https://ojs.openagrar.de/index.php/JABFQ/issue/feed Journal of Applied Botany and Food Quality 2024-02-07T14:15:28+01:00 Journal of Applied Botany and Food Quality ojs@julius-kuehn.de Open Journal Systems <p>This journal is published in collaboration with the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It focuses on applied research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry.</p> https://ojs.openagrar.de/index.php/JABFQ/article/view/17394 Antimycobacterial potential of green synthesized silver nano particles from selected Himalayan flora 2024-01-26T17:44:53+01:00 Suman Mahmood s.mahmood1@uokajk.edu.pk Sammyia Jannat sammyia@uokajk.edu.pk Asad Hussain Shah asad.shah@uokajk.edu.pk Anila Fariq a.fariq1@uokajk.edu.pk Sajida Rasheed s.rasheed211@uokajk.edu.pk Akhlaaq Wazeer Akhlaaq.wazeer99@uokajk.edu.pk Saleh H. Salmen ssalmen@ksu.edu.sa Mohammad Javed Ansari mjavedansari@gmail.com Abdul Qayyum AQAYYUM@UOH.EDU.PK <p><em>Mycobacterium tuberculosis</em> (Mtb) is a persistent threat to human life and a challenge to global public health. The pathogen’s antibiotic<br />resistance has become a serious problem, prompting the development of nanotechnology-based medicines to prevent multidrug resistance in microorganisms. The present study aimed to synthesize silver nanoparticles (AgNPs), using leaves extracts of <em>Achillea millefolium, Artemisia campestris</em> and <em>Hedera nepalensis</em> to analyze their antimycobacterial potential. The biosynthesized silver nanoparticlesnwere harvested and characterized through UV visible spectroscopy,nField Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray spectroscopy (EDX). The FESEM analysis showed, that selected plant-based silver nanoparticles were spherical in shape with a diameter ranging from 50 nm to 80 nm. Energy Dispersive X-ray spectroscopy revealed that constitute elements of silver nanoparticles are Ag, C, O, Cl and Ca. The biosynthesized AgNPs exhibited significant antibacterial potential against <em>Mycobacterium tuberculosis</em>. At a concentration of 50 μL <em>Hedera nepalensis</em> exhibited the highest growth inhibition at 97.33%, followed by <em>Artemisia</em> at 95%, whereas the percentage growth inhibition of<em> Achillea millefolium</em> at 50 μL concentration was 72.33% as compared to the Rifampicin (RIF) i.e., 40%. Fluorescence microscopy confirmed visible growth inhibition in both experimental and controlled cultures. <em>Hedra nepalensis</em> and <em>Artemisia campestris</em> showed promising potential to inhibit the growth of mycobacteria populations, indicating their potential for the development of novel nanomedicine to treat tuberculosis effectively.</p> 2024-04-16T00:00:00+02:00 Copyright (c) 2024 The Author(s) https://ojs.openagrar.de/index.php/JABFQ/article/view/17374 Enhancing the germination of seeds and the seedling growth and development of Pistacia khinjuk stocks via a seed dormancy breaking method 2024-01-01T18:26:51+01:00 Yusuf Ersalı yusufersalian@gmail.com <p>The behaviour of individuals with adaptations that will ensure survival is of critical importance for the continuation of species during periods when environmental factors reach challenging levels for living beings. In seed plants, this behaviour is achieved through dormancy, in which vital functions are reduced to a minimum. Seed dormancy is not germinating of seeds despite favorable environmental conditions due to internal and external factors. The impermeable and hard seed coat prevents or delays germination in wild <em>Pistacia</em> seeds, causing problems in the production of rootstocks in the desired numbers. In the present study, dormancy-breaking methods including treatment with sulfuric acid, Gibberellic acid (GA3), 6-Furfurylaminopurine (kinetin), 6-Benzylaminopurine (BAP) and their combination, were tested on <em>P. khinjuk</em> seeds stored at 4°C and 25°C for 6 months after harvest. The seeds were then allowed to germinate for 45 days in sand-filled seedling trays. The germinated seeds were transferred to pots, and the contents of dry and fresh weight, total soluble sugar and protein, chlorophyll a, b and carotenoid of the seedlings were measured after 28 days of the growth and development. It was found that the highest germination rate, dry and fresh weight, total soluble sugar and protein and chlorophyll a,b contents were obtained from seeds that treated with scarification+GA3+BAP and stored at 25°C for 6 months.</p> 2024-02-16T00:00:00+01:00 Copyright (c) 2024 The Author(s) https://ojs.openagrar.de/index.php/JABFQ/article/view/17354 Coupling effects of Fe(II) and CaCO3 application on cadmium uptake and accumulation in rice (Oryza sativa L.) 2023-12-21T22:06:29+01:00 Bo Xu xubo7@fafu.edu.cn Jianyu Chen 374508725@qq.com Bingjie Qian 962343027@qq.com Duoduo Jiao 2272375158@qq.com Yanlin You 1440469699@qq.com Xiaodong Guo 1729267109@qq.com Yuanbiao Hu 2100730671@qq.com Dingxing Wang 891303118@qq.com Liwen Huang 97570204@qq.com Xinlei Wang 1149099664@qq.com Peng Wei 3205701040@qq.com Lirong Zhang 1944373726@qq.com Liehong Wu 1320350455@qq.com Jinghuang Huang 125468970@qq.com Yanhui Chen yhchem@126.com Guo Wang 1400619353@qq.com <p>Excessive cadmium (Cd) in rice, caused by Cd pollution of farmlands, poses a serious threat to human health. In this study, a pot experiment was conducted to investigate the effects of two doses of CaCO<sub>3</sub> (Ca<sub>1</sub>: 2 g kg<sup>-1</sup>, Ca<sub>2</sub>: 10g kg<sup>-1</sup>), two types of Fe(II) (EDTA-Fe(II) and FeSO<sub>4</sub>; 0.14 g Fe kg<sup>-1</sup>), and their combined application on the uptake and accumulation of Cd in rice plants grown in Cd-contaminated acidic soil. The results revealed that FeSO<sub>4</sub> significantly increased rice grain biomass, whereas the other treatments had no significant effects. Further, the addition of EDTA-Fe(II) or FeSO<sub>4</sub> significantly enhanced iron plaque formation on the root surface and increased the Fe content in the rice plants and porewater. Compared to the control, CaCO<sub>3</sub> addition weakened the formation of iron plaque and reduced the Fe concentration in the porewater and root tissue, stems and leaves, whereas the Fe concentration in brown rice and the husks remained unaffected. Combined application of CaCO<sub>3</sub> and Fe(II) significantly promoted the formation of iron plaque and increased the Fe concentration in brown rice. However, the Cd concentration in the iron plaque was reduced by CaCO<sub>3</sub> addition but increased by Fe(II) treatment. Notably, all treatments reduced the Cd concentration in all rice plant tissues. The application of Ca<sub>1</sub>, Ca<sub>2</sub>, EDTA-Fe(II), FeSO<sub>4</sub>, Ca<sub>1</sub>+EDTA-Fe(II), Ca<sub>1</sub>+FeSO<sub>4</sub>, Ca<sub>2</sub>+EDTA-Fe(II) and Ca<sub>2</sub>+FeSO<sub>4</sub> significantly reduced the Cd concentration in brown rice by 69%, 63%, 51%, 60%, 46%, 39%, 38%, and 29%, respectively. These results indicate that the application of CaCO<sub>3</sub>, EDTA-Fe(II)/FeSO<sub>4</sub>, or their combination can effectively reduce Cd accumulation and translocation in rice plants.</p> 2024-04-29T00:00:00+02:00 Copyright (c) 2024 The Author(s) https://ojs.openagrar.de/index.php/JABFQ/article/view/17304 Production, antimicrobial, antioxidant, sensory, and therapeutic properties of herbal wine – A comprehensive review 2023-11-26T12:59:26+01:00 Sivaniraji Mariappan Kumaresan shivanirajiuma@gmail.com Ramaraj Sathasivam ramarajbiotech@gmail.com Harshitha Somanathan harshisoms04@gmail.com Salini Sivaram 20ssalini@gmail.com Divina Christopher 123010038@sastra.ac.in Anitha Anbalagan 123010022@sastra.ac.in Meenakshi Sundaram Muthuraman msundar@biotech.sastra.edu Sang Un Park supark@cnu.ac.kr <p>Wine is a fermented beverage. Herbal-infused wine is beneficial to health due to its antimicrobial and anticancer properties. The constituents of these plants, including flowers, fruits, stems, roots, bark, and leaves, contain antioxidant activity. The herbs can be extracted through various methods such as maceration, decoction, infusion, crushing, grinding, and blending. <em>Saccharomyces cerevisiae</em> is the primary organism responsible for fermentation, converting glucose into metabolic energy.</p> <p>This review analyses the potential medicinal value of herbal wine in treating human diseases. Herbal wine is a recent development in culinary technology, as herbs possess antioxidant and antimicrobial properties that make them effective against cancer and diabetes. Polyphenols found in wine have been reported to be effective in treating human ailments such as coronary heart disease, diabetes, microbial infections, neurodegenerative diseases, and aging. Therefore, fortifying alcoholic beverages may increase health benefits and clinical applications.</p> <p>The qualities of these herbal extracts are comparable to those of fortified wines, making drinking fortified wines a healthier option than consuming conventional wines. However, the production of herbal wine from certain extracts may require the addition of taste enhancers.</p> <p>Our focus is on the fermentative production of wine from various herbal extracts, including physicochemical, antioxidant, antimicrobial, and sensory evaluation. We compare and describe the health benefits and harmful effects of fruit wine and herbal wine.</p> 2024-02-07T00:00:00+01:00 Copyright (c) 2024 The Author(s) https://ojs.openagrar.de/index.php/JABFQ/article/view/17266 Application of arbuscular mycorrhizal fungi and potassium nitrate improves physiological performance and glycyrrhizin production of licorice under salt stress 2023-10-01T20:04:59+02:00 Rozita Davar rozita.davar@yahoo.com Elnaz Sabbaghtazeh elnazsabbagh@iaut.ac.ir Ahmad Bybordi a.bybordi@areo.ir Mohammad Reza Dalalian mdalalian@iaut.ac.ir Siamak Saedi sisaedi@gmail.com <p>To examine the effects of potassium nitrate fertilizer (40 and 80 kg ha<sup>-1</sup>) and inoculation with arbuscular mycorrhizal fungi (25, 50, and 100 g inoculum) on the physiological performance and glycyrrhizin production of licorice plants (<em>Glycyrrhiza glabra</em> L.) under salt stress (irrigation with 4 and 8 dSm<sup>-1</sup> of saline water), two field experiments were conducted in 2021 and 2022. Salinity reduced the physiological performance of plants but increased the concentration of glycyrrhizin in the roots. The application of potassium nitrate, especially at a rate of 40 kg ha<sup>-1</sup>, along with mycorrhiza, resulted in increased nutrient content, antioxidative activities (catalase, peroxidase, and superoxide dismutase activities), membrane stability index, leaf relative water content, photosynthetic pigment content, glycyrrhizin production, and growth (about 45%) of licorice plants. On the other hand, the treatment with KNO<sub>3</sub> and mycorrhiza reduced the accumulation of sodium in plant tissues (about 16%). The application of 40 kg ha<sup>-1</sup> KNO<sub>3</sub> with 50 g of inoculum was found to be the superior treatment for improving the performance of licorice plants under salt stress. According to the findings of this study, the use of KNO<sub>3</sub> in combination with arbuscular mycorrhizal fungi is a successful approach to improve plant growth and productivity under saline conditions.</p> 2023-12-08T00:00:00+01:00 Copyright (c) 2023 The Author(s)