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Summary

Glucosinolates (GS) are sulfur-rich secondary metabolites found in
the Brassicaceae and other related families of the order Brassicales.
GS consist of structurally-related compounds with different side
chains. To explore the possibility that various side chain confer di-
vergent biological activities to individual GS, we have investigated
the performance of the specialist pest beetle, Phaedon cochleariae
(F.) on Arabidopsis thaliana L. mutants and Columbia wild-type (WT)
which differ in the main group of GS. Plant lines of A. thaliana altered
for the expression of MAM3, because of the introduction of an over-
expression construct of MAM3 (mam3*) or containing double knock-
outs of CYP79B2 and CYP79B3 (cyp79B2/cyp79B3") were used for
the study in comparison to the WT.

A. thaliana genotypes differed in their GS profiles. The highest GS
content was present in the WT followed by mam3* and cyp79B27/
cyp79B3°. A modified aliphatic GS content was detected for the
mam3* as compared to the WT lines. Furthermore, indolyl GS were
completely absent in cyp79B2/cyp79B3". The percentage weight
increase of larvae raised on each of the three plant genotypes was
significant different. Larval performance was poorest on plants of
cyp79B2/cyp79B3  and best on WT, but there was no significant
difference found in percentage weight increase on mam3* and WT.
There was no correlation between the weight increase of the larvae
on genotypes and induced levels of aliphatic, indolyl, and total GS.
However, the poor performance of beetle larvae on cyp79B27/
cyp79B3 compared to WT and mam3* might be explained by com-
parable high aliphatic GS levels of this mutant, a different induction
of secondary metabolites, and the absence of indolyl GS. Basic
knowledge about the relationship of GS structures and their insect
pests may help in further resistance breeding of crucifer crops.

Introduction

Glucosinolates (GS) are sulphur-rich B-thioglucosides present within
the Brassicaceae and other related families of the order Brassicales
(RODMAN et al., 1996). All GS contain a common core structure, but
have variable side chains including aliphatic, aromatic, or indolic
structures (WITTSTOCK and HALKIER, 2002; KLIEBENSTEIN et al.,
2005). To date, more than 120 GS have been identified in plants
(FAHEY et al., 2001), including 34 compounds present in the model
plant Arabidopsis thaliana L. (KLIEBENSTEIN et al., 2001). In plants
GS and their hydrolyzing enzymes, B-thioglucosidases, which are
also called myrosinases, are stored in different cell compartments or
specialized cells (LUTHY and MATILE, 1984; KOROLEVA et al., 2000).
But when the plant is damaged, hydrolysis occurs and biological
active products such as isothiocyanates, thiocyanates, and nitriles
are released.

GS have dual roles in plant-insect interactions. Although they function
as defense compounds, several insects that are specialists have life
cycles that are closely linked to the presence of such secondary com-
pounds in their brassicaceous host plants (RENWICK, 2002). They
are known to stimulate feeding in a number of insects that feed ex-

clusively on crucifers (DAVID and GARDINER, 1966; NAULT and STYER,
1972; TANTON, 1977; LARSEN et al., 1985). Brassicaceae species and
individual plants vary within concentration and composition of GS
(FAHEY et al., 2001; KLIEBENSTEIN et al., 2001). Additionally, many
brassicaceous plants produce higher levels of indolyl GS after
herbivory (KORTISAS et al., 1991; BODNARYK, 1992; GRIFFITHS
et al., 1994; BAUER et al., 1998; AGRAWAL et al., 1999a). GS and/or
their breakdown products have a variety of effects upon organisms
that come in contact with them, but do not always control the inter-
action between plants and their potential herbivore or invading
microorganisms (CHEW, 1988b). Distinct GS can have different effect
on the same insect herbivore. For example, p-hydroxybenzyl GS is
involved in plant resistance (antixenosis) against feeding by the flea
beetle, Phyllotreta cruciferae (Goeze), in seedlings of yellow mustard,
Sinapis alba L. (BODNARYK, 1991).Whereas, allyl GS and indol-3-
ylmethyl, which are present in seedlings of Indian mustard, Brassica
juncea (L.) and oilseed rape, Brassica napus L., respectively, are not
determinants of feeding behavior by P. cruciferae (BODNARYK and
PALANISWAMY, 1990).

The mustard leaf beetle, Phaedon cochleariae (F.) (Coleopterans:
Chrysomelidae), is an insect pest of crucifer crops that is common
to Europe (FINCH and JONES, 1986). When this insect emerges in
large numbers, it can quickly devastate crucifer fields with especially
severe effects on young seedlings. Hence, a study of the insect/host-
plant interaction including the feeding behavior can lead to agri-
culturally relevant management strategies. TANTON (1977) and
NIELSEN (1978) found that P. cochleariae responded to a variety of
GS in feeding bioassays, with distinct preferences for the aliphatic
allyl GS (sinigrin) compared to the aromatic compounds: p-hydroxy-
benzyl GS (sinalbin) and benzyl GS (glucotropaeolin). However,
these studies have limited insights into the impact of GS structure
on the larvae and beetle performance of P. cochleariae. We have
taken this opportunity to investigate the effect of different GS classes
on the feeding and growth of the P. cochleariae larvae by using
A. thaliana genotypes with desired GS profiles.

Materials and methods
Plant cultivation and experimental conditions

Seeds from single seed propagation were sown on petri plates
containing solidified Murashige-Skoog media. After stratification
for three days at 4°C, germinated seedlings were transferred to
7 x 6 cm pots filled with sterile potting mix (Gramoflor). Plants were
kept in a growth chamber at 21 + 1°C, 60 + 5% relative humidity, at
200 umol m?2 s light intensity, and on a 10.5 : 13.5 (L : D) photo-
period. Twenty-six days old plants were used for the force feeding
experiments.

Insect rearing

The start population of P. cochleariae was obtained from Bayer Crop
Science (Mohnheim, Germany). This beetle species was initially
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reared on pak-choi plants (Brassica chinensis L.) following by savoy
cabbage (Brassica sabauda L.) in the laboratory of the Urban
Horticulture section at Humboldt University Berlin. Pak-choi plants
were provided as food in insect cages. For egg laying the beetles
were provided the severed stem of savoy cabbage. After the beetles
laid eggs on savoy cabbage, which was transferred to a new cage for
larval hatching. Larvae were fed with savoy cabbage leaves, which
were replaced on alternate days until larval pupation. Pupae were
transferred to another cage for beetle hatching. This procedure was
repeated to obtain a sufficient number of insects all at the 1* instar
stage for the bioassays.

Force feeding experiments

Lines (three each) of two different A. thaliana mutants with modi-
fied GS profiles and the corresponding Columbia wild-type (WT)
were used for the bioassays. The first lines were the double knock-
out mutant of CYP79B2 and CYP79B3 (cyp79B2/cyp79B3", a gift
from J. Chory, The Salk Institute for Biological Studies, California).
Further information on the construction of the mutant can be reviewed
in ZHAO et al. (2002). The second plant mutant lines are characterized
by over expression of MAM3 (mam3*) and were generated as de-
scribed in TEXTOR et al. (2007). First instars of P. cochleariae were
weighted before release on the plants, one larva per plant. The pots
were covered with small cages made from transparent plastic
cylinders and fine mesh gauze. After four days pre-conditioning to
their respective plant lines, the larvae were weighted and transferred
to a new plant of the same genotype. After three days the final larval
weight was determined. Ten replicates were made for each of the
nine lines of mutants and WT. Four plants of each genotype were
harvested following larval feeding at 30 days after planting (first
harvest) as well as 33 days after planting (second harvest), frozen in
liquid nitrogen and stored at -80°C prior to GS analysis. Data from
chemical analysis and bioassays data were analyzed by performing
variance analysis with following mean comparison test by using
SYSTAT 11.0.

Glucosinolate analysis

Plant samples were freeze-dried and whole plants were grounded.
Samples of 20 mg were extracted in 70% methanol following the
procedure described by MEWIS et al. (2005). Extraction was done
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in five replications for each treatment and genotype. To quantify GS
content, an internal standard p-hydroxybenzyl GS (purified from
Sinapis alba seeds as potassium salt) was added initially to the first
methanol extract. The GS of extracts were analyzed as desulfo GS
and for this purpose the extracts were desulfated on DEAE Sephadex
A-25 mini columns with aryl sulfatase solution (Sigma-Aldrich Corp
H 1 from Helix pomatia); column wash steps are as described in
MEWIS et al. (2005). A 40 ul aliquot of each GS extracts was run on
a Dionex Summit P680A HPLC system equipped with an ASI-100
auto sampler and a PDA-100 photodiode array detector. GS were
separated on a narrow bore column (Acclaim ™ 120, 250-2.1, RP18,
Dionex) at a flow rate of 0.4 ml / min and a column temperature of
25°C. A 43 min gradient program with eluents: A) ultra pure H,O
(Milli Q quality) and B) 40% acetonitrile (HPLC grade) consisted of
0 -1 min 99.5% A, 1 - 8 min 80%, 10 - 19 min 50%, 22 - 28 min
1.0% A, 33 - 36 min 99.5% A. The eluent was monitored for ab-
sorbance at 229 nm and GS were identified using purified standards,
retention time, and UV Vis spectra according to BROWN et al. (2003).
The GS amount was calculated from HPLC peak areas using response
factors of desulfo GS at 229 nm.

Results

Insect performance on genotypes with different glucosinolate
profiles

Percentage weight increase of larvae force-fed on each of the geno-
types was significantly different in the first experiment (Fig. 1A).
Larval performance was poorest on the cyp79B2/cyp79B3" mutants
followed by mam3*, and WT. There was no significant difference
in percentage weight increase determined after feeding on mam3+
and WT. Although the same trend was observed in the second
experiment (Fig. 1B), the differences observed were not significant.
To explain the impact of different types of GS on P. cochleariae larval
performance, simple correlation of the larval weight increase to
induced total GS contents were performed. We found that there was
no correlation with R = 0.136 between the weight increase of the
larvae and increasing levels of induced total GS among all genotypes.
The performance of larvae was comparable poor on cyp79B27/
cyp79B3~ mutants with lowest GS levels. Although a different effect
of GS classes was expected, no correlation of larvae performance to
induced indolyl (R = 0.231) or aliphatic GS (R = 0.032) contents of
genotypes was found (Fig. 2 A and B).
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Fig. 2: Correlation between weight increase of P. cochleariae larvae and induced aliphatic (A) and indolyl glucosinolate (B) content of A. thaliana genotypes

(1** experiment)

Glucosinolate induction of Arabidopsis thaliana genotypes
by Phaedon cochleariae

The experimental A. thaliana mutant lines differed in their GS profile
compared to the WT (Tab. 1). In the WT the major aliphatic and
indolyl GS were 4-methylsulfinylbutyl GS and indol-3-ylmethyl GS,
respectively. In contrast to WT, 3-methylsulfinylpropyl GS was the
dominant aliphatic GS in mam3* and levels of the long chain aliphatic
GS, C7 and C8, were increased. Overall, levels of aliphatic GS were
lower than in WT but with about similar levels of indolyl GS. The
major GS compound detected in cyp79B27/B3" was 4-methylsulfinyl-
butyl GS followed by 3-methylsulfinylpropyl GS, as in WT, but
indolyl GS were complete absent in this mutant. Similar results for
constitutive and induced levels were observed for the two ex-
periments.

The accumulation of GS following herbivory damage differed in the
three genotypes (Tab. 1). After feeding of P. cochleariae, levels of
total GS increased in all genotype lines, but the accumulation was
only significant with the cyp79B2-/B3- mutant (Tukey’s HSD test
p = 0.004). In the WT, a marked increase of indol-3-ylmethyl and 1-
methoxyindol-3-ylmethyl GS levels was observed after larval feeding
(Tab. 1). Also the major methylsulfinyl GS increased after herbivory
of P. cochleariae. In the mam3* mutant levels of nearly all aliphatic
(except 4-methylthiobutyl GS and 8-methylsulfinyloctyl GS) and
indolyl GS increased after feeding by larvae. The major aliphatic
GS, 4-methylsulfinylbutyl GS increased about two/three-fold. As
with the WT response, a strong increase of indol-3-ylmethyl and 1-
methoxyindol-3-ylmethyl GS was observed after beetle herbivory.
Only methylsulfinyl GS were induced by larvae feeding in cyp79B2-
/B3-, wherein this GS increased about two-fold in this mutant.

Discussion

It has been shown that GS and their corresponding hydrolysis
products determine plant resistance in crucifers such as A. thaliana
and Brassica sp., especially against generalist insects (LAMBRIX
et al., 2001, reviewed in KLIEBENSTEIN et al., 2004). However, GS
are known to influence the behavior of insects that specialize on
crucifer plants (RENWICK, 2002; MEWIS et al., 2002). The eftects of
GS are assumed to vary depending on the attacking insect herbi-
vore as well as the concentration and composition of GS present in
the plants. Many studies have demonstrated that GS and their
hydrolysis products stimulate feeding in crucifer specialists (HICKS,
1974; CHEW, 1988a; BARLET and WILLIAMS, 1991; LI et al., 2000).

That GS and their corresponding hydrolysis products can adversely
affect the performance of specialists as well is reported by AGRAWAL
and KURASHIGE (2003). They reported a negative effect of higher
GS concentrations on the lepidopteron Pieris rapae L.

To study the effect of GS classes on the crucifer specialist P. coch-
leariae, we used different mutant lines of A. thaliana with modified
GS profiles and their corresponding WT. Larval performance in the
experiments, measured as percentage weight increase, was best on
Columbia WT, followed by mam3*, and the double knock out mutant
cyp79B2/cyp79B3°. This was opposite to detected constitutive and
induced GS contents in genotypes, whereby levels were highest in
the WT and lowest in cyp79B2/cyp79B3". Furthermore, we did not
find a negative correlation of larval performance to increasing total
GS contents of genotypes. This differs to other studies, where weight
increase of crucifer specialist larvae was slower on plants with higher
GS contents (NAYAR and THORSTEINSON, 1963; AHMAN, 1986; LouDA
and COLLINGE, 1992; WOLFSON, 1982; AGRAWAL and KURASHIGE,
2003; ROHR et al., 2006). For example, LI et al. (2000) reported that
there was a negative correlation of larvae weight increase in Plutella
xyllostella (L.) and Spodoptera eridania (Stoll) to an increasing
allyl GS concentration. Also ROHR et al. (2006) found that larval per-
formance of Pieris brassicae L. was negatively related to increasing
GS contents in A. thaliana ecotypes. In contrast, KLIEBENSTEIN et al.
(2005) demonstrated that plant feeding damage was positively
correlated to increasing levels of aliphatic GS in the crucifer specialist
P. xylostella, whereas negative relationships of larval performance
and increasing GS levels were detected for the generalist caterpillars
Trichoplusia ni (Hiibner) and Spodoptera exigua (Hiibner). In our
present study the insect-plant interaction seems to be complex, but it
can be noted that the P. cochleariae performance was worse on the
mutant which contain only aliphatic GS. Furthermore, beetles feeding
induced aliphatic GS to a greater extent in cyp79B2/cyp79B3 and
mam3* compared to the WT at the end of the experiment (second
harvest, Tab. 1). The study of SIEMENS and MITCHELLOLDS (1996)
with Phyllotreat cruciferae (Goeze) and P. xylostella showed that
herbivory of these insects varied curvilinearly with GS levels in
Brassica campestris (L.), with maximum herbivory at intermediate
GS levels. Such relationship could be also true for P. cochleariae.

A. thaliana ecotypes differ especially in their aliphatic but not their
indolyl GS structures (KLIEBENSTEIN et al., 2001; REICHELT et al.,
2002). From the high variability of aliphatic GS it is assumed that
structurally different GS and their hydrolysis products have different
biological effects. For example, higher oviposition preference by
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Tab. 1: Glucosinolate content of Arabidopsis thaliana genotypes in the first experiments, control plants and plants after P. cochleariae feeding (induction of
single compounds is in grey)

Genotype Glucosinolate Glucoinolate content (umol/g dry weight)
First harvest Second harvest
Control Phaedon Control Phaedon

3-Methylsulfinylpropyl 4.34 5.04 4.77 5.76
4-Methylsulfinylbutyl 26.07 27.47 24.72 36.96
5-Methylsulfinylpentyl 0.71 0.86 0.72 1.08
6-Methylsulfinylhexyl 0.13 0.21 0.17 0.26
4-Hydroxyindol-3-ylmethyl 0.10 0.19 0.27 0.32
7-Methylsulfinylheptyl 0.97 0.96 0.93 1.12
= 4-Methylthiobutyl 1.30 1.29 1.18 1.10
= Indol-3-ylmethyl 0.86 6.51 5.24 10.14
8-Methylsulfinyloctyl 0.00 0.00 0.00 0.64
4-Methoxyindol-3-ylmethyl 1.28 1.24 0.32 0.90
1-Methoxyindol-3-ylmethyl 0.57 1.13 0.00 1.20
7-Methylthioheptyl 0.10 0.14 0.05 0.09
8-Methylthiooctyl 0.19 0.22 0.13 0.20
Total 36.63a 45.27a 38.48a 59.76a
3-Methylsulfinylpropyl 11.53 12.78 11.46 15.31
4-Methylsulfinylbutyl 4.22 7.07 3.61 10.13
5-Methylsulfinylpentyl 0.24 0.42 0.25 0.49
6-Methylsulfinylhexyl 0.38 0.66 0.58 1.14
4-Hydroxyindol-3-ylmethyl 0.07 0.14 0.12 0.33
7-Methylsulfinylheptyl 1.77 2.90 2.14 3.23
é 4-Methylthiobutyl 0.35 0.39 0.16 0.34
§ Indol-3-ylmethyl 5.59 7.59 6.60 12.79
8-Methylsulfinyloctyl 1.22 0.29 0.00 0.04
4-Methoxyindol-3-ylmethyl 1.34 1.42 1.10 1.83
1-Methoxyindol-3-ylmethyl 0.47 1.94 0.08 0.49
7-Methylthioheptyl 0.47 0.93 0.63 0.73
8-Methylthiooctyl 0.75 1.29 0.81 1.54
Total 28.38a 37.81a 27.53a 48.38b
3-Methylsulfinylpropyl 1.68 2.34 2.19 3.68
4-Methylsulfinylbutyl 9.36 14.91 10.79 21.73
5-Methylsulfinylpentyl 0.28 0.49 0.32 0.75
6-Methylsulfinylhexyl 0.07 0.13 0.06 0.19
4-Hydroxyindol-3-ylmethyl 0.00 0.00 0.00 0.00
g 7-Methylsulfinylheptyl 0.32 0.67 0.32 0.86
N 4-Methylthiobutyl 1.10 1.03 0.96 0.85
g Indol-3-ylmethyl 0.00 0.00 0.00 0.00
% 8-Methylsulfinyloctyl 1.22 2.73 1.68 3.65
4-Methoxyindol-3-ylmethyl 0.00 0.00 0.00 0.00
1-Methoxyindol-3-ylmethyl 0.00 0.00 0.00 0.00
7-Methylthioheptyl 0.06 0.10 0.06 0.06
8-Methylthiooctyl 0.14 0.22 0.17 0.15
Total 14.21a* 22.60b 16.53a 31.93b

*different letters indicate significant differences among treatments, Tukey’s HSD test p < 0.05
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Hellula undalis (F.) was noted for aliphatic alkenyl GS than indolyl
GS (MEWIS et al., 2002). Also KLIEBENSTEIN et al. (2002b) found
evidence for diverse biological activities of GS by studying their
variation and impact on plant resistance against the generalist 7. ni.
The authors suggested that GS with alkenyl side chains were more
of a deterrent to the test insect than GS with non-alkenyl side chains.
ROHR et al. (2006) observed a correlation of side chain structure of
GS in A. thaliana ecotypes and the performances of a generalist and
specialist lepidopteron, S. exigua and P. brassicae, respectively. Here
larval weight gain was greater on the 3-hydroxypropyl GS-containing
ecotypes than on methylsulphinyl GS-producing ecotypes. Further-
more, GIAMOUSTARIS and MITHEN (1995) reported an increasing
damage of Brassica napus L. plants by the cabbage stem flea beetle,
Psylliodes chrysocephala (L.), with plants containing GS with shorter
side chains and increased levels of hydroxylation. Our initial results
with P. cochleariae do not support the notion of different responses
to structurally distinct classes of GS by a specialist. However, in
this study P. cochleariae fed on only a limited number of GS, which
probably represents a subset of all the GS that the species may
encounter. However, further studies with different specialist insects
are needed to identify general effects of GS structures on feeding
behavior that could be employed by plant breeders to develop insect
resistance crop plants.

Acknowledgement

We thank Dr. Joanne Chory (The Salk Institute for Biological Studies,
California, US) for providing the cyp79B2/cyp79B3  mutant lines.
Also thanks to Dr. Peter Meisner and Gerd Trautmann (Bayer Crop
Science, Mohnheim, Germany) for sending the starting population
of Phaedon cochleariae beetles. The authors further thank Dr.
Jonathan Gershenzon (Max-Planck Institute for Chemical Ecology
Jena, Germany) for his collaborative help.

References

AGRAWAL, A.A., 1999a: Induced responses to herbivory in wild radish: Effects
on several herbivores and plant fitness. Ecology 80, 1713-1723.

AGRAWAL, A.A., KURASHIGE, N.S., 2003: A role for isothiocyanates in plant
resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol.
29, 1403-1415.

AHMAN, L., 1986: Toxicities of host secondary compounds to eggs of the
Brassica specialist Dasineura brassicae. J. Chem. Ecol. 12, 1481-1488.

BARLET, E., WILLIAMS, LE., 1991: Factors restricting the feeding of the cab-
bage stem flea beetle ( Psylliodes chrysocephala). Entomol. Exp. Appl.
60, 233-238.

BAUER, R., STAEDLER, E., MONDE, K., TAKASUGI, M., 1998: Phytoalexins
from Brassica (Cruciferae) as oviposition stimulants the cabbage root
fly, Delia radicum. Chemoecology 8, 163-168.

BODNARYK, R.P., 1991: Developmental profile of sinalbin (p-hydroxybenzyl
glucosinolate) in mustard seedlings, Sinapis alba L., and its relationship
to insect resistance. J. Chem. Ecol. 17, 1543- 1556.

BODNARYK, R.P., 1992: Effects of wounding on glucosinolates in the coty-
ledons of oilseed rape and mustard. Phytochemistry 31, 2671-2677.
BODNARYK, R.B., PALANISWAMY, P., 1990: Glucosinolate levels in cotyledons
of mustard Brassica juncea (L.) and Rape, B. napus (L.) do not determine
feeding rates of flea beetle, Phyllotreta cruciferae (Goeze). J. Chem.

Ecol. 6, 2735-2746.

BROWN, P.D., TOKUHISA, J.G., REICHELT, M., GERSHENZON, J., 2003: Variation
of glucosinolate accumulation among different organs and developmental
stages of Arabidopsis thaliana. Phytochemistry 62, 471-481.

CHEW, ES., 1988a: Biological effects of glucosinolates. In: Cutler, H.G.
(ed.), Biologically Active Natural Products: Potential Use in Agriculture,
American Chemical Society, Washington, DC, 155-181.

CHEW, E.S., 1988b: Searching for defensive chemistry in the Cruciferae, or,
do glucosinolates always control interactions of Cruciferae with their
potential herbivores and symbionts? No! Chemical Mediation of Co-
evolution (ed. by K.C. Spencer), 81-112.

DaviD, W.A.L., GARDINER, B.O.C., 1966: Mustard oil glucosides as feeding
stimulants for Pieris brassicae larvae in a semi-synthetic diet. Entomol.
Exp. Appl. 9, 247-255.

FAHEY, J.W., ZALCMANN, A.T., TALALAY, P., 2001: The chemical diversity
and distribution of glucosinolates and isothiocyanates among plants.
Phytochemistry 56, 5-51.

FiNch, S., JoNEs, T.H., 1986: Interspecific competition during host plant
selection by insect pests of crucifer crops. Series Entomologia (The
Hague) Vol. 41, Insect-Plants, 85-90.

GRIFFITH, D.W., BIRCH, A.N.E., MACFARLANE-SMITH, W.H., 1994: Induced
changes in the indole glucosinolate content of oilseed and forage rape
(Brassica napus) plants in response to either turnip root fly (Delia floralis)
larval feeding or artificial damage. J. Sci. Food. Agric. 65, 171-178.

Hicks, K.L., 1974: Mustard oil glucosides: Feeding stimulants for adult
cabbage flea beetle, Phyllotreta cruciferous (Coleoptera: Chrysomelidae).
Ann. Entomol. Soc. Amer. 67, 261-264.

KLIEBENSTEIN, D.J., KROYMANN, J., BROWN, P.D., FIGUTH, A., PEDERSEN,
D., GERSHENZON, J., MITCHELL-OLDS, T., 2001: Genetic control of natural
variation in Arabidopsis thaliana glucosinolate accumulation. Plant
Physiol. 126, 811-825.

KLIEBENSTEIN, D.J., 2004: Secondary metabolites and plant/environment
interactions: a view through Arabidopsis thaliana tinged glasses. Plant
Cell Environ. 27, 675-684.

KLIEBENSTEIN, D.J., KROYMANN, J., MITCHELL-OLDS, T., 2005: The
glucosinolate myrosinase system in an ecological and evolutionary
context. Curr. Opin. Plant Biol. 8, 264-271.

KLIEBENSTEIN, D.J., PEDERSEN, D., MITCHELL-OLDS, T., 2002b: Comparative
analysis of insect resistance QTL and QTL controlling the myrosinase /
glucosinolate system in Arabidopsis thaliana. Genetics 161, 325-332.

KOROLEVA, O.A., DAVIES, A., DEEKEN, R., THORPE, M.R., ToMOS, A.D.,
HEDRICH, R., 2000: Different myrosinase and ideoblast distribution in
Arabidopsis and Brassica napus. Plant Physiol. 127, 1750-1763.

KoRTISAS, V.M., LEWIS, J.A., FENWICK, G.R., 1991: Glucosinolate responses
of oilseed rape, mustard and kale to mechanical wounding and infestation
by cabbage stem flea beetle (Psylliodes chrysocephala). Ann. Appl.
Biol. 118, 209-222.

LAMBRIX, V., REICHELT, M., MITCHELL-OLDS, T., KLIEBENSTEIN, D.J.,
GERSHENZON, J., 2001: The Arabidopsis epithiospecifer protein promotes
the hydrolysis of glucosinolates to nitriles and influences Trichoplusia
ni herbivory. Plant Cell 13, 2793-2807.

LARSEN, L.M., NIELSEN, J.K., PLONGER, A., SORENSEN, H., 1985: Res-
ponses of some beetle species to varieties of oilseed rape and to pure
glucosinolates. In: Sorensen, H. (ed.), Advances in the production and
utilization of cruciferous crops (Copenhagen 1984). Martinus Nijhoff,
Dordrecht, Netherlands, 230-244.

LouDA. S.M., COLLINGE, S.K., 1992: Plant resistance to insect herbivores: A
field test of the environmental stress hypothesis. Ecology 73, 153-169.

LUTHY, B., MATILE, P., 1984: The mustard oil bomb-rectified analysis of the
subcellular organization of the myrosinase system. Biochem. Physiol.
Pflanzen 179, 5-12.

MEwis, 1., APPEL, HM., HoM, A., RAINA, R., ScHULTZ, J.C., 2005: Major
signaling pathways modulate Arabidopsis thaliana (L.) glucosinolate
accumulation and response to both phloem feeding and chewing insects.
Plant Physiol. 138, 1149-1162.

MEWIS, 1., ULRICHS, C., SCHNITZLER, W.H., 2002: The role of glucosinolates
and their hydrolysis products in oviposition and host-plant finding by
cabbage webworm, Hellula undalis. Entomol. Exp. Appl. 105, 129-139.

Naurr, L.R., STYER, W.E., 1972: Effects of sinigrin on host selection by
aphids. Entomol. Exp. Appl. 15, 423-437.

NAYAR, J.K., THORSTEINSON, A.J., 1963: Further investigations into the
chemical basis of insect-host plant relationships in an oligophagous insect,



Performance of Phaedon cochleariae 113

Plutella maculipennis. Can. J. Zool. 41, 923-929.

NIELSEN, J.K., 1978: Host plant discrimination within Cruciferae: feeding
responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosi-
nolates, cucurbitacins and cardenolides. Entomol. Exp. Appl. 24, 41-54.

QuN, L., EIGENBRODE, S.D., STRINGAM, G.R., THIAGARAJAH, M.R., 2000:
Feeding and growth of Plutella xyllostella and Spodoptera eridania on
Brassica juncea with varying glucosinolate concentrations and myro-
sinase activities. J. Chem. Ecol. 26, 2401-2419.

REICHELT, M., BROWN, P.D., SCHNEIDER, B., OLSHAM, N.J., STAUBER, E.,
ToOKUHIA, J.G., KLIEBENSTEIN, D.J., MITCHEL-OLDS, T., GERSHENZON,
J.,2002: Benzoic acid glucosinolate esters and other glucosinolates from
Arabidopsis thaliana. Phytochemistry 59, 663-671.

RENWICK, J.A.A., 2002: The chemical world of crucivores: lures, treats and
traps. Entomol. Exp. Appl. 104, 35-42.

RobMAN, J.E., KAROL, K.G., PRICE, R.A., SYTEMA, K.J., 1996: Molecules,
morphology and dahlgren’s expanded order Capparales. Systematic
Botany 21, 289-307.

ROHR, F., ULRICHS, C., MUCHA-PELZER, T., MEWIS, 1., 2006: Variability of
aliphatic glucosinolates in Arabidopsis and their influence on insect
resistance. Comm. Appl. Biol. Sci. Ghent University, 71, 507-515.

SIEMENS, D.H., MITCHELL-OLDS, T., 1996: Glucosinolates and herbivory

by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae):
Consequences of concentration and induced resistance. Environ. Entomol.
25, 1344-1353.

TANTON, M.T., 1977: Response to food plant stimuli by larvae of the mustard
beetle Phaedon cochleariae. Entomol. Exp. Appl. 22, 113-122.

TEXTOR, S., KRAKER, DE, J.-W., HAUSE, B., GERSHENZON, J., TOKUHISA, J.G.,
2007: MAM3 catalyzes the formation of all aliphatic glucosinolate chain
lengths in Arabidopsis. Plant Phys. 144, 60-71.

WITTSTOCK, U., HALKIER, B.A., 2002: Glucosinolate research in the Arabi-
dopsis era. Trends in Plant Science 7, 263-270.

WOLFSON, J.L., 1982: Developmental responses of Pieris rapae and Spo-
doptera eridania to environmentally induced variation in Brassica nigra.
Environ. Entomol. 11, 207-213.

ZHAO, Y., HULL, A K., GUPTA, N.R., Goss, K.A., ALONSO, J., ECKER, J.R.,
NORMANLY, J., CHORY, J., CELENZA J.L., 2002: Trp-dependent auxin
biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2
and CYP79B3. Genes Developm. 16, 3100-3112.

Address of the author:
Dr. Inga Mewis, Humboldt University Berlin, Institute for Horticultural
Sciences, Urban Ecophysiology, Lentzeallee 55, 14195 Berlin, Germany




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [907.087 680.315]
>> setpagedevice


