov 2014), encoding for 

a vacuolar pyrophosphatase which regulates auxin- mediated developmental processes 

(Schilling et al. 2013). The phytohormone auxin regulates plant growth and thus, a link to 

the QTL for biomass production is provided. The eQTL for the relative expression of 

ETFQO was located near to the QTL for OA on chromosome 3H and to the QTL for OA 

and BY on chromosome 5H (Figure 3). Hence, the gene for an electron transfer 

flavoprotein- ubiquinone oxidoreductase (ETFQO) is described to be up-regulated during 

dark-induced leaf senescence and active in chlorophyll breakdown (Araújo et al. 2010), 

there is no direct link to the QTL for OA or BY. 
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FIGURE 3: Significant (p< 0.001) associated QTL (black) for physiological traits under 

drought stress treatment (BY: biomass yield, SPAD: leaf colour, ETR: electron transport rate 

at PSII, OA: osmolality, CSS: total content of soluble sugars) and eQTL (red) for the relative 

expression of respective genes. Marked with a * are eQTL regulated in cis.  

 

Moreover, eQTL for drought stress and leaf senescence associated genes were located 

next to QTL for physiological parameters. On chromosome 1H and 2H, the eQTL for the 

relative expression of hv_36467 was located near to a QTL for OA (Figure 3). The 

senescence associated gene hv_36467 is described as a gene similar to cystein 

protease. Cystein proteases are enzymes, e.g. hydrolases, which play an important role 

in the response on dehydration stress among others (Coupe et al. 2003). Thus, a link to 

OA seems to be present as both are involved in turgor maintenance. Besides this, the 

eQTL for the relative expression of pHvNF-Y5α was detected close to the QTL for ETR 

on chromosome 6H at 60 cM (Figure 3). As until now, little has been known on the 

functionality of this senescence associated gene, this link may be a hint to a function in 

leaf senescence. For the eQTL associated to the relative expression of the genes 

P5CS2, Contig7437, A1 and GSII no functional relationship to the closely located QTL 

for BY was found in literature. 
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Whereas more QTL were detected than eQTL, identified QTL explain less of the 

phenotypic variation (Additional file 2, Chapter 2.2 and Table 4, Chapter 2.3). With 

regard to multi gene controlled phenotypic changes, R² is much higher for eQTL as 

transcription variance concerning single genes is more specific than phenotypic variance 

(Holloway and Li 2010; Kliebenstein 2009). The SNP in QTL for physiological traits are 

associated to traits under drought stress or under well-watered conditions, while the 

markers in eQTL are associated to the relative expression representing an up- or down-

regulation relative to the expression in the control variant. Thus, on the one hand, 

markers are associated to a phenotype, whose associated markers represent genes of 

interest. On the other hand, the same set of markers is associated to the relative 

expression of these genes. Most eQTL, and especially those, which are associated to 

genes of the respective QTL, are located next to this QTL, or are regulated in cis, based 

on the analysis of their location in Morex contigs (Table 5, Chapter 2.3 and Figure 3). 

They present a re-confirmation of the identified genomic regions for drought stress and 

leaf senescence. This close connection of eQTL to QTL, with comparable functions on a 

physiological and genetical level may be concerned as a confirmation of identified 

genomic regions, rendering these markers of special interest for barley breeding. 

 

3.6  FUTURE PROSPECTS 

After validating the results, the markers associated to physiological traits and 

differentially expressed genes involved in drought stress tolerance and leaf senescence 

may be included in marker based selection procedures on drought stress tolerance in 

future barley breeding. Breeders may save time by phenotyping only genotypes with the 

favourable alleles at these loci.  

The screening protocol of drought stress response as well as leaf senescence which was 

described in this thesis is highly suitable for phenotyping and can be further applied in 

studies regarding drought stress tolerance and leaf senescence in barley, especially in 

early developmental stages. In order to get information on the response of the barley 

genotypes tested under drought stress in the generative stage compared to the results of 

the juvenile stage, respective genotypes may be phenotyped in additional pot trials till 

harvest or in rainout shelter trials in the field. With this approach, information on the 

transferability of respective QTL can be obtained.  
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Identified genomic regions should be validated, using ranked drought tolerant and 

sensitive genotypes in addition to other sets of barley genotypes. Besides, identified 

markers can be tested for these genotypes to test the specificity of the markers regarding 

drought or leaf senescence. With ongoing sequencing and marker development, the 

resolution of GWAS may be enhanced. With a higher density of markers, e.g. through 

GBS, exome capture or RNAseq, QTL localization will become more precise, and more 

detailed information on drought stress response in barley can be gained. 
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5 LIST OF FIGURES 

 

Chapter 2.1 

Figure 1 - Pot experiment in greenhouse (10 days after sowing). 

Figure 2 - Primary leaves differentiating in drought stress response regarding leaf 

senescence. 

Figure 3 - Barley plants with tied up leaves. A. Single plants at 36 days after sowing 

under control (left) and drought stress treatment (right). B. One greenhouse 

bench at 20 days after sowing with four rows stress treatment (yellow sticks) 

and three rows control treatment (black sticks). 

Figure 4 - Positions for measurement of leaf colour on three primary leaves.  

Figure 5 - OS1p-Chlorophyll fluorometer. The display shows three exemplary 

measurements down right and general settings top left. Besides this, the leaf 

clip for measurement is shown consisting out of the clip with the trigger button 

and the sensor for detecting the photosynthetic active radiation (PAR). 

Figure 6 - Standard curve for glucose content. 

Figure 7 - Test tubes ready for measurement of total content of soluble sugars. 

Exemplarily, three test tubes with samples for control (light blue, left) and three 

test tubes with samples for drought stress (dark blue, right) treatment are 

shown. 

Figure 8 - Standard curve for proline content. 

Figure 9 - Test tubes ready for measurement of content of free proline. Exemplarily, 

three test tubes with samples for control (light red, left) and three test tubes 

with samples for drought stress (dark red, right) treatment are shown. 

 

Chapter 2.2 

Figure 1 - Optimal k of the population structure. The number of subpopulations within the 

set of barley genotypes was estimated at k=4 by calculation described in 

Evanno et al. (70). 
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Figure 2 - Manhattan plots. Showing –log p of association between Illumina SNPs and 

the analysed traits biomass yield (BY) and leaf colour (SPAD) against the 

position of the markers on all seven linkage groups (barley chromosomes) for 

stress treatment. Threshold indicates a significance level of p <0.001. 

Figure 3 - Genetic map. Shows QTL including the significant associated SNP marker 

positions for significant blasted proteins (BlastX) linked to drought stress or leaf 

senescence, related traits for drought stress treatment and percentage of 

phenotypic variance (explained R² in %) of the SNP for all linkage groups 

(barley chromosomes). 

 

Chapter 2.3 

Figure 1 - Box whisker plots for status of leaf senescence. Leaf colour (SPAD) for control 

and drought stress treatment at 27 days after sowing (das) including all 156 

analysed barley genotypes. 

Figure 2 - Expression profile for drought stress and leaf senescence genes. Relative 

Expression (-∆∆Ct) for the selected genes at 26 days after sowing (das) shown 

in box whisker plots including all 156 analysed barley genotypes. 

 

Chapter 3 

Figure 1 - Tolerance ranking of phenotypic (exemplarily shown for DSI BY [A] and DSI 

SPAD [B]) and expression data (exemplarily shown for AVP1 [C] and TRIUR3 

[D]). The drought tolerant and sensitive genotypes detected in one approach 

only are coloured blue, whereas genotypes highlighted red were found in both 

rankings. 

Figure 2 - Principal component analysis (PCA) of the set of analysed genotypes utilising 

the dissimilarity matrix calculated out of the SNP marker set. 

Figure 3 - Significant (p< 0.001) associated QTL (black) for physiological traits under 

drought stress treatment (BY: biomass yield, SPAD: leaf colour, ETR: electron 

transport rate at PSII, OA: osmolality, CSS: total content of soluble sugars) and 

eQTL (red) for the relative expression of respective genes. Marked with a * are 

eQTL regulated in cis.  
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6 LIST OF TABLES 

 

Chapter 2.2 

Table 1 - Descriptive statistics, heritability (h²) and number of significant (p <0.001) 

quantitative trait loci (QTL). 

Table 2 - Analysis of variance (ANOVA) of analysed traits showing F and p values. 

Table 3 - Coefficient of correlation (PEARSON) for control and drought stress treatment. 

Table 4 - Significant markers traits associations detected under drought stress conditions 

at a significance of p <0.001. 

Table 5 - Significant blasted proteins related to drought stress or leaf senescence. 

 

Chapter 2.3 

Table 1 - Primer pairs for the selected genes and the reference gene.  

Table 2 - Analysis of variance for leaf colour (SPAD) and the expression of the selected 

genes. 

Table 3 - Coefficients of correlation for relative expression of the selected genes and the 

relative SPAD values. 

Table 4 - Significant marker gene expression associations (p <0.001) with positions of 

eQTL. 

Table 5 - Positions of the selected genes based on the barley Morex-contigs and their 

mode of action. 

 

Chapter 3 

Table 1 - Temperature and light intensity of the greenhouse trials and biomass yield in 

the control treatment.  
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7 ABBREVIATIONS 

 

∆∆Ct  Relative expression 

ABA  Abscisic acid 

AFLP  Amplified fragment length 

  polymorphism 

Blast  Basic Local Alignment 

  Search Tool 

BY  Biomass yield 

CFP  Content of free proline 

Chl  Chlorophyll 

cM  Centimorgan 

CSS  Total content of soluble 

  sugars 

Ct  Cycle threshold 

CV  Coefficient of variation 

das  Days after sowing 

DH  Doubled haploid 

DNA  Deoxyribonucleic acid 

DSI  Drought susceptibility 

  index; value across  

  treatments 

e.g.  for example 

eQTL  Expression quantitative 

  trait locus/ loci 

ETR  Electron transport rate 

Gbp  Giga base pairs 

GBS  Genotyping by sequencing 

GWAS  Genome wide association 

  study 

h²  Heritability 

i.e.  id est 

k  number of subpopulations 

LD  Linkage disequilibrium 

LEA  Late embryogenesis 

  abundant protein 

LOD  Likelihood of odds 

LSMeans Last Square Means 

MAF  Minor allele frequency 

MAS  Marker assisted selection 

MLM  Mixed linear model 

mQTL  Metabolomic quantitative 

  trait locus/ loci 

OA  Osmolality 

PAR  Photosynthetic active 

  radiation 

PCA  Principal component 

  analysis 

PCD  Programmed cell deth 

PCR  Polymerase chain reaction 

PEG  Polyethylene glycol 

pQTL  Proteomic quantitative trait 

  locus/ loci 

PSII  Photosystem two 

qPCR  Quantitative real-time 

  polymerase chain reaction 

QTL  Quantitative trait locus/ loci 

RFLP  Restriction fragment length 

  polymorphism 

RILs  Recombinant inbreed lines 

RNA  Ribonucleic acid 

ROS  Reactive oxygen species 

SAG  Senescence associated 

  gene 

SBCC  Spanish Barley Core 

  Collection 

SNP  Single nucleotide  

  polymorphism 

SPAD  Soil Plant Analysis  

  Development; leaf colour 

ssp  Subspecies 

SSR  Simple sequence repeat 
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8 APPENDIX 

 

ADDITIONAL FILE 1 (CHAPTER 2.2): Overview of the 156 analysed genotypes. 

Nr Genotype
a
 Row type 

1 Alissa six rowed 
2 Alpaca six rowed 
3 Anastasia six rowed 
4 Andrea six rowed 
5 Angela six rowed 
6 Banteng six rowed 
7 Bayava six rowed 
8 Birgit six rowed 
9 Borwina six rowed 
10 Brunhild six rowed 
11 Candesse six rowed 
12 Carola six rowed 
13 Catania six rowed 
14 Catinka six rowed 
15 Cita six rowed 
16 Cornelia six rowed 
17 Corona six rowed 
18 Cosima six rowed 
19 Dura six rowed 
20 Elbany six rowed 
21 Elektra six rowed 
22 Ermo six rowed 
23 Esterel six rowed 
24 Express six rowed 
25 Franka six rowed 
26 Franziska six rowed 
27 SW16199 six rowed 
28 Gaulois six rowed 
29 Gerbel six rowed 
30 Gilberta six rowed 
31 Grete six rowed 
32 Hampus six rowed 
33 Hasso six rowed 
34 Jana six rowed 
35 Julia six rowed 
36 Kendo six rowed 
37 Krimhild six rowed 
38 Landi six rowed 
39 Lenta six rowed 
40 Lomerit six rowed 
41 Ludmilla six rowed 
42 Mädru six rowed 
43 Mammut six rowed 
44 Masto six rowed 
45 Merlot six rowed 
46 Naomie six rowed 
47 Nebelia six rowed 
48 Nelly six rowed 
49 Nikel six rowed 
50 Noveta six rowed 
51 Ogra six rowed 
52 Petra six rowed 
53 Plana six rowed 
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Nr Genotype
a
 Row type 

54 Rocca six rowed 
55 Sarah six rowed 
56 Stephanie six rowed 
57 Structura six rowed 
58 Sympax six rowed 
59 Tapir six rowed 
60 Theresa six rowed 
61 Traminer six rowed 
62 Venus six rowed 
63 Viresa six rowed 
64 Vogelsanger Gold six rowed 
65 Advance two rowed 
66 Affair two rowed 
67 Alraune two rowed 
68 Angora two rowed 
69 Astrid two rowed 
70 Babylone two rowed 
71 Bistro two rowed 
72 Bombay two rowed 
73 Cabrio two rowed 
74 Calador two rowed 
75 Camera two rowed 
76 Carat two rowed 
77 Cleopatra two rowed 
78 Danilo two rowed 
79 Duet two rowed 
80 Existenz two rowed 
81 Gerval two rowed 
82 Goldmine two rowed 
83 Hanna two rowed 
84 Hiberna two rowed 
85 Igri two rowed 
86 Intro two rowed 
87 Jessica two rowed 
88 Kamoto two rowed 
89 Kaskade two rowed 
90 Kyoto two rowed 
91 Labea two rowed 
92 Leonie two rowed 
93 Lunaris two rowed 
94 Madou two rowed 
95 Magie two rowed 
96 Malta two rowed 
97 Marinka two rowed 
98 Marylin two rowed 
99 Millie two rowed 
100 Mombasa two rowed 
101 Passion two rowed 
102 Pastoral two rowed 
103 Regina two rowed 
104 Reni two rowed 
105 Sonate two rowed 
106 Sonja two rowed 
107 Tafeno two rowed 
108 Tiffany two rowed 
109 Tokyo two rowed 
110 Trixi two rowed 
111 Vanessa two rowed 
112 Venezia two rowed 
113 Verticale two rowed 
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Nr Genotype
a
 Row type 

114 SBCC3 six rowed 
115 SBCC11 six rowed 
116 SBCC12 six rowed 
117 SBCC14 six rowed 
118 SBCC16 six rowed 
119 SBCC18 six rowed 
120 SBCC23 six rowed 
121 SBCC25 six rowed 
122 SBCC27 six rowed 
123 SBCC28 six rowed 
124 SBCC32 six rowed 
125 SBCC38 six rowed 
126 SBCC39 six rowed 
127 SBCC42 six rowed 
128 SBCC47 six rowed 
129 SBCC49 six rowed 
130 SBCC51 six rowed 
131 SBCC54 six rowed 
132 SBCC59 six rowed 
133 SBCC63 six rowed 
134 SBCC65 six rowed 
135 SBCC67 six rowed 
136 SBCC70 six rowed 
137 SBCC73 six rowed 
138 SBCC74 six rowed 
139 SBCC75 six rowed 
140 SBCC76 six rowed 
141 SBCC78 six rowed 
142 SBCC79 six rowed 
143 SBCC80 six rowed 
144 SBCC81 six rowed 
145 SBCC89 six rowed 
146 SBCC91 six rowed 
147 SBCC92 six rowed 
148 SBCC97 six rowed 
149 SBCC106 six rowed 
150 SBCC109 six rowed 
151 SBCC119 six rowed 
152 SBCC130 six rowed 
153 SBCC136 six rowed 
154 SBCC138 six rowed 
155 SBCC140 six rowed 
156 SBCC148 two rowed 
a
 SBCC: Spanish Barley Core Collection   

 

Additional files of the publications (Additional file 2 of Chapter 2.2 and Additional file 1 of 

Chapter 2.3) are not displayed here. These files can be downloaded from BMC Plant 

Biology: 

Additional file 2, Chapter 2.2: http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-015-0524-3 

Additional file 1, Chapter 2.3: http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-015-0701-4 

 

http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-015-0524-3
http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-015-0701-4
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ADDITIONAL FILE 2: Differences in favourable alleles of the Spanish Barley Core Collection 

(SBCC) in comparison to the German cultivars for the most significantly associated markers 

for leaf colour (SPAD) and the electron transport rate at PSII (ETR). 

Associated 
markers 

SCRI_RS
_175370 

 
SCRI_R
S_11645 

SCRI_RS
_160297 

SCRI_R
S_68142 

BOPA1_ABC0
8327-1-1-353 

BOPA2_1
2_30761 

 

Trait 
Treatment 

SPAD 
Control 

 
SPAD 
DSI 

ETR 
Drought 

SPAD 
Drought 

SPAD 
Drought 

SPAD 
Drought 

 

LOD 4.8  4.37 3.6 3.36 3.14 3.08  
R² 3.4  5.4 5.5 3.3 3.06 3.1  
SNP [G/C]  [T/C] [T/C] [A/G] [A/G] [A/G]  
Fav. allele C  C C A A A  

SBCC G  T T G G G  
G  T C A A G  
G  T C G G A  
G  T C G A G  
G  T T A A G  
G  T C G A A  
G  T C A A G  
G  T C A A G  
G  T C A A G  
G  T C R R N  
G  T C G G A  
C  T T A A G  
G  T C A A G  
G  T C G G G  
G  T C G A G  
G  T C G G G  
G  T C G A G  
G  T C G G G  
C  T T A A G  
G  T C A A G  
C  T T A A G  
G  T C G A G  
G  T C G A G  
G  C C G A A  
G  T C G G A  
G  T T A A G  
G  T C G G G  
G  T Y R A N  
G  T C A A G  
G  T C G N G  
G  T C A A G  
G  T C A A G  
G  T T A A G  
G  T C G G A  
G  T C G A A  
G  T C G G G  
G  C C G A A  
G  T T A A G  
G  T C A A G  
G  T Y R A R  
S  T Y R A G  

German 
Cultivars 

G  C C A A A  
G  C C R R A  
C  C C A A A  
G  C C A G A  
G  C C A A A  
C  C C A A A  
G  C C A G A  
C  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A A  
G  C C A A A  
G  C C A A A  
C  C C A A A  
G  C C G G A  
C  C C A A A  
G  C C A A A  
G  C C A A A  
C  C C A A A  
G  C C A A G  
C  C C A A A  
G  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A A  
G  C C A A A  
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Associated 
markers 

SCRI_RS
_175370 

 
SCRI_R
S_11645 

SCRI_RS
_160297 

SCRI_R
S_68142 

BOPA1_ABC0
8327-1-1-353 

BOPA2_1
2_30761 

 

Trait 
Treatment 

SPAD 
Control 

 
SPAD 
DSI 

ETR 
Drought 

SPAD 
Drought 

SPAD 
Drought 

SPAD 
Drought 

 

LOD 4.8  4.37 3.6 3.36 3.14 3.08  
R² 3.4  5.4 5.5 3.3 3.06 3.1  
SNP [G/C]  [T/C] [T/C] [A/G] [A/G] [A/G]  
Fav. allele C  C C A A A  

C  C C A A A  
G  C C G G A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A A  
G  C C A A A  
C  T C A A G  
C  C C A A A  
G  C C A A A  
C  C C A A G  
C  C C A A A  
G  C C A A A  
C  C C A A A  
G  C C A A A  
G  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A G  
C  C C A A A  
G  C C A A A  
N  C C A A A  
C  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A A  
C  C C A A A  
G  C C A A A  
C  C C A A A  
G  C C A A A  
G  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A G  
G  C C A A A  
C  C C A A A  
G  C C A A A  
C  C C A A A  
G  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A A  
G  C C A A A  
G  C C A A A  
C  C C A A A  
C  C C A A A  
C  C C G G A  
C  C C A A A  
C  C C A A G  
C  C C A A A  
C  C C A A A  
C  C C A A A  
G  C C A A G  
C  C C G G A  
G  C C A A A  
C  C C A A A  
C  C C A A A  
S  C C A A R  
G  C C A A G  
G  C C A A G  
C  C C A A A  
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