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Summary
The characterization of commercialized and consumed plants is of 
extreme importance, in order to provide clear data regarding the qua-
lity of plants, but also concerning the intake, by consumers, of several 
important compounds present is those plants. Hence, the objective of 
this work was to provide a detailed morphological and biochemical 
description of commercial samples of five common medicinal and 
aromatic plants (MAP’s) (Coriandrum sativum L. –coriander, Men-
tha spicata L. – spearmint,  Ocimum basilicum L. – basil, Origanum 
vulgare L. – oregano and Petroselinum crispum Mill. – parsley). For 
the studied species, statistically significant differences were evident 
for all the morpho-analytical characteristics investigated, as well as 
for the majority of the evaluated biochemical parameters. Specific 
leaf area was higher in Coriandrum sativum, while the water con-
tent of the leaves of Ocimum basilicum was the highest. Regarding 
photosynthetic pigments, when statistical differences were detected, 
these indicated the presence of larger amounts of chlorophyll and 
carotenoids in the leaves of Coriandrum sativum and Petroseli-
num crispum. Carbohydrate quantification indicated a considerably 
higher content in Petroselinum crispum, which also contained higher 
concentrations of  protein, together with Coriandrum sativum. Quan-
tification of total phenolic and thiobarbituric acid reactive substances 
indicated that they were correlated, with leaves of Mentha spicata 
presenting the highest values, on both parameters. This work pro-
vides an overview of selected characteristics of MAP’s that are avail-
able for purchase, and are actually consumed by consumers. 

Data are publicly available from the open access repository 
OpenAgrar, doi: 10.5073/openagrar.2017.000001.
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Introduction
Humans have always relied on the collection of natural resources 
for their needs, including several commodities, used for all pur-
poses, from shelter to clothing or medicinal uses (Schippmann  
et al., 2006). For this latter intent, plants play a pivotal role, not only 
for their medicinal applications, but also for their food use and as 
trade goods (Schippmann et al., 2006). Indeed, from ancient Egypt, 
Rome and Greece to present days, plants and spices have been used 
as medicines and food preservatives (Kaefer and milner, 2008). 
All these characteristics, combined with the current scientific know-
ledge available on their properties, have increased the interest and 
demand for medicinal and aromatic plants (MAP’s). The recom-
mendation that wild species should be propagated and cultivated for 
commercial use (lambert et al., 1997), was supported for two main 
reasons: from a sustainability point of view, since this would also 
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serve conservation interests, and from a production point of view, 
since it would permit better control of biotic and abiotic production 
conditions) (Schippmann et al., 2006). Furthermore, cultivation of 
MAP’s allows the possibility of biotechnological solutions for intrin-
sic problems associated with these types of plants, including species  
misidentification, genetic and phenotypic variability, variability and 
instability of extracts, toxic components and contaminants (Yi and 
Wetzstein, 2010). Although negative features can also be attributed 
to the cultivation of MAP’s, such as environmental degradation, loss 
of genetic diversity and loss of incentives to conserve wild popula-
tions (Schippmann et al., 2006), the consumer awareness of their 
benefits  also boosted to the cultivation of MAP’s, making them more 
readily available for purchase in commercial outlets. In fact, as for 
other plants, MAP’s produce secondary plant metabolites, including 
phenolic compounds, which have crucial roles in human health. Some 
studies have pointed out the higher antioxidant activity of MAP’s, 
when compared to fruits and vegetables (Dragland et al., 2003). In 
fact, in recent years, a large number of studies have been devoted to 
the antioxidant activity of MAP’s, as well as to their composition and 
morphological characteristics. However, most of those studies are on 
non-cultivated samples, as about two-thirds of the 50000 different 
medicinal plant species in use are collected from the wild (Edwards, 
2004). In Europe, only 10% of medicinal species used commercially 
are cultivated (Vines, 2004). Recent data indicates that the area of 
Portugal covered by MAP’s production has grown six times in seven 
years (from 230 ha to 1324 ha, in 2004 and 2011, respectively), and, 
by 2012, a positive commercial balance was achieved, with exports 
surpassing imports of MAP’s (GPP, 2012). Coriander (Coriandrum 
sativum), spearmint (Mentha spicata), basil (Ocimum basilicum), 
and parsley (Petroselinum crispum) are some of the MAP’s that have 
more area devoted to their cultivation, to be commercialized as fresh 
plants, while oregano (Origanum vulgare L.) culture is mainly used 
for the production of dry product (GPP, 2012). Although a consider-
able volume of work is already available, concerning the characteri-
zation of these five MAP’s, demonstrating the importance of, and 
interest in, these plant species, most studies have focused on non-
cultivated specimens, rather than on their cultivated counterparts. 
This fact leaves an important part of the consumed MAP’s fraction 
without available morphological and chemical data, useful to charac-
terize actual plants used for human consumption. Hence, the objec-
tives of this work are to morphometrically characterize the leaves of 
five MAP’s (Coriandrum sativum L., Mentha spicata L., Ocimum 
basilicum L., Petroselinum crispum Mill. and Origanum vulgare 
L.), while also performing biochemical analysis of the referred plant  
species. 

Materials and methods
Plant material 
The following plants were purchased, potted, from a supermarket 
chain: Coriandrum sativum, Mentha spicata, Ocimum basilicum, 
Origanum vulgare and Petroselinum crispum. All plants were visu-
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ally inspected, and only completely healthy plants were selected. All 
the plants were from the same producer, were cultivated under simi-
lar conditions, and were purchased on the same day. The selection of 
potted and commercially available samples was made to evaluate the 
properties of plants actually used by consumers. 

Biometric characterization
For the characterization of morphological parameters of the leaves 
of the studied plants, ten healthy and totally expanded mature leaves 
were selected, and the WinDIAS Leaf Area Meter System software 
(Delta-T Devices Ltd, Cambridge, United Kingdom) was used for 
the recording of data (area, length, width and perimeter). Moisture 
content (WC) was determined by oven-drying at 70 ºC until constant 
mass was obtained. Shape factor is defined as the ratio of the actual 
perimeter (P) to that of a circle with the same area (Pc) (SF=P/Pc ), 
while specific leaf area (SLA) is obtained using the relation leaf area/
dry mass. For histological analysis, leaf cross sections of healthy 
leaves were prepared for optical microscope examination (Olympus 
Mod. 1X 51; Olympus Optical Co., GmbH, Hamburg, Germany), us-
ing an Olympus Colorview III camera. Leaves were prepared by fixa-
tion in FAA (formalin-acetic acid-alcohol, 5:5:90 v/v), for 24 hours. 
Afterwards, cross sections were placed in 70% ethanol, and dehydra-
tion was achieved by immersing them 1 hour, in increasing ethanol 
concentrations (70%, 80%, 90%, 95% and 100%). Leaf samples 
were cleared by placing them in xylene, for 1 hour, after which it 
was embedded overnight in liquid paraffin, using a Leica EG1160 
paraffin embedding station. The leaf material was cut using a Leica 
RM 2135 Rotary Microtome. De-paraffinization was performed us-
ing xylene, and hydration achieved by down-grading (100% - 70%) 
ethanol solutions. Staining with toluidine blue (0.1% for 7 minutes) 
preceded washing with water and new dehydration with ethanol. A 
last clearing step was performed with xylene, and mounting was 
completed in Entellan (Merck, Darmstadt, Germany).

Biochemical characterization 
For the biochemical characterization of the studied plants, totally 
expanded mature leaves, from ten plants of each species were col-
lected. From these leaves, ten 8 mm (diameter) discs were sampled. 
The discs were pooled, ground to a fine powder in a mortar with a 
pestle in the presence of liquid nitrogen and stored at -80 °C until 
further analysis. Biochemical characterization was performed in six 
sub-samples of the ground leaves. 

Photosynthetic pigments 
For the quantification of photosynthetic pigments, chlorophyll a 
(Cla), b (Clb) and total chlorophyll (Clt), and total carotenoids were 
spectrophotometrically determined from 80% acetone extracts, 
using the methods proposed by Sesták et al. (1971) and Lichten- 
thaler (1987), respectively. 

Soluble sugars and starch 
The quantification of soluble sugars was performed using the method 
described by Irigoyen et al. (1992). Briefly, ground leaf was ex-
tracted with 10 ml of 80% ethanol, at 80 ºC, for 1 hour. Afterwards,  
0.2 mL of the alcoholic extract and 3 mL of anthrone was added and 
the mixture was placed in a water bath at 100 ºC, for 10 minutes. Fol-
lowing extraction, the solid fractions obtained in the soluble sugar 
quantification was used for the starch analysis. Extraction was per-
formed using 30% perchloric acid (Osaki et al., 1991) and quantifica-
tion followed the anthrone procedure described in the soluble sugars 
methodology, using also glucose as standard.

Soluble proteins 
Total soluble proteins content was quantified as proposed by Brad-
ford (1976). Leaf discs were ground in a buffer medium containing 
50 mM phosphate buffer (pH 7.8), 0.1 mM ethylenediaminetetraace-
tic acid (EDTA), 100 mM phenylmethylsulfonyl fluoride (PMSF) and 
2% (w/v) polyvinylpyrollidone (PVP), and centrifuged at 22000 g  
for 30 minutes, at 4 ºC. Absorbance was read at 595 nm, and bovine 
serum albumin (BSA) was used as a standard. 

Total phenolics 
The determination of total phenolics was performed in the same 
extracts used for the quantification of photosynthetic pigments. The 
methodology described by Singleton and Rossi (1965) was fol-
lowed, and quantification was achieved by spectrophotometric read-
ings at 765 nm, using gallic acid as the reference standard, and ex-
pressed as mg gallic acid equivalents (GAE’s). 

Thiobarbituric acid reactive substances determination (TBARS) 
The degree of lipid peroxidation was evaluated using the method de-
scribed by Bacelar et al. (2006). Briefly, frozen leaf samples were 
ground with 2 mL of 20% (w/v) trichloroacetic acid (TCA) using a 
mortar and pestle. The mixture was centrifuged (3500 g; 20 min-
utes), and 1 mL of supernatant was combined with 1 mL 20% (w/v) 
TCA containing 0.5% (w/v) of thiobarbituric acid and 100 μL 4% 
(w/v) butylated hydroxytoluene (BHT). Thereafter, the mixture was 
heated at 95 ºC for 30 minutes, cooled in an ice bath and again cen-
trifuged at 10,000 × g for 10 minutes. The absorbance of the samples 
was obtained at 532 nm, whereafter the non-specific absorbance re-
corded at 600 nm was subtracted. 

Statistical analysis 
Data are presented as the mean ± standard deviation, expressed by 
fresh weight or leaf area, and differences among means were deter-
mined by analysis of variance (ANOVA), using SPSS (Statistical 
Package for Social Sciences) version 19.0 software (IBM Corpora-
tion, New York, U.S.A.). Averages were compared using the Dun-
can test (P < 0.05). Pearson correlations were calculated using SPSS. 
Principal component analysis (PCA) allows the recognition of pat-
terns in the data by plotting them in a multidimensional space us-
ing the newly derived variables as dimensions (factor scores). PCA 
was applied for reducing the number of variables (30 variables cor-
responding to all analyzed parameters) to a smaller number of newly 
derived variables (principal component or factors) that adequately 
summarize the original information, i.e., the biometric and biochem-
ical characterization of leaves of five MAP’s. The factors to retain 
in data treatment were evaluated by the Scree plot, taking the eigen- 
values, which should have be greater than one, into account, hence 
keeping the factor in the analysis and the internal consistency by 
means of αCronbach’s value (Maroco, 2003). 

Results and discussion
Morpho-Anatomical Determinations 
The leaves of all five MAP’s presented a pinnate venation, consis-
ting of double bundles, including the xylem and phloem, and upper 
and lower epidermal layers were clearly visible (Fig. 1). In all five 
plant species, the mesophyll tissues were differentiated into a single 
layer of palisade parenchyma towards the adaxial side, and spongy 
parenchyma on the abaxial side. It was also observed that the leaves 
of spearmint, oregano and parsley have a denser mesophyll (Fig. 1D,  
1H and 1J, respectively) than coriander or basil leaves (Fig. 1B,  
Fig. 1F, respectively). 
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Fig. 1: 	 Cross-sections of leaves of Coriandrum sativum (A and B), Mentha spicata (C and D), Ocimum basilicum (E and F), Origanum vulgare (G and H) 
and Petroselinum crispum (I and J). Bars on A, C, E, G and I of 500 μm and on B, D, F, H and J of 200 μm
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Spearmint leaves presented on average a higher area (26.21±4.09 
cm2), length (8.66±0.52 cm) and width (4.38±0.40 cm) (Tab. 1). On 
the other hand, oregano was characterised by the lowest leaf area 
(4.31±0.69 cm2), length and width (3.07±0.32 and 2.24±0.25 cm). 
For basil, the values for leaf area are similar to those described 
(Omidbaigi et al., 2010), while for oregano, our leaves were larger 
than those reported previously in the few available studies, which 
indicate areas of about 1.90 cm2 (Panou-Filotheou et al., 2001) 
or between 1.01±0.17 to 3.71±0.49 cm2 (Mastro et al., 2004). Re-
garding spearmint, parsley and coriander, no previous reports on 
this parameter were found. As for leaf area, studies regarding leaf 
dimensions (length and width) of the five studied MAP’s are also 
few. Average values for length and width of leaves from nine Iranian 
spearmint landraces were reported to be 4.33 and 2.11 mm, respec-
tively (Zeinali et al., 2004), with length ranging from 3.3 to 5.1 cm, 
and width ranging from 1.4 to 2.3 cm, lower than the measurements 
recorded in the present work (length of 8.66±0.52 cm and width of 
4.38±0.40 cm). Only one previous study regarding basil leaf length 
and width is available (Nurzyñska-Wierdak, 2014). They reported 
a leaf length range from 34.6 to 70.2 mm, and width from 15.1 to 
38.5 mm, which are comparable to our results. Regarding orega-
no, leaves with an average length of 26.7 mm (ranging from 10 to  
50 mm) and an average width of 13.8 mm (ranging from 5 to 25 mm) 
were reported (Radušien and Stankevi, 2005). These values are 
similar to the results obtained in the present study (3.07±0.32 and 
2.24±0.25 cm, respectively, for length and width). No data for length 
and width of parsley leaves were found in earlier works dealing with 
this plant. Measurement of leaf perimeter shows a significant effect 
of the plant species on this parameter. Results show higher values for 
parsley (36.93±12.52 cm), while a shorter perimeter was recorded for 
oregano (11.73±0.92 cm). Clear relations are visible between peri-
meter and other parameters, namely in spearmint, that presented 
larger area, length, width and diameter, and for oregano, that pre-
sented, for those parameters, the lowest values. Interestingly, parsley 
presented in-between values of area, length and width, but had the 
highest perimeter, due to the pronounced serrations on the leaves.  
The results obtained for the leaf shape factor (Tab. 1) showed a higher 
value of this parameter for parsley (3.97±0.73), followed by coriander 
(3.34±0.77). On the other hand, lower values for shape factor were 
calculated for oregano (1.60±0.10), basil (1.79±0.28) and spearmint 
(2.02±0.09), although without statistically significant differences be-
tween them. Leaf shape factor, as defined here, indicates, for values 
closer to one, a rounder shape of the leaves. As expected, due to the 
shape of the leaf, these values are lower for oregano, basil and spear-
mint. In contrast, the leaf shape factor was higher for parsley and 
coriander, as these species present compound leaves, in some cases 
with strong serration, thereby increasing the measured perimeter.
Specific leaf area (SLA) (m2/kg) is often positively related to poten-
tial relative growth rate, but also to leaf density, as well as to leaf 

thickness, although the influence of each of these factors depends 
on habitat and plant group (Pérez-Harguindeguy et al., 2013).  
Our results showed significant influence of the species in this para- 
meter (P = 0.0001) (Tab. 1). Higher SLA was found in leaves of co-
riander (47.97±0.96 m2/kg), while parsley presented the lower values 
(23.55±0.71 m2/kg). Previous work, regarding basil, present values of 
SLA very similar to the data recorded in the present work (35.18 m2/
kg) (Chang et al., 2008). For spearmint, similar SLA was found in 
field-grown plants (23.1±3 m2/kg), while significantly lower values 
were observed in greenhouse plants (15.1±2 m2/kg) (Yi and Wetz- 
stein, 2010). No reports were available regarding SLA in the remain-
ing studied plants. Water content (%) (Tab. 1) was heavily dependent 
on studied plant species, varying from 81.33±0.98% in spearmint, 
to 91.68±0.66% in basil. The recorded values of water content for 
leaves of spearmint are noticeably higher than those previously re-
ported by Yi and Wetzstein (2010), either in greenhouse (70±9%) 
or field plants (85±3%). It was concluded that the higher moisture 
content was related to the growing environment. The moisture con-
tent of coriander was found to be similar to the 87% reported by 
Divya et al. (2012).
The leaf morpho-anatomical characteristics, besides influencing 
plant growth and biochemical parameters, are also likely to influ-
ence consumer preference, quality and post-harvest storage period, 
although few works are devoted to this latter topic. For instance, 
and regarding the influence of leaf characteristics and plant growth 
and biochemical parameters, a comprehensive study, performed by 
Poorter and Remkes (1990), highlighted, for 24 plant species, a 
clear relationship between growth rate and leaf morpho-anatomical 
characteristics, namely specific leaf area, the ratio between leaf area 
and leaf weight, and leaf weight ratio. A similar result for SLA was 
reported by Chaturvedi et al. (2011). Furthermore, leaf area plays a 
key role in photosynthesis, light interception, water and nutrient use, 
crop growth and development (Caliskan et al., 2010). The effects 
that leaf traits, specifically morpho-anatomical ones, have on the 
post-harvest storage period have been studied, usually with regard to 
leaf drying-procedures or minimally processed fresh-cut vegetables. 
In these studies, water content is an important factor, considering 
the drying of medicinal and aromatic plants (Müller and Heindl, 
2006; Soysal and Öztekin, 1999), as it is leaf area, that determines 
the surface area available for water loss, favouring quick drying 
(Tanko et al., 2005). In contrast, no previous data could be found 
regarding how quickly recognized leaf traits, such as leaf size and 
shape, affect consumer choice when purchasing a MAP, or how those 
traits affect the sensorial characteristics of leaves. 

Biochemical determinations 
The quantitative results of photosynthetic pigments determined in 
the plants are presented in Tab. 2. Regarding Cla content per leaf  

Tab. 1: 	Morpho-anatomical parameters (area, length, width, shape factor, perimeter), specific leaf area (SLA) and water content of leaves of the five studied 
species of MAP’s (mean ± SD, n = 10). 

Plant	 Area	 Length	 Width	 Perimeter	 Shape	 SLA	 Water
(cm2)	 (cm)	 (cm)	 (cm)	 factor	  (m2/kg)	 content (%)

Coriandrum sativum L.	 6.01±1.78 ab	 4.11±1.03 b	 2.94±0.58 b	 29.41±9.70 c	 3.34±0.77 b	 47.97±0.96 d	 87.94±1.25 c

Mentha spicata L.	 26.21±4.09 d	 8.66±0.52 d	 4.38±0.40 c	 36.41±2.28 d	 2.02±0.09 a	 23.63±0.54 a	 81.33±0.98 a

Ocimum basilicum L.	 10.58±1.59 c	 5.44±0.44 c	 2.99±0.58 b	 20.48±3.15 b	 1.79±0.28 a	 36.80±0.47 c	 91.68±0.66 d

Origanum vulgare L.	 4.31±0.69 a	 3.07±0.32 a	 2.24±0.25 a	 11.73±0.92 a	 1.60±0.10 a	 26.63±0.46 b	 83.29±1.85 b

Petroselinum crispum Mill.	 7.16±3.61 b	 4.53±1.42 b	 3.30±0.86 b	 36.93±12.52 d	 3.97±0.73 c	 23.55±0.71 a	 81.39±1.21 a

P	 0.0001	 0.0001	 0.0001	 0.0001	 0.0001	 0.0001	 0.0001

Means within a column followed by the same letter are not significantly different at P< 0.05, according to the Duncan multiple range test.
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area (mg/dm2), no significant effect of the plant species was detec-
ted (P = 0.2040), with values varied between 2.32±0.43 mg/dm2, in 
spearmint, to 3.07±0.25 mg/dm2 in oregano. When Cla was quanti-
fied by leaf weight (mg/g), the plant species played a determining role 
(P = 0.0001), with higher values recorded for coriander (13.14±1.90 
mg/g), while spearmint presented the lowest values of Cla (5.48±1.02 
mg/g). The values for Cla quantification achieved in the present work 
are, in most cases, higher than previously reported, for all the studied 
plants (Bernstein et al., 2010; Corrêa et al., 2009; Costa et al., 
2013; Keser and Buyuk, 2012; Singh et al., 1999; Verma and Sen, 
2008), while a similar value was obtained by Murillo-Amador  
et al. (2013) for oregano leaves. 
The specific plant species had no influence on the concentrations of 
Clb, per leaf area (P = 0.2656). As for Cla, the content of Clb was con-
siderably higher than previous reports indicate. Indeed, all available 
reports for the studied plants provide lower values for this photosyn-
thetic pigment (Bernstein et al., 2010; Corrêa et al., 2009; Costa 
et al., 2013; Divya et al., 2012; Keser and Buyuk, 2012; Murillo-
Amador et al., 2013; Singh et al., 1999; Stancheva et al., 2014). 
Total chlorophyll concentration (Tab. 2) did not differ significantly 
among species (P = 0.7994), as expressed by leaf area. However, 
when results are expressed per gram of leaf, significant differences 
in the Clt content became evident between the species (P = 0.0001). 
Coriander contained the most Clt per gram of leaf (18.69±4.88 mg/g), 
which was considerably higher than the amount determined in spear-
mint (9.43±2.71 mg/g). Again, our results indicated higher levels of 
Clt than those previously reported for all analyzed plants (Corrêa  
et al., 2009; Costa et al., 2013; Panou-Filotheou et al., 2001; Singh  
et al., 1999; Verma and Sen, 2008; Baranauskienė et al., 2013; 
Bekiaroglou and Karataglis, 2002; Lers et al., 1998; Najla 
et al., 2012; Sakalauskaitė et al., 2012). Only one group (Asrar 

et al., 2005) reported higher concentrations (12 to 25 mg/g fresh 
weight) of Clt in spearmint leaves, when grown under excess man-
ganese, than the values recorded in the present study. The ratio Cla/
Clb in plants is normally approximately 3, but lower in shade leaves 
(Clydesdale and Francis, 1968). In the current study, oregano 
(2.98±0.42), coriander and basil (2.72±0.74 and 2.58±0.66, respec-
tively) presented values close to 3. Lower ratios were determined in 
both parsley (2.03±0.67) and spearmint (1.61±0.67). Previous reports 
have shown different Cla/Clb ratio, in relation to our values. For 
oregano, ratio of over 3.5 and, for basil, ratio around 3.3 was reported 

(Baranauskienė et al., 2013). Also, lower ratios were found in ore- 
gano, reaching values of 1.4 (Stancheva et al., 2014), or 1.72 and 
1.78 (Baranauskienė et al., 2013). Low Cla/Clb ratios, simultane-
ously with low amounts of Clt, has detected for spearmint, may indi-
cate that there is an increase of the light-harvesting complex chloro-
phyll a/b-protein, relatively to the content of total chlorophyll of the 
chloroplasts (Candolfi-Vasconcelos, 1990). 
Carotenoids have two well-known functions in photosynthetic pro-
cesses: they serve as accessory pigments in light harvesting and as 
photoprotectors against oxidative damage, due to their ability to 
quench singlet oxygen, minimizing also its formation, and by absor- 
bing excess energy from excited triplet states of chlorophyll (Siefer-
mann-Harms, 1987). The content of carotenoids (Tab. 2) in the stud-
ied plants was significantly influenced by the species (P = 0.0001), 
and varied from 0.52±0.06 mg/dm2 in spearmint to 0.73±0.07 mg/
dm2 in parsley. When the results were expressed in mg/g, spearmint 
contained the least (1.22±0.15 mg/g), while the highest concentra-
tion was present in coriander leaves (2.92±0.39 mg/g). Following the 
same trend as for the chlorophylls, the content of carotenoids deter-
mined was in almost all cases higher than reported values (Bern-
stein et al., 2010; Capecka et al., 2005; Costa et al., 2013; Keser 
and Buyuk, 2012; Sakalauskaitė et al., 2012). 
Total chlorophyll to total carotenoids ratio is regarded as a plant 
stress response (Hendry and Price, 1993). This ratio tends to be 
reduced in leaves exposed to conditions of low light (Levizou and  
Manetas, 2007). In the present work, total chlorophyll/total caro- 
tenoids values did not show significant differences between plant 
species (P = 0.3462). Only a few researchers have reported on this 
specific parameter. Stancheva et al. (2014) indicated a much lower 
chlorophyll/carotenoids ratio for basil (2.75, comparing to 6.36±1.52), 
but a similar ratio for oregano (5.33, comparing to 5.72±0.73). 
The concentrations of soluble sugars determined in each of the spe-
cies are presented in Tab. 3. Concentration of soluble sugars has 
been correlated with specific leaf mass (kg/m2) (Castrillo et al., 
2005) and to irradiance, where higher carbon acquisition is pos-
sible, due to increased photosynthesis (Niinemets, 1997). It is also 
known that water stress induces the accumulation of soluble sugars 
in leaves (Quick et al., 1992), because these are able to act both as 
osmoprotectants and carbon sources (Chaves et al., 2002). The re-
sults obtained revealed significant differences between plant species 
(P = 0.0001), and ranged from 21.38±4.89 mg/dm2 in coriander to 

Tab. 2: 	Photosynthetic pigments (mg/g or mg/dm2 of fresh weight) content of leaves of the five studied species of medicinal and aromatic plants (mean ± SD, 
n = 6).

Plant	 Chloro- 	 Chloro-	 Chloro-	 Chloro-	 Total	 Total	 Chloro-	 Total	 Total	 Total
phyll a	 phyll a	 phyll b	 phyll b	 Chlorophyll	 Chlorophyll	 phyll a/	 Carotenoid	 Carotenoid	 Chlorophyll

(mg/dm2)	 (mg/g)	 (mg/dm2)	 (mg/g)	 (mg/dm2)	 (mg/g)	 Chloro-	 (mg/ dm2)	 (mg/g) 	 Total		
phyll b Carotenoid

Coriandrum	 2.63±0.38 ab	 13.14±1.90 d	 1.11±0.66 a	 5.56±3.27 b	 3.74±0.99 a	 18.69±4.88 c	 2.72±0.74 bc	 0.59±0.08 ab	 2.92±0.39 d	 6.58±2.57 a
sativum L.

Mentha	 2.32±0.43 a	 5.48±1.02 a	 1.67±0.72 a	 3.95±1.71 ab	 3.99±1.15 a	 9.43±2.71 a	 1.61±0.67 a	 0.52±0.06 a	 1.22±0.15 a	 7.79±2.37 a
spicata L.

Ocimum	 2.67±0.25 abc	 9.84±0.92 c	 1.14±0.53 a	 4.22±1.97 ab	 3.82±0.76 a	 14.06±2.36 b	 2.58±0.66 bc	 0.60±0.04 b	 2.23±0.14 c	 6.36±1.52 a
basilicum L.

Origanum	 3.07±0.25 c	 8.14±0.64 b	 1.05±0.21 a	 2.79±0.58 a	 4.12±0.43 a	 10.93±1.16 ab	 2.98±0.42 c	 0.72±0.06 c	 1.92±0.17 b	 5.72±0.73 a
vulgare L.

Petroselinum	 2.79±0.39 bc	 6.64±0.88 a	 1.55±0.66 a	 3.67±1.52 ab	 4.34±1.03 a	 10.30±2.36 a	 2.03±0.67 ab	 0.73±0.07 c	 1.75±0.16 b	 5.93±1.34 a
crispum Mill.

P	 0.2040	 0.0001	 0.2656	 0.2315	 0.7994	 0.0001	 0.0072	 0.0001	 0.0001	 0.3462

Means within a column followed by the same letter are not significantly different at P< 0.05, according to the Duncan multiple range test.
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163.45±22.26 mg/dm2 in parsley. When expressed per gram of leaf, 
the lowest content was obtained for basil (84.33±22.14 mg/g), be-
ing the highest amount of soluble sugars again quantified in parsley 
(384.79±53.81 mg/g). Few reports were devoted to the quantification 
of these compounds in the studied plants. For basil, similar values of 
soluble sugars were obtained by Castrillo et al. (2005) (2 g/m2), 
while considerably lower values of soluble sugars were determined 
by Costa et al. (2013) (around 1 g/kg fresh weight) and by Khom-
dram et al. (2011) (2.55±0.100 mg/g dry weight). 
In many plants, starch is one of the major products of photosynthe-
sis, along with sucrose (Büchi et al., 1998), serving as short-term 
storage carbohydrates that can be accumulated during the day and 
remobilized at night to ensure the continuous availability of energy 
to the entire plant (Zeeman et al., 2007). These are also the main 
digestible carbohydrates in the human diet, and a major source of 
glucose (Tiwari et al., 2013). Variations of starch content between 
different plant species can be explained by the fact some species use 
starch as the major storage form of photoassimilates, while others  
accumulate both starch and sucrose (Zeeman et al., 2007). The starch 
content (Tab. 3), showed differences when quantification was done 
per leaf area or per mass. When the starch content was expressed 
as mg/dm2, a significant effect of the plant species was detected  
(P = 0.0001). Indeed, coriander presented the lowest amount of starch 
(13.34±3.14 mg/dm2), and the results were statistically different from 
those recorded for the other studied plants. Parsley (37.07±4.79 mg/
dm2) contained the highest content of starch. When the results were 
expressed in mg/g, there were no significant differences between the 
plant species (P = 0.1356). The literature is almost devoid of infor-
mation related to the starch content of any of the plants studied. The 
only available report (Büchi et al., 1998) regarding basil, indicated 
considerable variation in the starch content (from around 1 mg/g to 
almost 70 mg/g fresh weight), depending on the plant age. 
Soluble sugars to starch ratio was significantly influenced by the 
plant species (P = 0.0001). Results yielded similar values of this ratio 
for oregano (1.08±0.29), basil (1.25±0.76), coriander (1.74±0.83) and 
spearmint (1.85±0.38), while parsley presented a significantly higher 
average value (4.48±0.89). The ratio for parsley was affected by the 
high amounts of soluble sugars, which were at least four times higher 
than the lower content detected of these compounds, in the other 
studied plants. These variations of soluble sugars/starch ratio may be 
explained, as mentioned before, by different accumulation patterns 
for photo-assimilates by different species (Huber, 1989). Our results 
suggest that for parsley, starch may be a less important storage car-
bohydrate. It seems that for the other plants, storage and other sugars 
are equally utilised, although further studies are needed for confir-
mation. Indeed, starch can be used transiently to store synthesised 
carbohydrates, while soluble sugars might serve as osmolytes during 

water stress (Pallardy, 2008).
Results for non-structural carbohydrates reflect the data recorded for 
soluble sugars and starch quantification. As for the other parameters, 
variations in the content of non-structural carbohydrates is related 
to the specific biology of the plant species, and is also  dependent on 
photosynthesis, respiration and growth (Li et al., 2013). Significant 
differences (P = 0.0001) were observed among plant species, either 
when results are expressed by leaf area or mass. Coriander presented 
the lowest value (34.73±3.81 mg/dm2 and 166.54±17.91 mg/g) for 
non-structural carbohydrates, resulting from a low content of both 
soluble sugars (mg/dm2) and starch. On the other hand, the higher 
amount of soluble sugars and starch (mg/g) present in parsley leaves 
are responsible for the highest amount of non-structural carbohy-
drates measured (200.52±21.69 mg/dm2 and 472.15±53.06 mg/g). 
Soluble protein content (Fig. 2) was influenced by the plant species 
(P = 0.0001), and varied greatly, from the minimum of 24.94±7.79 
mg/dm2 and 0.78±0.18 mg/g, detected for oregano, to the maxi-
mum of 545.08±52.02 mg/dm2 in parsley, and 19.09±1.51 mg/g, in 
coriander. Few studies report on the soluble protein content of the 
presently studied plants. Only one report was found for spearmint 
and parsley, indicating a protein concentration of 2.3g/100g of fresh 
weight (Scherer et al., 2013) and 15 mg/g of fresh weight (Lers  
et al., 1998), respectively. 
The TBARS assay is one of the most widely used tests for the de-
termination of lipid peroxidation, where the lipids to be analyzed 

Tab. 3: 	Soluble sugars, starch and non-structural carbohydrates content (mg/g or mg/dm2 of fresh weight) of leaves of the five studied species of medicinal 
and aromatic plants (mean ± SD, n = 6).

Plant	 Soluble sugars	 Soluble sugars	 Starch	 Starch	 Soluble sugars/	 Non-structural	 Non-structural
(mg/dm2)	 (mg/g)	 (mg/dm2)	 (mg/g)	 Starch	 carbohydrates	 carbohydrates 

(mg/dm2)	 (mg/g)

Coriandrum sativum L.	 21.38±4.89 a	 102.66±24.15 a	 13.34±3.14 a	 63.88±14.40 a	 1.74±0.83 a	 34.73±3.81 a	 166.54±17.91 a

Mentha spicata L.	 61.99±5.86 c	 146.28±11.30 b	 34.48±5.66 c	 81.49±13.71 ab	 1.85±0.38 a	 96.48±4.49 c	 227.77±7.88 b

Ocimum basilicum L.	 22.96±6.25 a	 84.33±22.14 a	 22.77±9.40 b	 84.11±35.52 ab	 1.25±0.76 a	 45.74±5.50 a	 168.44±21.34 a

Origanum vulgare L.	 36.99±4.88 b	 98.51±12.86 a	 35.55±5.70 c	 94.55±14.44 b	 1.08±0.29 a	 72.53±5.79 b	 193.07±13.53 a

Petroselinum crispum Mill.	 163.45±22.26 d	 384.79±53.81 c	 37.07±4.79 c	 87.36±12.05 ab	 4.48±0.89 b	 200.52±21.69 d	 472.15±53.06 c

P	 0.0001	 0.0001	 0.0001	 0.1356	 0.0001	 0.0001	 0.0001

Means within a column followed by the same letter are not significantly different at P< 0.05, according to the Duncan multiple range test.

Fig. 2: 	 Protein content of leaves of the five studied species of medicinal and 
aromatic plants (mean ± SD, n = 6). Grey bars with different letters 
indicate values with significant differences at P< 0.05 for content 
expressed as mg/dm2, and white bars with different capital letters 
indicate values with significant differences at P< 0.05 for content 
expressed as mg/g of fresh weight.
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are mixed with thiobarbituric acid (TBA). In our results (Tab. 4), 
a significant effect of the plant species was detected (P = 0.0001). 
Lower values of lipid peroxidation were found for basil (0.24±0.09 
nmol/dm2 and 88.55±35.95 nmol/g), while higher values of lipid 
peroxidation were determined for spearmint (0.94±0.13 nmol/dm2 
and 221.45±33.32 nmol/g). Only a few studies evaluated TBARS in 
the leaves of the investigated plant species. Lower values of TBARS 
(about 120 nmol/g dry weight) were determined by Tarchoune  
et al. (2010) and by Ramírez-Sandoval et al. (2011) (about  
15 nmol/g leaf), in basil leaves. It is known that lipid peroxidation 
is a natural metabolic process, and one of the most studied reactive 
oxygen species (ROS) actions on membrane structure and function 
(Blokhina et al., 2013). One of the mechanisms mainly used by plant 
to inactive ROS is the use of antioxidants, which react with the radi-
cal electron, but are stable in its presence, as a result of the presence 
of conjugated bonds (Vermerris and Nicholson, 2006). Phenolic 
compounds are highly effective antioxidants, and our results show 
a clear relation between the amount of TBARS and total phenolics 
(Tab. 3). Indeed, higher values of total phenolic content were found 
in the leaves of spearmint (103.33±12.87 mg gallic acid equivalents 
(GAE)/dm2 and 243.78±28.82 mg GAE/g), that yielded higher val-
ues for TBARS. Furthermore, the lowest amount of total phenolic 
content, per gram of leaf (75.29±4.09 mg GAE /g) was measured in 
basil, which presented the lowest TBARS. The total phenolic content 
reported (0.94 mg (GAE)/g fresh weight) for spearmint leaves is very 
low when compared to our results (Zheng and Wang, 2001). The  
total phenolic content of coriander yielded the lowest values, ex-
pressed in leaf area (17.43±1.72 mg GAE /dm2) and per leaf mass 
(87.09±9.13 mg GAE /g), but still, considerably higher to those pre-
viously reported. In some studies the total phenolic content was as 
low as 7 μg/g of extract (Nair et al., 2012), 49.2±3.34 mmol GAE/
kg dry weight (Kaiser et al., 2013) to 3.74 mg GAE/g fresh weight  
(Isabelle et al., 2010) and 25.23±2.17 GAE/100g (Sreelatha 
and Inbavalli, 2012). Basil showed a content of total phenolics of 
20.45±1.30 mg GAE/dm2 and 75.29±4.09 mg GAE/g, the lowest 
when expressed by leaf mass. The available reports concerning this 
plant and its phenolic content are more consistent, even though lower 
than the presently quantified. Hence, total phenolic content has been 
reported to be as low as 1.4 mg GAE/g fresh weight (Sakalauskaitė 
et al., 2012) similar to the values reported by Zheng and Wang 
(2001) (2.23±0.15 mg of GAE/g of fresh weight) or Doğan et al. 
(2005) (280 mg/100g fresh weight). Oregano presented an inter-
mediate content of total phenolics (59.34±9.63 mg GAE/dm2 and 
157.20±24.56 mg GAE/g), when compared to the other species. Seve- 
ral reports are available, regarding the phenolic content of oregano 
leaves. Low amounts of these compounds were reported by Zheng 
and Wang (2001) (11.80±0.60 mg of GAE/g of fresh weight),  
1406 mg GAE/100 g fresh weight (Capecka et al., 2005), while other 

researchers reported higher amounts of total phenolics (Chun et al., 
2005; Maslennikov et al., 2014; Spiridon et al., 2011). Similar re-
sults to the ones obtained in the present study were also reported by 
Škerget et al. (2005) (186 g GAE/kg extract). Parsley, which also 
presented an intermediate amount of total phenolics, when compared 
to the other studied plants (65.57±3.15 mg GAE/dm2 and 156.12±5.55 
mg GAE/g), has also been studied by other researchers, regarding to-
tal phenolics content. Those reports indicate total phenolic content 
that is significantly lower than our values, ranging from 1.12±0.01 
mg of GAE/g of fresh weight (Zheng and Wang, 2001) to 18.25±1.21 
mg gallic acid/g dry weight (Dorman et al., 2011) or 196.8 mg GAE 
per 100 g dry weight (Rababah et al., 2011), or even higher (27 mg 
gallic acid equivalent/g fresh weight, Sezgin et al., 2010). Several 
health-promoting effects of the studied plants have been reported, in-
cluding antioxidant, anticancer and antimicrobial activity, as well as 
hypoglycaemic and anti-diabetic properties. This is a clear indication 
that these species may be beneficial in reducing cardiovascular dis-
orders (Craig, 1999; Gurib-Fakim, 2006) with those effects linked 
mainly to the content and composition in phenolics compounds, but 
also related to carbohydrate and carotenoid content. As consumers 
do not weigh the amount of leaves that they are consuming, but in-
stead visually control how much they are using, one should consider 
the results expressed per leaf area to indicate the most interesting 
plant. Hence, parsley and spearmint appear to be more prone to have 
enhanced beneficial effects in human health, due to their content of 
those helth-promoting compounds.
Biochemical parameters have also been studied, in MAP’s, regard-
ing post-harvest conditions and optimization procedures for storage. 
However, the large majority of studies reflect how the chemical com-
position is affected by those procedures, while the inverse should 
also be investigated. There are many studies focused on the the effect 
of the drying procedure, used to increase the storage, or the stor-
age period itself, on several chemical properties of MAP’s, includ-
ing phenolic content (Capecka et al., 2005; Loughrin and Kasper-
bauer, 2011), ascorbic acid (Akbudak and Akbudak, 2013; Singh 
et al., 1999), carotenoids (Delgado-Vargas et al., 2000; Divya  
et al., 2012), chlorophylls (Cesare et al., 2003; Silva et al., 2005), as 
well as the antioxidant activity of these plants (Gião et al., 2013). Al-
though no data were found on how chemical composition will affect 
drying and storage, it can be expected that leaves containing larger 
amounts of phenolics and carotenoids will be less prone to oxidation, 
as those compounds are proven antioxidants (Krinsky, 1989; Rice-
Evans et al., 1997). Still regarding phenolics, their content can also 
influence leaf sensorial attributes, as they are associated with two 
main descriptors, i.e. bitterness and astringency, which are linked to 
negative consumer reactions (Lesschaeve et al., 2005). Similarly, 
leaves with high chlorophyll content will be less subject to colour 
changes from green to brown caused by drying, due to the degrada-

Tab. 4:	 Total thiobarbituric acid reactive substances concentration (TBARS) and total phenolic content (mg/g or mg/dm2 of fresh weight) of leaves of the five 
studied species of medicinal and aromatic plants (mean ± SD, n = 6).

Plant	 TBARS	 TBARS	 Total phenolics	 Total phenolics
(nmol/dm2) (nmol/g) (mg/dm2) (mg/g)

Coriandrum sativum L.	 0.25±0.03 a	 124.43±16.78 b	 17.43±1.72 a	 87.09±9.13 a

Mentha spicata L.	 0.94±0.13 c	 221.45±33.32 d	 103.33±12.87 c	 243.78±28.82 c

Ocimum basilicum L.	 0.24±0.09 a	 88.55±35.95 a	 20.45±1.30 a	 75.29±4.09 a

Origanum vulgare L.	 0.34±0.06 a	 88.86±17.57 a	 59.34±9.63 b	 157.20±24.56 b

Petroselinum crispum Mill.	 0.66±0.06 b	 156.96±15.65 c	 65.57±3.15 b	 156.12±5.55 b

P	 0.0001 0.0001 0.0001 0.0001

	Means within a column followed by the same letter are not significantly different at P< 0.05, according to the Duncan multiple range test.
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tion of chlorophyll to pheophytins (Cesare et al., 2003). This will 
subsequently influence consumer choice, which is likely to be influ-
enced by the visual characteristics of the plants. Protein content has 
also been reported to reduce significantly with storage period (Singh 
et al., 2003). The soluble sugar content may vary with storage time 
in several MAP’s (Büchi et al., 1998; Santos et al., 2014) and is 
linked to starch content and water content (Mohamed et al., 2005), 
which can ultimately influence sensorial characteristics (Barrett  
et al., 2010) and therefore consumer preference. 
The use of morphological data for the construction of a principal 
component analysis (PCA) model (Fig. 3) allowed 83% of the ob-

served variance to be explained. As expected, a clear separation of 
the analyzed species is visible, as morphological data are signifi-
cantly different among those plants. However, when using the signifi-
cantly different data from biochemical analysis, the corresponding 
PCA model explained 69% of the total variance (Fig. 4). A clear 
separation of plant species was observed, using this data. Coriander 
samples are all represented in the positive region of Factor 1 and 2, 
due to their high content of Cla (mg/g), Clt (mg/g) and total carot-
enoids (mg/g). Spearmint samples are located in the negative regions 
of both factors, due to the higher content of phenolic compounds, 
while parsley samples appear in the negative region of Factor 1 and 
positive region of Factor 2, due to its higher content on soluble sug-
ars, and non-structural carbohydrates.
A principal component analysis (PCA) was also performed with all 
the data obtained, from both morphological, as well as biochemi-
cal analysis. In the present study, the total variance explained by the 
PCA was 57% (Fig. 5), by using two principal components, allowing 
a good discrimination of all five plant species. In the positive region 
of Factor 1 and Factor 2 are represented the samples of coriander, 
mainly due to the higher values of Clb and Clt (mg/g), as well as total 
carotenoids (mg/g). On the other hand, the soluble sugar and carbohy-
drate content influenced the representation of parsley samples in the 
negative region of Factor 1 and positive region of Factor 2. Spearmint 
samples appear in the negative region of Factor 1 and Factor 2, due to 
higher area and length, and total phenolic content.  The discrimina-
tion of basil and oregano samples, in the negative region of Factor 
2 and positive region of Factor 1 resulted from the content on total 
carotenoids, as well as of Cla (mg/dm2). 
Several correlations between the analyzed parameters were found, 
although different patterns were exhibited by each plant species 
(oliVeira, 2017). Interestingly, only Cla, Clb and Clt content were 
found to be correlated in all studied plant species, together with the 
expected relation between area and width. Other correlations that 
must be mentioned occurred between the chlorophyll content (Cla, 
Clb and Clt, either in mg/g or mg/dm2) and non-structural carbohy-

Fig. 3: 	 Principal component analysis obtained from the morphological pa-
rameters of five different aromatic and medicinal plants. PCA fac-
tors explain 82.692% of the total variance.

Fig. 4: 	 Principal component analysis obtained from the significant different data of biochemical parameters of five different aromatic and medicinal plants 
(Cs – Coriandrum sativum L.; Ms – Mentha spicata L.; Ob – Ocimum basilicum L.; Ov – Origanum vulgare L.; Pc – Petroselinum crispum Mill.). 
PCA factors explain 82.692% of the total variance.
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drates (also either in mg/g or mg/dm2), only detected for oregano, 
where extremely significant (P=0.01) and positive correlations were 
found (oliVeira, 2017, tab Oreganum). This correlation 
between chlorophylls and non-structural carbohydrates is 
probably due to the higher photosynthetic production, caused by 
increased carbon acquisition (niinemetS, 1997). Several other 
correlations were only observed in one of the studied plants. Indeed, 
carotenoid and protein content (both either as mg/g or mg/dm2) were 
only found to be nega-tively correlated in leaves of basil 
(oliVeira, 2017, tab Ocimum), while proteins where only 
negatively correlated to non-structural carbohydrates (both either 
as mg/g or mg/dm2) in leaves of pars-ley (oliVeira, 2017, tab 
Petroselinum). In contrast, soluble sugars were found to be 
correlated to leaf area, but on only for coriander (oliVeira, 2017, 
tab Coriandrum), where a negative correlation was established, 
being also negatively correlated to carotenoid content in leaves of 
spearmint (oliVeira, 2017, tab Mentha) (all either as mg/g or mg/
dm2). Another correlation found in the leaves of only one of the 
studied plant species was the positive relation between protein 
and starch (both either as mg/g or mg/dm2), detected in the leaves of 
coriander (oliVeira, 2017, tab Coriandrum). Other noteworthy cor-
relations were the ones found with TBARS. Indeed, this parameter 
(either as mg/g or mg/dm2) was positively correlated to the carote-
noid content (mg/dm2) in the leaves of oregano (oliVeira, 2017, tab 
Origanum), negatively correlated to Cla content (either as mg/g 
or mg/dm2), in leaves of coriander and parsley (oliVeira, 2017, 
tabs Coriandrum and Petroselinum), as well as to Cla/Clb, Clb 
and Clt content (either as mg/g or mg/dm2), for parsley leaves 
(oliVeira, 2017, tab Petroselinum). Positive correlation between 
TBARS and chloroplastic pigments (carotenoids and chlorophylls) 
have been re-ported in Fe-starved plants suggesting that, in those 
circumstances, decreased concentrations of chloroplastic pigments 
may contribute to protect plants from oxidative damages (teWari et 
al., 2005). How-ever, a negative correlation could be expected, as 
chloroplastic pig-ments can act as inhibitors of oxidation processes 
and reduce the val-ues of TBARS (he and ShahiDi, 1997). Finally, 
another correlation, in this case a positive one, only detected in the 
leaves of one plant, 

spearmint, was found between total phenolic content (either as mg/g 
or mg/dm2) and chlorophyll (Cla, Clb and Clt) content (also either as 
mg/g or mg/dm2) (oliVeira, 2017, tab Mentha). Some of the 
cor-relations found in the present study have already been 
reported in previous works. Good correlations between leaf area 
and water con-tent (Xu et al., 2009) and starch (manaS et al., 2014) 
have previously been reported, although in other plant species, as 
well as correlations to some phenolic compounds (ÇiraK et al., 
2007). Furthermore, wa-ter content and other parameters have been 
reported to be correlated, namely to soluble sugars (Wenjiang et 
al., 2004), SLA (li et al., 2010) and chlorophyll (cañaS et al., 
1997). SLA has been correlated to carotenoids and proteins (cañaS 
et al., 1997) and chlorophyll con-tent (benYaS et al., 2013; 
chaturVeDi et al., 2011). Previously de-scribed significant 
correlations also include chlorophyll content and soluble proteins 
(cañaS et al., 1997), leaf size (ramírez-Valiente et al., 2001) and 
carotenoids (benYaS et al., 2013). As far as we know, all other 
correlations are here reported for the first time. 

Conclusions
The results presented in this work provide insight into the mor-
phological and biochemical characteristics of five commonly used 
MAP’s. If, by one hand, considerable differences can be observed, 
both on the leaf characteristics and on their composition between 
plant species, it is safe to say that all studied plants are rich sources 
of important bioactive compounds. Indeed, and regarding not only 
phenolics but also photosynthetic pigments, sugars and starch, the 
content on the analyzed plants was, in a large extent, higher than 
previous reports, which may indicate that cultivated plants are bet-
ter sources of these compounds than wild ones. Furthermore, the 
obtained data gives a clear characterization of commercially avail-
able plants, ready-to-use and actually used by consumers, rather than 
a description of wild samples, more vulnerable to the influence of 
abiotic and biotic stresses on their morphological and biochemical 
characteristics. 

Fig. 5: 	 Principal component analysis obtained from all analyzed parameters of five different aromatic and medicinal plants (Cs – Coriandrum sativum L.; 
Ms – Mentha spicata L.; Ob – Ocimum basilicum L.; Ov – Origanum vulgare L. Pc – Petroselinum crispum Mill.). PCA factors explain 56.615% of 
the total variance.
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