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Sodium accumulation contributes to salt stress tolerance in lettuce cultivars
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Summary

Increasing soil salinity of irrigated agricultural areas represents a
major environmental stress factor that impairs the production of
many salt-sensitive crop plants. Different lettuce cultivars were stu-
died for identification of more tolerant ones, based on physiological
properties. Five selected lettuce cultivars were grown hydroponi-
cally, salt stress was induced by 50 mM and 100 mM of NaCl. The
cultivars exhibited differential reduction in shoot fresh weight. The
highest sodium and free proline accumulation in the shoot of the
most tolerant cultivar, associated with a moderate decrease of the
root hydraulic conductance and of the leaf stomatal conductance, can
be related to a better defense mechanism against osmotic stress. Salt
exposure increased the potassium and calcium ion content of the xy-
lem sap, which may be important for an efficient osmotic adjustment
needed to support leaf expansion. The fact that the highest amount
of Na* was found in the shoot of the most tolerant cultivar, and the
lowest in the most sensitive one, reflects that in lettuce Nat exclusion
is not a main strategy for salt tolerance. Lettuce is a good example
for the case in which salinity tolerance is related not to exclusion,
but to inclusion of sodium ions in the shoot system. For salt tolerant
varieties the marketable yield has a higher dry biomass percentage,
leaves of plants grown under high salinity are crispier, darker green
and have a slight salty taste.

Introduction

High salinity is a major stress factor that restricts crop productivity.
Worldwide more than 800 million hectares of land are salt-affected,
most of these are located in arid and semiarid regions (FAO, 2008).
Because the irrigated area has at least twice the productivity of rain-
fed land, more than one third of all crop production is coming from
these salt affected regions (MUNNS and TESTER, 2008). Among other
crop plants, the majority of the lettuce world production is increas-
ingly being affected by salinity (FAO, 2009).

High concentrations of salt increase the osmotic potential, making
it harder for roots to extract water (osmotic effect), and result in
toxicity symptoms (ionic effect), leading to metabolic imbalance
and premature senescence of leaves (MUNNS, 2002; TESTER and
DAVENPORT, 2003). The loss of water and the invading ions activate
a concerted acclimation process that may lead to salt tolerance as-
sociated with a new steady state of growth. This acclimation includes
three basic processes: restoration of turgor, regulation of ion transport
across membranes, and induction of the accumulation of osmopro-
tectants and stress proteins. Besides these processes, several second-
ary responses are needed to ensure salt tolerance, e. g. the scaveng-
ing of overproduced reactive oxygen species, an increase in energy-
supplying reactions, and the adjustment of the whole metabolism to
the new situation. This is why multiple molecular and physiological
changes may be observed in plants exposed to salt stress: drop of sto-
matal and root hydraulic conductance, osmotic adjustment, reduced
growth rate, changes of the root to shoot ratio, nutritional disorders
(MUNNS and TESTER, 2008; RAJENDRAN et al., 2009).
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A rapid whole-plant response to salt stress is a decrease in stomatal
conductance, caused by the osmotic effect of high NaCl concen-
tration. The effect is very fast, but a new steady-state rate of trans-
piration becomes stabilized after hours, depending on the species
and cultivars. In the first phase of stress reactions, the osmotic effect
of the salt stress is responsible for the reduction of shoot growth
(CRAMER, 2002), usually showing a good correlation between sto-
matal conductance and growth rate (JAMES et al., 2008).

To maintain turgor, plant cells have to increase the osmotic potential.
Energetically, the most effective way to do this in salt-rich environ-
ments is accumulating Na* and Cl" ions, but the chemical toxicity will
appeared (MUNNS and TESTER, 2008). Another strategy is to synthe-
size osmotically active organic compounds (compatible solutes)
which accumulate as a result of the reprogrammed metabolism
(SOUDRY et al., 2005). One of the most widespread osmoprotectants
is proline, which may play multiple roles in stress tolerance. Be-
sides keeping the osmotic balance stable, it may protect enzymes and
membrane lipids from degradation (ASHRAF and FOOLAD, 2007), it
may be a radical scavenger in the process of antioxidative defense
(HONG et al., 2000), and it can constitute an energy source for after-
stress recovery mechanisms (HARE et al., 1999). Therefore, in many
plants, proline accumulation can be considered an indicator of stress
tolerance (HAJLAOUI et al., 2010; ZHU et al., 2008). However, the
achievement of the proper balance to maintain turgor, depends on the
species, on cultivars or ecotypes, and on the environmental condi-
tions (GREENWAY and MUNNS, 1980).

Although the ability to exclude Na* or CI” from the shoot is often a
primary determinant of variability in salinity tolerance within a spe-
cies, there is not necessarily an inverse relationship between shoot
Na*t or CI" concentration and salinity tolerance. There is rather a
difference in the ability of ion homeostasis maintenance in the
root, in the xylem sap and in the leaves (MUNNS and TESTER, 2008;
RAJENDRAN et al., 2009; SHABALA et al., 2010).

Lettuce (Lactuca sativa L.) has many cultivars, which are grown on
extended areas and have become a much appreciated healthy food
source, rich in mineral nutrients and vitamins. As most commercially
grown cultivars are growing under non-saline conditions, very limit-
ed information is available about salt stress response of the different
lettuce cultivars. Also, the physiological and biochemical parameters
that may be useful for the screening of salt tolerant varieties are not
well stated, and influence of salinity on marketable yield quality of
lettuce is poorly documented.

The aim of this study is to compare salt stress tolerance of five,
largely commercialized lettuce cultivars, and to identify more toler-
ant cultivars that may be suited for large-scale cultivation in areas
with increasing soil salinity.

Materials and methods

Plant material and growth conditions

Five different cultivars of lettuce (Lactuca sativa L.) were used in
the experiments. These were selected from among sixteen cultivars
examined for salt stress sensitivity, largely cultivated in Europe.
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Seeds of all cultivars were provided by B&T World Seeds (Pagu-
ignan, France). The cultivars were chosen from all of the four main
lettuce convarieties (butterhead, roman, looseleaf and steam lettuce).
The Valdor and Parella Green cultivars belong to the butterhead type
(Lactuca sativa var. capitata), Paris Island is part of the roman (Cos)
type (Lactuca sativa var. romana), Salad Bowl Red is included in
the looseleaf type (Lactuca sativa var. crispa), and Asparagina is
a cultivar belonging to the steam lettuce type (Lactuca sativa var.
asparagina).

The lettuce seeds were pre-hydrated with distilled water and con-
tinuously aerated for 24 h. After this, the seeds were germinated in
vermiculite substrate at 20 °C and kept in dark for 3 days. On the 4
day germinated seeds were transferred under controlled conditions
using a daily photoperiod of 16 h light and 8 h darkness. The rela-
tive humidity was set to 75 % during daytime and to 60 % for the
night. The temperature was 23 °C during daytime and 20 °C during
the dark period. A photosynthetically active radiation of 400 umol
m2 5! was provided by a combination of fluorescent tubes (Philips
TLD 36 W/83 and Sylvania F36 W/GRO) and metal halide lamps
(Osram HQI, T 400 W). On the 7 day after germination the seed-
lings were placed in 15 L containers with a continuous circulation of
full-strength Hoagland’s nutrient solution (HOAGLAND et al., 1950).
The solution was replaced every four days. Salinization treatment
was initiated on 21 d old seedlings, after two weeks of growth in
Hoagland’s solution. Salt stress was induced by 50 mM and 100 mM
of NaCl (p. a.). The 100 mM of NaCl was added in two steps, in two
consecutive days. Plantlets were harvested after ten days of exposure
(31 days old). Fresh weight (FW) of roots and shoots (stem with
leaves) was recorded separately, for five plants from each cultivar
and salinity combination. For DW determination, the plant material
was kept at 65 °C for 5 days. The youngest fully-expanded leaves
were also collected from five plants per cultivar and salinity treat-
ment, and kept frozen at -80 °C for proline content measurements.

Determination of mineral elements

The concentrations of Na*, Ca>* and K* were determined in plant
material (roots and shoots) ground finely in a mill grinder, after dry-
ing at 65 °C for 5 days. The samples were digested in a microwave
oven (CEM Mars Xpress, North Carolina, USA), reaching 200 °C
in 20 min, and held at this temperature for 2 h. Digestion of 0.1 g
DW plant material was performed with 5 mL 65 % HNO;, 17 mL
H,O0 dist. and 3 mL 30 % (v/v) H,O,. For determining the sodium,
potassium and calcium ion content of the xylem sap, 0.1 ml of xylem
sap was diluted with distilled water to a final volume of 10 mL. The
concentrations of Na*, Ca?* and K* were determined by inductively
coupled plasma spectrometry (Iris Intrepid II, Thermo Electron Cor-
poration, Franklin, USA).

Leaf gas exchange parameters

Stomatal conductance (Gs) was measured using a portable photosyn-
thesis system (model LCA-4, ADC Bioscientific Ltd., Hoddesdon,
UK). The abaxial stomatal conductance (on the lower epidermis)
was measured on the youngest fully-expanded leaves, in the middle
of the daily photoperiod, under constant photon flux density, air hu-
midity and temperature (AHMED et al., 2006).

Root hydraulic conductance (L)

The root hydraulic conductance of lettuce plants exposed to salt
stress treatments was measured by natural exudation of detached
roots. The measurements were made in the middle of the photope-
riod, 10 days after the beginning of salt treatment. The aerial parts
of the plants were removed and the stems were put in silicon tubes.

The roots were kept in the same nutrient solution which was used for
their growth. The sap that accumulated during a certain time, accord-
ing to the treatment, was collected in Eppendorf tubes. The roots and
the tubes were weighed with a precision balance. Sap flow (J,) was
expressed in mg g™ (root fresh weight) h™'. The osmotic potentials
of the sap samples and of the nutrient solutions were measured using
an osmometer (Digital osmometer, Roebling, Berlin, Germany). The
osmotic potential difference between the xylem sap and the external
solution, AW, was calculated from their osmolarity values. The hy-
draulic conductance, Lo, expressed in mg (g root FW)™! h'! MPa!,
was calculated according to the relation Ly = J,/ AW, where J, =
mg xylem sap h'! g’ root, and AW = W, xylem sap — ¥, solution
(CABANERO and CARVAIJAL, 2007).

Free proline content

Free proline content in the plant material was determined by gene-
ration of a colored product with ninhidrine (BATES, 1973). 0.5 g of
fresh plant material was homogenized in a pre-chilled mortar with
3 ml of 3 % sulfosalicilic acid cooled on ice. The extract was cen-
trifuged for 10 minutes at 20000 g, then 600 pl of 96 % acetic acid
and 600 pl ninhidrine solution (containing 2.5 % w/v ninhidrine,
60 % v/v 96 % acetic acid and 40 % v/v of 6 M ortophosphoric acid)
was added to 600 pl of supernatant. The samples were incubated in
test tubes for 1 hour at 100 °C, and after cooling, 3 ml of toluene
was added to extract the reaction product. The mixtures were stirred,
and when two layers were separated, 2 ml of the upper layer was
transferred in a cuvette. The concentration of the red product was
determined on the base of its absorbance at 520 nm using toluene as
reference. L-proline (Sigma) was used for the preparation of stan-
dard curve.

Statistical analysis

The data were analyzed statistically, using the SPSS 18.0 software
package, by analysis of variance (ANOVA) and by Tukey’s test. Sig-
nificant differences were determined at P < 0.05.

Results

Upon exposure to salt stress, physiological and biochemical changes,
related to disturbance in growth, water relations and mineral nutri-
tion, occurred in the different lettuce cultivars. It is worth mention-
ing that under the given growth conditions, 30 days old lettuce plants
may be considered well developed, having at least 12 fully extended
leaves and being suitable for consumption.

The high amount of NaCl in the nutrient solution reduced significant-
ly the growth rate of shoot fresh weight in all five lettuce cultivars
(Fig. 1, A). The most pronounced reduction, related to the control,
was observed in the Asparagina cultivar, at both salt concentrations
(31 % decrease in the presence of 50 mM NaCl and 51 % reduction
with 100 mM NacCl). The mildest shoot growth inhibition was reg-
istered for the Paris Island cultivar (24 % reduction at 50 mM NaCl
and 41 % reduction at 100 mM NaCl). Root growth was not inhib-
ited, but it was stimulated by salt stress, except for the Asparagina
cultivar. In the case of Salad Bowl Red and Parella Green cultivars,
exposure to 50 mM sodium chloride resulted in a statistically signifi-
cant increase of root fresh weight during the treatment (Fig. 1, B).
Regarding fresh biomass, dry matter and water content of leaves,
our results showed that high salinity reduces water content, and in a
smaller extent it decreases fresh shoot biomass. As a consequence,
the dry weight percentage of lettuce leaves increases under elevated
salinity (Fig. 2). In absolute values, leaf dry biomass is higher in
plants exposed to 50 mM NacCl than in plants grown in the presence
of 100 mM sodium chloride.
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Fig. 1:

Effect of 50 mM and 100 mM NaCl on the shoot and root fresh weight (FW) of five lettuce cultivars. Data are means of five plants + SE. Different

letters indicate significant differences among treatments of the same cultivar, at P < 0.05, according to the Tukey test.
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Fig.2: Percentage of dry matter in the biomass of leaves of five lettuce
cultivars developed under different salinity levels in the nutrient me-
dium. Vertical bars represent = SE from means (n = 5). Different
letters indicate significant differences among treatments of the same

cultivar, at P < 0.05.

The stomatal conductance (Gs) of leaves decreased in all cultivars
when salinity treatments were applied. The most significant differ-
ence from control was observed, with both salt treatments, in the
case of Aparagina and Salad Bowl Red cultivars. In the Paris Island
cultivar stomatal conductance decreased significantly only upon ex-
posure to 100 mM NaCl. From all cultivars, at the 50 mM salt re-
gime, the smallest reduction was observed in Paris Island (Fig. 4).
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The values of root hydraulic conductance (L) are shown in Fig. 3.
There was a significant difference between the hydraulic conduc-
tance of the cultivars without salinity treatments. Salt stress caused
a significant L, decrease in all cultivars. The most pronounced re-
duction was shown in the Asparagina cultivar, for both NaCl con-
centrations. In the case of Paris Island cultivar, both salt concentra-
tions showed the same degree of reduction. In the case of Parella
Green it was not possible to collect xylem sap from plants exposed to
100 mM NaCl.
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Fig. 3:

Root hydraulic conductance (L) of five lettuce cultivars exposed to
salt stress. FW — fresh weight. Each value is the mean of five samples
+ SE. Different letters indicate significant differences among treat-
ments of the same cultivar, at P < 0.05, according to the Tukey test.
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Fig.4: Stomatal conductance (Gs) in leaves of five lettuce cultivars exposed
to different degrees of saltstress. Bars represent means + SE, n = 5.
Different letters indicate significant differences among treatments of
the same cultivar, at P < 0.05, according to the Tukey test.

Fig. 5 summarizes the Na*, Ca>* and K* content of the shoot of five
lettuce cultivars. At both salinity levels, the highest Na* accumu-
lation was found in Paris Island, while the lowest was measured in
Asparagina. The roots exhibited an opposite trend of sodium content
as compared to shoots, the highest accumulation being achieved by
Asparagina (data not shown). Asparagina, and in a smaller extent
Salad Bowl Red, accumulated higher amounts of Na* in the root
than in the shoot, while in the case of Paris Island, Parella Green and
Valdor the concentration of sodium ions was higher in shoots than in
roots, at both salinity levels (data not shown). Calcium ion content
was reduced in all cultivars as a result of salt stress. Salt stress also
decreased K* concentration of all cultivars. In Paris Island, Parella
Green and Valdor there was no obvious difference in the K* accumu-
lation upon exposure to 50 mM and to 100 mM NaCl.

Free proline level of the leaves was increased by both salt regimes
in all five cultivars. A significant difference between proline concen-
trations of different cultivars was observed only upon exposure to
100 mM of NaCl (Fig. 6). The highest proline content was deter-
mined in the Paris Island cultivar exposed to100 mM NaCl, where
free proline concentration was about twenty times higher than in
control plants. In the other cultivars treated with 100 mM NacCl, this
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increase was smaller: threefold for Parella Green, fourfold for As-
paragina and Valdor, and sevenfold for the leaves of the Salad Bowl
Red cultivar.
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Fig.5: Na*, Ca** and K* content of shoot in five lettuce cultivars exposed

to 50 mM and 100 mM NaCl. Bars represent means + SE, n = 5. Dif-
ferent letters indicate significant differences among treatments of the
same cultivar, at P < 0.05, according to the Tukey test.

Discussion

Differences among cultivars in growth inhibition caused by salt
stress were reported for several crop plants, e.g. for Triticum mono-
coccum (RAJENDRAN et al., 2009), for maize (HAJLAOUI et al., 2010),
for rice (QUINET et al., 2010). Relatively few studies have been un-
dertaken to investigate the effects of NaCl on different lettuce cul-
tivars. PASTERNAK et al. (1986) found that roman lettuce types are
generally more salt tolerant than iceberg types, however, MAHMOUDI
et al. (2010; 2011; 2013) reported that for four lettuce varieties (in-
cluding Butterhead, Romain and Verte) roman type was the most
sensitive to salinity. Another study compared several cultivars of
lettuce, and demonstrated different salt sensitivity during the germi-
nation stage (COONS et al., 1990; NASRI et al., 2010). In our experi-
ments, a significant reduction in shoot fresh weight of all five lettuce
cultivars exposed to salt stress was found. This reflects that there is
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Fig. 6: Proline content of five lettuce cultivars exposed to salt stress. FW
— fresh weight. Bars represent means + SE, n = 5. Different letters in-
dicate significant differences among treatments of the same cultivar,

at P < 0.05, according to the Tukey test.

no inherited salt stress resistance that could avoid growth inhibition
caused by high salinity, regardless of the different cultivars. The cul-
tivar Aspargina suffered the largest shoot growth reduction at both
salinity levels. This indicates that from among the five cultivars that
were investigated, this is the most sensitive to salt stress in terms
of biomass production. By contrast, as Paris Island cultivar did not
significantly altered the growth after 50 mM NaCl addition, may be
considered more tolerant (Fig. 1).

Root growth was less affected by salinity than leaf growth, and
root elongation rate recovered remarkably well after several days
of exposure to NaCl. This can be related to the osmotic effect of
salt stress, the impaired water supply stimulating root growth to in-
crease water uptake surface (MUNNS, 2002). Even though the ab-
solute chlorophyll content does not increase upon salt stress (data
not shown), the lower water content of the fresh biomass confers
a darker green colour to lettuce leaves. For the cv. Vera of lettuce,
grown hydroponically for 32 days, ANDRIOLO et al. (2005) reported
that leaf number was not affected by salinity treatments, why dry
biomass of leaves increased under mild salinity (up to 2.81 dS m™!
electrical conductivity, approximately equivalent to 28 mM NaCl),
and decreased above this salinity level. This reflects that cv. Vera is
most probably a salt-sensitive lettuce cultivar. In an attempt to use
diluted seawater for irrigation of lettuce, TURHAN et al. (2014) found
that dry biomass, total fresh yield and marketable fresh yield of cv.
Funly of lettuce, after 40 days of irrigation with 2.5 % and 5 % sea-
water were similar to control, but decreased in response to 10 % and
20 % seawater. They concluded that low amounts of salt (2.5 %-5 %
seawater) are necessary in irrigation water to reach the optimal yield
of the studied lettuce cultivar. Our results showed that salt tolerant
lettuce varieties may produce a slightly increased dry biomass per-
centage even under considerably higher salinity values. In another
set of experiments, the Verte de cobhain variety of lettuce was found
to be salt tolerant, and upon treatment for 12 days with NaCl con-
centrations increasing progressively up to 100 mM, displayed better
growth and superior antioxidative capacity than the control grown
hydroponically in Hoagland’s nutrient solution (MAHMOUDI et al.,
2010). These results, in agreement with our findings, underline the
broad range of salt tolerance of different lettuce cultivars, and the
fact that some degree of salinity may increase the marketable yield
of this vegetable.

When plants are subjected to salt stress, root hydraulic conductance
(Lo) is usually reduced (CABANERO and CARVAJAL, 2007; MURIES
et al., 2011). The main cause of this reduction could be the decrease
in the activity or concentration of aquaporins in the root plasma
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membrane (CARVAJAL et al., 2000), this effect being mainly due
to the specific toxicity of Na* and CI~ ions (MARTINEZ-BALLESTA
etal.,2000). Secondly, reduced hydraulic conductance may be relat-
ed to the hyperosmotic stress and ionic imbalance caused by the high
apoplastic concentrations of Na* and CI~ (MUNNS and PASSIOURA,
1984). Due to the morphology of the lettuce (rosette type plant) it
is difficult to use the Scholander chamber for measuring hydraulic
conductance without causing injuries to the very short stem (data
not shown). The Scholander pressure chamber forces xylem sap out
from decapitated plants showing higher L, than natural exudation
method, since the water movement is forced to occur through the
apoplast to a greater extent (FERNANDEZ-GARCIA et al., 2002). How-
ever, the differences between salinity treatments were maintained
(LOPEZ-PEREZ et al., 2007).

All five lettuce cultivars exposed to salt stress exhibited a certain
reduction of root hydraulic conductance, but the magnitude of this
decrease depends on the cultivar (Fig. 3). The reduction of the xylem
transport from root to shoot can be beneficial for the plant, because
it prevents the accumulation of toxic levels of Na* and CI~ ions in
the leaves, but causing decrease of water transport. This means that
for finding a proper balance, the lettuce plants can exhibit a reduced
hydraulic conductivity upon salt stress ensuring a better protection
to the leaves against ion toxicity, being more salt tolerant. On the
other hand, certain amount of shoot Na* content may be beneficial
by helping the plant to maintain turgor. Again, a balance is needed
to be established between the use of Na* and CI~ by the plant to
maintain turgor and the need to avoid their toxicity (MUNNS and
TESTER, 2008). Taking all this parameter into account, Paris Island
cultivar maintained a higher hydraulic conductance, which confers
a more pronounced salt tolerance by enabling a better water supply
of the leaves from the root.

As a reaction to the osmotic component of salt stress, stomata tend
to close in order to reduce water loss by transpiration (MUNNS and
TESTER, 2008). This impairs photosynthetic carbon uptake, but re-
duces moisture accumulation during storage of lettuce heads. Salt
stress tends to reduce stomatal conductance (Gg) in a short period
after exposure. The fact that stomatal conductance was less affected
by salinity in the Paris Island cultivar (Fig. 4) may be related to the
other parameters (particularly with shoot FW and root hydraulic
conductance) in order to show its higher salt tolerance in compa-
rison with the other cultivars. A higher conductance enables a better
carbon dioxide supply for a sustained photosynthetic assimilation,
resulting in a smaller reduction of biomass production. A direct cor-
relation between stomatal conductance and salt stress tolerance was
also observed in maize cultivars (AZEVEDO-NETO et al., 2004). In
our experiments, the most pronounced reduction in stomatal conduc-
tance upon salt stress was recorded in the Salad Red Bowl lettuce
cultivar, suggesting the sensitivity of the gas exchange regulation
(MuNNSs and TESTER, 2008).

All lettuce cultivars growth in saline conditions showed an in-
crease in Na* concentration. The highest amount of Nat was found
in the cultivar Paris Island, and the lowest Nat concentration was
determined in Asparagina. Therefore, two main strategies of salt
stress tolerance can be considered, i.e. salt exclusion and salt se-
questration, the latter one is used by lettuce cultivars. This is why
the marketable biomass gets a slight salty taste. In a recent study on
different cultivars of barley, SHABALA et al. (2010) conclude that
after one week of salt treatment (320 mM NaCl), shoot Na* content
of the tolerant variety was about 20 % higher than in the sensitive
genotype. In the first phase of the salt stress the rapidly accumulating
Na+ is an osmolite with low energy cost in the leaf vacuoles for
the adjustment of cell turgor, and ultimately of tissue growth under
the hyperosmotic stress condition imposed by salinity (MUNNS and
TESTER, 2008; SHABALA et al., 2010). Salt stress disturbs the up-
take of essential mineral nutrients such as K* and Ca*, as Na* com-

petitively inhibits K* and Ca?* transport through membranes (ZHAO
et al., 2007). Fig. 5 shows the reduction of potassium content in
shoots as a result of salt stress, and this reduction is most proba-
bly due to the competition of Na* for the same cation transporters
(AZEVEDO-NETO and TABOSA, 2000). We have found no correlation
between K* content and the salt tolerance of the examined lettuce
cultivars. Similar results were published by NEOCLEOUS et al. (2014)
for lettuce and AZEVEDO-NETO et al. (2004) for maize genotypes.
Regulation of potassium to sodium ion ratio in plant cells subjected
to salt stress needs to be elucidated by further investigations. Na*
also reduces the influx of Ca”* ions through the plasma membrane,
and increases efflux of Ca®* from plant cells (CRAMER et al., 1989)
This is valid for the investigated lettuce cultivars, although the dy-
namics of cytosolic calcium content decrement varies among the cul-
tivars. Under the influence of 100 mM NaCl Ca%* content dropped
to the approximately same value in all cultivars, except for Valdor.
No correlation could be established between calcium ion content and
salt stress tolerance of the different lettuce cultivars. For Lactuca
sativa var. Crispa, identified as moderately sensitive to salinity, it
was found that dry matter ratio increased with increasing salinity
in the range of 0.75-7.0 dS m™! (approx. 7.5-70 mM NaCl), calcium
accumulation in leaves decreased, while the amount of potassium
was unaffected (UNLUKARA et al., 2008). They did not distinguish
between the calcium and potassium content of the xylem sap in the
veins and of the parenchyma tissue in the leaf blade. They also es-
tablished that the taste of lettuce was not affected by salinity, even
though salt accumulated in leaves.

The reduction of K* and Ca®* content in shoots, accompanied by
an increased concentration of these ions in the xylem sap (data not
shown), can be explained by the pronounced decrease of the hy-
draulic and stomatal conductances in lettuce plants exposed to salt
stress, so although the xylem sap has higher amounts of Ca>* and K+,
a smaller sap volume reaches the leaves of the salt-exposed plants.
The presence of 100 mM NaCl in the growth medium caused a sig-
nificant increase in the free proline content in all of the five lettuce
cultivars (Fig. 6). In the Paris Island cultivar the proline content
increased twenty five times as compared to the control, which is a
very pronounced metabolic reaction related to an effective osmo-
regulation with involvement of this compatible solute. Similar data
were presented about the involvement of proline accumulation in
salt stress tolerance of some other lettuce cultivars (YOUNIS et al.,
2009), however, such an increase in prolin concentration like in
case of Paris Island was not reported before. In terms of free pro-
line content, we obtained significantly different results (considerably
higher increases) from those reported by MAHMOUDI et al. (2011)
for two other cultivars, even though the cultivation and treatment
conditions were very similar. While their one month old plants,
grown hydroponically and exposed to 100 mM NaCl, developed a
proline content similar to control or at most two times higher, we
have determined in our cultivars, under rather similar conditions, a
three to twenty times increased proline concentration as a result of
osmotic stress tolerance. These differences may be due to different
developmental phases of the examined plants (their one month old
plants had a generally lower biomass production than the ones ob-
tained in our experiments). The higher proline accumulation of this
cultivar could be a biochemical indicator of its better salt tolerance.
Increment of free proline concentration in plant cells subjected to
osmotic stress is well documented in the literature, consequently dif-
ferent levels of proline content may indicate the degree of environ-
mental stress that affects water balance of plants. The higher proline
content of leaves can be related to a higher capacity to accumulate
Na* ions in the shoot, as osmotic adjustment is achieved by proline
accumulation in the cytosol and by sodium sequestration in the vacu-
ole (ASHRAF and FOOLAD, 2007; HASEGAWA et al., 2000).

In summary, we concluded that from among the investigated lettuce
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cultivars, Paris Island exhibited the highest tolerance to salt stress
exerted by 50 mM and 100 mM NacCl in hydroponic cultures, while
Asparagina was the most sensitive to high salinity. The cultivars with
the greater growth rate in saline solution have the higher concentra-
tions of Na*, thus suggesting that the involvement of Na* in osmotic
adjustment is a contributor to the higher growth rate. Stomatal clo-
sure reduces moisture accumulation during storage of lettuce. Free
proline content is a reliable, easy-to-determine and sensitive bio-
chemical marker for selection of salt tolerant lettuce varieties even
at an early developmental stage. Salt accumulation in leaves of more
salt tolerant varieties (e.g. Paris Island, Valdor) confers a slight salty
taste to the marketable yield of lettuce, while lower water content,
resulting in a higher percentage of dry biomass, makes the leaves
crispier and darker green, that may compensate for reduced leaf size
of the plants exposed to high salinity.

Based on the above presented data, the Paris Island lettuce cultivar
can be recommended for cultivation in areas affected by increased
salinity. Even though a controlled relation between salt concentra-
tion and salinity stress reactions can be achieved only in laboratory
conditions (because in the field salt concentration cannot be stabi-
lized around the roots and many other variables appear), in the next
step field experiments should complete those undertaken in the pre-
sent study.
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