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Summary
In the present study, we have isolated rhizospheric bacteria JW1 
from rice paddy in Andong, South Korea. The culture filtrate (CF) 
analysis of JW1 showed higher contents of gibberellins GA1, GA4, 
GA7, organic acids, fatty acids and tricalcium phosphates. The 16S 
rDNA gene sequencing and phylogentic analysis revealed that the 
strain JW1 has a 99% homology with Bacillus subtilis sequences 
from BLAST search.The growth promotion capability of the strain 
JW1 was initially assessed on Waito-C and Whayoung-beyo rice 
cultivars, which improved the growth attributes of the rice cultivars. 
Similarly, a significant increase in plant height, biomass, chlorophyll 
contents and nutrient uptake have been noticed, when the Chinese 
cabbage was treated with JW1 strain. From the results, it is concluded 
that the integrative use of B. subtilis JW1 can promote plant growth 
by secreting bioactive compounds. Therefore, B. subtilis JW1 may 
be utilized as an eco-friendly bio-fertilizer in the agricultural fields 
after successful field trials.  
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Introduction
Over the last few years, the multifaceted interactions of plant growth 
promoting microrganisms have been extensively explored as a 
productive source of novel bioactive natural products (Bilal et al., 
2018; Hamayun et al., 2017; Hussain et al., 2018; Ikram et al., 2018; 
Mehmood et al., 2019). In fact, the growth and development of the 
host plant under stress conditions can be improved by the production 
of microbial secondary metabolites (Ismail et al., 2019; Ismail  
et al., 2018; Jan et al., 2019; Joo et al., 2009; Mehmood et al., 2018; 
Nusrat et al., 2019). Moreover, beneficial rhizospheric bacteria 
or plant growth promoting rhizospheric bacteria (PGPR) can also 
promote the growth of host plant under normal as well as stress 
conditions through the release of bioactive secondary metabolites 
(Souza et al., 2015). These bioactive compounds, include indole 
acetic acid (IAA), cytokines (CK), jasmonic acid (JA), gibberellins 
(GA) and abscisic acid (ABA). In other words, these bioactive  
compounds are known as plant hormones or growth regulators 
(Marques et al., 2010). Similarly, PGPR can fix biological nitrogen, 
solubilize the insoluble/non-available phosphorus (Jeon et al., 2003), 
and alleviate stress through changes in ACC deaminase expression 
(Souza et al., 2015). Furthermore, various PGPR have shownhostile 
activity against phyto-pathogenic microorganisms by releasing anti-
pathogenic compounds (Lucy et al., 2004). 
During the last few decades, researchers have concentrated on the 
role of soil microorganisms that convert insoluble phosphate to 

soluble forms (Ordoñez et al., 2016; Ruangsanka, 2014). Most of 
rhizospheric bacteria that solubilize inorganic phosphate belongs to 
Pseudomonas, Enterobacter, Bacillus and some soil fungi, such as 
Aspergillus (Osorio Vega, 2007; Patgiri and Bezbaruah, 1990; 
Rao, 1982; Whitelaw, 1999). PGPR are also reported to produce 
organic acids, including gluconic, acetic, malic, citric, lactic, oxalic, 
formic, and 2-keto-gluconicacids. These microrganisms also re- 
lease protons into the soil (Osorio Vega, 2007), thus converting 
the non-available form of phosphorus into available forms. 
Phosphate solubilizing and siderophore producing microbes, such 
as Acinetobacter rhizosphere, Burkholderia cepacia, Streptomyces 
tendae and Serratia marcescensare considered as important PGPR 
because of their proven activity inenhancingcrop production (Ben 
Farhat et al., 2009; Dimkpa et al., 2009; Gulati et al., 2010; Song 
et al., 2008; Vejan et al., 2016).  Bacillus species have also shown 
support towards the optimal growth of the host plants by protecting 
them against the enimies and/or by secreting phytohormones and 
organic acids (Tahir et al., 2017; Yi et al., 2018). Previously, various 
bacterial strains have been reported for cabbage growth promotion 
under stress conditions (Hussein et al., 2016; Liu et al., 2016).
Chinese cabbage (Brassica rapa L.) is grown for vegetable purpose 
and for their active nutritional value. Due to its nutritional value, 
high yield varieties were introduced, which increases its production, 
although it requires large quantities of fertilizers and chemicals. 
For sustainable cultivation of Chinese cabbage in an eco-friendly 
manner, and less dependence on synthetic fertilizers and agro-
chemicals, utilizing native microflora in the form of PGPR can be 
an ideal strategy. The current study was designed to identify the 
novel rhizospheric bacteria from the paddy fields in Andong, South 
Korea; to screen the isolated bacteria for plant growth promotion 
abilities (like phosphate solubilizing, siderophore formation and 
phytohormones production) in Chinese cabbage.

Material and methods
Isolation of rhizospheric bacteria 
Rhizospheric soil collected from the rice paddies in Andong was 
screened for bacterial isolates capable for plant growth promotion. 
Plant samples with rhizospheric soil were packed in sterilized 
polyethylene zip-bags. The bags were then stored in an ice box and 
the samples were transported to the laboratory. From the roots of each 
plant 1 g of soil was dissolved in saline water (0.85%) and marked 
as a stock solution. A serial dilution (10-1 to 10-9) was initially setup 
and finally 10-4 dilution was selected for further analysis on the basis 
of results (Kang et al., 2009). LB agar media were used for bacterial 
isolation by direct plating method and the plates were incubated at 
28 °C till the emergence of bacterial colonies. Pure colonies were 
obtained by picking a single colony and re-plated on LB agar media. 
Pure colonies were identified by observing the size, color, shape and 
growth pattern (Barillot et al., 2013; García-Salamanca et al., 
2013). 
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Phosphate solubilization
Bacterial isolate JW1 was inoculated on 0.5% ofNational Botanical 
Research Institute’s phosphate (NBRIP) media plates (generously 
provided by National Botanical Research Institute) (Nautiyal, 1999). 
The plates were then incubated 30 °C for 3-days. The formation of 
halos by the inoculated bacteria indicates phosphate solubilization. 
The process of phosphate solubilization was monitored by checking 
the pH of liquid NBRIP medium after every 12 h till the end of the 
experiment.

Organic acids production
Millipore filter (0.22 μm) was used to obtain bacterial culture 
filtrate. The filtered cultures (10 μℓ) were then injected into a high 
performance liquid chromatography (HPLC; Model: Waters 600E) 
for further analysis. The HPLC was equipped with a Refractive Index 
Detector (Model: Waters 410) and RSpak KC-811 (8.0 × 300 mm) 
column. The conditions for the analysis were: Eluent = 0.1% H3PO4/
H2O, Flow rate = 1.0 ml/min, Temperature = 40 °C. The concentration 
of each organic acid was determined through comparison with their 
respective standards (retention times and peak areas). Succinic acid 
(Sigma-Aldrich, USA), lactic acid, malic acid, and butyric acid 
(Supelco, USA) were used as standards (Kang et al., 2012). 

Screening of isolate JW1 on rice 
To assess the growth activity of the bacterial isolate JW1, Waito-C 
(dwarf and GAs mutant rice cultivar) and Whayoung-beyo (normal 
GAs producing rice cultivar) were used as test plants. Initially, seeds 
of the tested cultivars were surface sterilized with sodium hypo-
chlorite and then thoroughly washed with sterilized distilled water. 
The clean seeds were spread in a plate containing sterilized dis-
tilled H2O for germination. Germinated seedlings were transplanted 
in magenta box, containing 90 ml of water agar media (0.8%). The 
box wastransferred to thepresetgrowth chamber (light intensity = 
1,000  μmol m-2  s-1 + temperature = 35 °C for 16 h as a day and  
20 °C for 8 h as a night). When the tested rice cultivars reached to 
two-leaved stage, a 10 μl of lyophilized bacterial filtrate suspension 
was applied to the tip of apical meristem.The growth attributes of 
both rice cultivars were analyzed after 10 days of treatment. 

Quantification of bacterial secreted gibberellins 
The bacterial isolate JW1 was inoculated into nutrient broth  
(120 ml) for 7 days at 30 °C (shaking incubator-120 rpm) as described 
earlier (Kang et al., 2009). The culture medium and bacterial cells 
were separated through centrifugation (2500 × g at 4 °C for 15 min). 
The culture medium (50 ml) was used to extract and purify the GAs 
as described by Kang et al. (2009). Before purification, deuterated 
GA internal standards (20 ng; [17, 17-2 H2] GA1, GA4, GA7), ob-
tained from Prof. Lewis N. Mander, Australian National University, 
Canberra, Australia, were added to the CF. The CF was subjected to 
chromatographic and mass spectroscopy techniques for identifica-
tion and quantification of GAs. The data were calculated in ng/ml 
and the analysis was repeated three times.

Molecular identification of isolate JW1
The genomic DNA of isolate JW1 was isolated following the standard 
protocol of Sambrook (2001). The 16S rRNA gene was amplified and 
sequenced using the 27F (5´- AGAGTTTGATC (C/A) TGGCTCAG-3´) 
and 1492R (5´-CGG (T/C) TACCTTGTTACGACTT-3´) universal 
primers (Khan et al., 2014). The BLAST search program of NCBI 
GenBank database/ eztaxon was used to determine the nucleotide 
sequence homology of bacterial isolate JW1. To conduct phyloge-

netic analysis, neighbour joining method was used with the help of 
MEGA v. 6.1 (Tamura et al., 2013). The closely related sequences 
with highest homology, query coverage, and lowest E-values were 
used for alignment with ClustalW. The isolate JW116S rRNA gene 
sequence was submitted to GenBank.

Isolate JW1 bioassay on Chinese cabbage 
Healthy and disease free seeds of Chinese cabbage were obtained 
from Seminis Korea Co. (Korea) with a 95% germination rate. These 
seeds were surface sterilized using 2.5% sodium hypochlorite so- 
lution for 20 minutes and washed twice with autoclave distilled  
water. The seeds were then subjected to germination assay in plastic 
trays under greenhouse conditions with the day/night cycle: 14 h at 
28 °C/10 h at 25 °C; relative humidity 60-70%. Uniform size seed-
ling were transplanted into pots (15 seedlings per treatment) filled 
with autoclave horticulture soil. The composition of horticultural 
soil was as follows: peat moss (10-15%), perlite (35-40%), coco peat 
(45-50%), zeolite (6-8%), and NH+4~ 0.09 mg/g, NO−3~ 0.205 mg/g, 
P2O5 ~ 0.35 mg/g, and K2O ~ 0.1 mg/g to prepare the microbe-free 
condition. The experimental treatments comprised, (1) control (2) 
isolate JW1 treated plants and (3) inoculation of Chinese cabbage 
with bacterial free CF (Kang et al., 2009). A 25 mL of bacterial cells 
and cell free extracts were applied to plants, twice consecutively, in a 
week. After 2 weeks of such treatment, the experiment was harvested 
and analyzed for shoot length, root length, fresh and dry biomass, 
chlorophyll contents (SPAD-502 Minolta, Tokyo, Japan). For dry 
weight data, respective plants were randomly collected and dried in 
oven at 70 °C for 72 h.

Nutrient uptake by Chinese cabbage
Minerals like calcium, potassium, magnesium, phosphate and sul-
fate were extracted from dried plant samples and determined by 
Inductively Coupled Plasma Mass Spectroscopy (VG Elemental, 
Plasma Quad 3, Perkin Elmer, United States). The quantity of miner-
als was estimated using known standard values.

Statistical analysis
The data were subjected to analysis of variance using SAS-9.1 soft-
ware (SAS Institute, Cary, NC). Mean values among treatments 
were compared by Duncan’s Multiple Range Test (DMRT) test 
at P ≤ 0.05 significance level.

Results
Phosphate solubilization by Bacillus subtilis JW1
The halos formation shows the tricalcium phosphate solubilization 
capacity of bacterial isolate JW1, which reached to its maximum  
after 60 h. The phosphate solubilization potential of the isolate  
JW1 was cross checked by monitoring the pH of the media after  
every 12 h, which showed a steady decline up to 48 h (Fig. 1). The 
pH of the broth was decreased in response to phosphate solubilizing 
activity of the isolate JW1, accompanied by a significant drop from 
an initial pH of 7.0 to pH 4.1 after 72 h.

Organic acid production by isolate JW1 in LB media 
Current study shows that the CF of B. subtilis JW1 contained cit-
ric acid, butyric acid, lactic acid, malic acid, and succinic acid. The 
organic acid analysis showed that JW1 strains have the ability to 
produce significantly higher quantities of lactic acid (28.7 μg/ml) in 
LB medium, followed by succinic acid (10.7 μg/ml), butyric acid and 
malic acid (1.85 μg/ml) respectively (Fig. 2).
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Bioactive GAs detected in the culture filtrate of isolate JW-1
The CF of isolate JW-1 was evaluated for the existence of bio- 
active gibberellins. Our results confirmed the existence of bioactive 
GAs, i.e. GA4, GA1 and GA7. The quantities of bioactive GAs were, 
GA4 (2.26 ng/ml), GA1 (0.12 ng/ml) and GA7 (0.08 ng/ml) as given in  
Fig. 3. 

Screening of isolate JW1 on rice
We assessed the effect of CF of isolate JW1 on shoot length and plant 
fresh biomass of Waito-C and Whayoung-beyorice seedlings after 
seven days of incubation. It was observed that application of isolate 
JW1 on Waito-C significantly promoted the shoot length (20.86%) 
and fresh plant weight (31.75%) as compared to control. A similar 
growth promotion was also observed in Whayoung-beyo (Tab. 1;  
Fig. 4).  

 

 

Fig. 1:	 (A) The rate of halos formation of B. subtilis JW1 in liquid NBRIP medium and pH of the medium. Values given are means of three replicates and 
error bars indicate standard deviation (B) the corresponding B. subtilis JW1on NBRIP growth media plates after 72 hours of incubation at 30 °C. 

Fig. 2:	 Organic acids production of Bacillus subtilis JW1 after five days of 
incubation at 28 oC.

 

 
Fig. 3:	 Bioactive GAs detected in the CF of Bacillus subtilis JW1.

 
Fig. 4:	 Influence of B. subtilis JW1 culture filtrates (10 μl) on growth at-

tributes of Waito-C and Whayoung-beyoseedlings after seven days 
of incubation.

Tab. 1:	 Effects of Bacillus subtilis JW1 on growth attributes of Waito-C and 
Whayoung-beyo

	 Waito-C	 Whayoung-beyo
Treatment	 Shoot length	 Fresh biomass	 Shoot length	 Fresh biomass
	 (cm)	 (g/plant)	 (cm)	 (g/plant)

Control	 12.94±0.38b	 0.19±0.01b	 12.10±0.44b	 0.13±0.01b

Isolate JW1	 15.64±0.39a	 0.25±0.01a	 15.06±0.36a	 0.18±0.01a

Each value in the table are mean ± SE of three replicates. Values in columns 
followed by different letters significantly different at P > 0.05 based on DMRT 
analysis.

 

Molecular identification and phylogenetic analysis
The isolate JW1 was identified by relating the amplified sequences 
of 16S rRNA region using universal primers, with the associated  
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sequences existing in the GenBank database of NCBI (http://www.
ncbi.nlm.nih.gov/BLAST/). The closely related sequences were re- 
covered from GenBank and subjected to phylogenetic analysis 
(Neighbor joining method) by using MEGA 6.1. The closely re-
lated sequences with highest homology, query coverage, and lowest 
E-values were used for alignment with ClustalW. The JW1 isolate 
was identified as Bacillus subtilis (Fig. 5). The newly identified 
isolate B. subtilis JW1 16S rRNA gene sequence was submitted to 
GenBank and was allotted accession no. KM 264401.

Isolate JW1 promotes growth of Chinese cabbage 
The current study revealed that application of isolate JW1 and cell 
free CF significantly promoted plant growth attributes including, 
shoot and root length, fresh/dry weight, and chlorophyll contents as 
compared to control (Tab. 2; Fig. 6). The shoot length of Chinese  
cabbage was significantly increased by cell free CF (12.65%) fol-

lowed by isolate JW1 (3.16%), as compared to control. The same 
trend was noted for the plant fresh and dry biomass (Tab. 2). Higher 
chlorophyll contents were detected in Chinese cabbage when treated 
with cell free CF and isolate JW.  

B. subtilis JW1 promotes nutrients uptake of Chinese cabbage
Chinese cabbage inoculated with cell free CF and with isolate JW1 
significantly enhanced P, K, Mg and S contents of the treated plants 
as compared to the control (Tab. 3). Inoculation of plants with iso-
late JW1 significantly increases the nutrient content of K (6.48%) 
and S (45.91%) as compared to cell free CF (S-2.85%; K-32.29%) 
and control treatments. However, no significant differences in Mg 
contents were observed in different treatments. However, Ca and P 
contents were significantly higher in plants treated with bacterial cell 
free CF i.e. Ca (11.53%) and P (73.30%), and JW1 i.e. Ca (4.17%) and 
P (50.54%) as compared to control (Tab. 3).

Tab. 2:	 Effect of B. subtilis JW1 and cell free CF of B. subtilis JW1 on growth attributes and chlorophyll contents of Chinese cabbage

Treatments	 Shoot length	 Root length	 Fresh biomass	 Dry biomass	 Chlorophyll
	 (cm/plant)	 (cm/plant)	 (g/plant)	 (g/plant)	 (SPAD)

Control	 11.38±0.33b	 6.36±0.07c	 2.14±0.08c	 0.21±0.01c	 29.32±0.35c

B. subtilis JW1	 11.74±0.22ab	 7.22±0.13b	 2.40±0.04b	 0.24±0.01b	 31.48±0.42b

Cells-free extract	 12.82±0.21a	 7.84±0.13a	 2.82±0.10a	 0.31±0.01a	 33.92±0.50a

Each value in the table are mean ± SE of three replicatesand subsequent comparisons were conducted using Duncan’s multiple range tests at P < 0.05.

Fig. 5:	 The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model. Evolutionary analysis were con-
ducted in MEGA v. 6.1. The phylogenetic analysis was performed by constructing Neighbour Joining (NJ) tree using 16S rDNA gene sequences from 
isolate JW1and related bacterial strains.
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Discussion
The area that surrounds the plant roots (rhizosphere) is a multi- 
farious system in which PGPRs interact with the host plants for de-
velopment and higher production. The exact mechanism of PGPR 
on plant growth promotion is still unknown. Many researchers have 
previously reported a significant improvement in crops yield in  
response to microbial inoculations under normal as well as stress 
conditions. In the current study, we have also observed an increase 
in plant height and dry biomass in the JW1 associated plants that 
might be due to the availability of soluble P in the presence of phos-
phate solubilizing rhizospheric bacteria. Higher halos formation with 
respect to the time indicated towards low pH and thus the transfor-
mation of phosphate from non-available in an available form. The 
pH of the media has been monitored for every 12 h, a decline in pH 
reflected the release of organic acids (most probably gluconic acid 
and 2-ketogluconic acid) that indicates the conversion of  insoluble 
phosphate into soluble phosphate. Current results confirmed the 
findings of Nautiyal (1999), who has demonstrated the efficiency of 
bacterial strains NBRI0603, NBRI2601, NBRI3246 and NBRI4003 
to solubilize phosphorous and make it available for the plants to 
achieve normal growth. Similarly, Li et al. (2018) has demonstrated 
that Bacillus subtilis strain SEM-9 has the ability to release P from 
inorganic phosphate sources, including calcium hydrogen phosphate, 
aluminum phosphate, calcium phosphate and ferric phosphate. Also, 
the strain B. subtilis JW1 has produced optimum amounts of organic 
acids (malic acid, succinic acid, lactic acid and butyric acid) after five 
days of incubation at 28 oC. The production of these organic acids by 
our isolate B. subtilis JW1 might be associated with the digestion of 
soil organic matter, i.e. through the oxidation of carbonaceous matter 
in the rhizosphere. The production of organic acids by the Bacillus 
sp. makes the pH of the soil low that make the P soluble and available 
to the plants (Li et al., 2018).
Furthermore, the optimum availability of minerals could enhance 
soil fertility and prolong micro-organisms survival in the soil (Vejan 

et al., 2016; Yang et al., 2011). In the current study, the higher nutrient 
uptake in plant inoculated with B. subtilis JW1 suggests an increased 
availability of soluble nutrients in the rhizosphere of Chinese cab-
bage. Bacillus megaterium strain TV-91C and Bacillus subtilis strain 
TV-17C has been reported to improve the macro and micronutrients 
uptake by cabbage seedlings (Turan et al., 2014). Indeed, plant can 
take up the minerals from the rhizosphere, where the PGPR can in-
teract with host roots and help them to absorb optimum amounts of 
mineral nutrients from the soil (Turan et al., 2012).
Moreover, we have also observed that the CF of B. subtilis JW1 
promoted the growth attributes (such as shoot and root lengths, 
biomass and chlorophyll contents) of Chinese cabbage, which can 
be attributed to its potential to release bioactive GA in the culture 
medium. GA is well known phytohormone that can promote plant 
growth even under stressful conditions (Khan et al., 2018; Kim  
et al., 2009). It has been demonstrated previously that some of the 
plant growth promoting microorganisms, Asprgillus fumigatus TS1 
and Fusarium proliferatum BRL1can be utilized as a plant growth 
promoter as it secretes GAs. In addition, the isolates have intensively 
colonized host roots and significantly enhance endogenous GA, thus 
promoted host plant growth (Bilal et al., 2018). Similarly, higher 
root and shoot growth and GA contents have been recorded in cab-
bage seedlings inoculated with Bacillus megaterium strain TV-91C, 
Pantoeaagglomerans strain RK-92, and Bacillus subtilis strain TV-
17C (Turan et al., 2014). In the light of these findings, it is obvious 
that using such useful GAs producing PGPR as eco-friendly bio- 
fertilizer might enhance the growth of economically important crop 
plants to sustain agriculture.

Conclusion
From the growth promoting capabilities of our isolate B. subtilis 
JW1, it is concluded that the current strain secreted higher amounts 
of exogenous gibberellins and have the ability to metabolize phos-

Fig. 6:	 Influence of B. subtilis JW1 and cell free CF on growth attributes of Chinese cabbage.

Tab. 3:	 Effect of isolate JW1 and bacterial cell free CF on nutrient uptake of Chinese cabbage

Treatments	 K	 Ca	 Mg	 P	 S

Control	 10.49±0.01c	 31.12±0.01c	 5.35±0.02b	 4.57±0.01c	 2.57±0.03c

B. subtilis JW1	 11.17±0.02a	 32.42±0.03b	 5.38±0.02b	 6.88±0.01b	 3.75±0.01a

Cell-free extract	 10.79±0.02b	 34.71±0.03a	 5.69±0.02a	 7.92±0.06a	 3.40±0.02b

Each value in the table are mean ± SE of three replicatesand subsequent comparisons were conducted using Duncan’s multiple range tests at P < 0.05.
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phate into a form that is readily available to the plant. Further studies 
are needed to isolate the genes coding for gibberellin production in 
B. subtilis JW1 and for determining how to use the new knowledge 
under field conditions.
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