Table of contents

Preface 3
Chris Cutler, PhD
Peter G. Kevan, PhD, FRES, FRSC, FRSB, FLS

Working Groups of the ICP-PR Bee Protection Group – Developments and Progress 8
Thomas Steeger, Member of ICP-PR Bee Protection Group Steering Committee

Section 1 – Risk Assessment

1.1 Estimating honeybee forager background mortality: a case study in the Netherlands 18
Ivo Roessink, Sjef van der Steen, Dick Belgers, Hans Baveco, Andreas Focks, Jos Boesten

1.2 Three cardinal numbers to safeguard bees against pesticide exposure: LD₅₀, NOEC (revised) and the Haber exponent. 18
James E. Cresswell

1.3 New industry research and approaches that could help to improve the risk assessment on bees 25
Mark Miles, Anne Alix, Roland Becker, Natalie Ruddle, Axel Dinter, Laurent Oger, Ed Pilling, Amanda Sharples, Gabe Weyman

1.4 Honey bee nectar foragers feeding themselves and the colony: a review in support of dietary exposure assessment 25
Sara Rodney, John Purdy

1.5 Distribution of residues of neonicotinoids in the hive and in bees in relation to bee health 32

1.6 Simple modelling approaches to refine exposure for bee risk assessment based on worst case assumptions 38
Mark Miles, Zhenglei Gao, Thomas Preuss

1.7 Pristine™ fungicide does not pose a hazard to bumble bees in lowbush blueberry production 38
G. Christopher Cutler, Jason M. Sproule

1.8 Lethal and sublethal effects of several formulations of azadirachtin on IPM Impact R&D colonies of the bumblebee Bombus terrestris (Hymenoptera: Apidae) 39
Guido Sterk, Julie Cuylaerts, Paraskevi Kolokytha
<table>
<thead>
<tr>
<th>Section</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9 Analysis and Conclusions from USEPA’s Neonicotinoid Preliminary Bee Risk Assessments</td>
<td>Keith Sappington, Ryan Mroz, Kris Garber, Amy Blankinship, Michael Wagman, Frank Farruggia, Chris Koper, Justin Housenger</td>
<td>46</td>
</tr>
<tr>
<td>1.10 Quantifying Sources of Variability in Neonicotinoid Residue Data for Assessing Risks to Pollinators</td>
<td>Keith Sappington, Ryan Mroz, Kris Garber, Frank Farruggia, Michael Wagman, Amy Blankinship, Chris Koper</td>
<td>46</td>
</tr>
<tr>
<td>1.11 Challenges to develop risk assessment schemes for Brazilian bees: multiple exposure routes</td>
<td>Roberta C. F. Nocelli, Karina de Oliveira Cham, Osmar Malaspina</td>
<td>55</td>
</tr>
<tr>
<td>1.12 Selection matrix for Brazilian bee species to risk assessment of pesticides</td>
<td>Flávia Viana-Silva, Carmen Pires, Karoline Torezani, Leandro Borges, Karina Cham, Cristiane Dias, Ivan Teixeira, Carlos Tonelli, Ceres Belchior, Cayssa Marcondes, Roberta Nocelli, Osmar Malaspina, Ana Cione, Andreia Shiwa, Andreia Ferraz</td>
<td>56</td>
</tr>
<tr>
<td>1.13 Using respiratory physiology techniques in assessments of pesticide effects on bees</td>
<td>Reet Karise, Risto Raimets, Gerit Dreyersdorff, Marika Mänd</td>
<td>61</td>
</tr>
<tr>
<td>1.14 New working group – Testing side effects of microbes</td>
<td>Shannon Borges, Emily McVey, Jacoba Wassenberg</td>
<td>66</td>
</tr>
<tr>
<td>1.15 Sub-lethal effects at stake: Does the acaricide Coumaphos and fungicide Folpet affect the hypopharyngeal glands size?</td>
<td>Marion Risse, Benjamin Dainat, Lukas Jeker</td>
<td>67</td>
</tr>
<tr>
<td>1.16 Sensitivity of honey bee larvae to plant protection products and impact of EFSA bee guidance document</td>
<td>Roland Becker, Johannes Lückmann, Mark Miles, Anne Alix, Gabe Weyman, Ed Pillling, Natalie Ruddle, Axel Dinter, Amanda Sharples, Stephanie Fritz, Laurent Oger</td>
<td>69</td>
</tr>
<tr>
<td>1.17 Comparison of Control and Toxic Reference Data between Honey Bee Laboratory Studies Conducted in Germany and in Spain over the Last Decade</td>
<td>Emmanuelle Vergé, Tommaso Ansaloni, Anna Maria Molitor, Sophia Oberrauch, Annette Kling</td>
<td>72</td>
</tr>
<tr>
<td>1.18 Linking protection goals to trigger values using compound specific properties: Chronic risks to bees</td>
<td>Mark Miles, Zhenglei Gao, Thomas Preuss</td>
<td>77</td>
</tr>
</tbody>
</table>
1.20 OECD GD 239 Honey bee larvae in vitro testing and solvents: on the job training
Stefan Kimmel, Magdaléna Cornement

1.21 Improving pesticide regulation by use of impact analyses: A case study for bees
Mark Miles, Anne Alix, Roland Becker, Mike Coulson, Axel Dinter, Laurent Oger, Ed Pilling, Amanda Sharples, Gabe Weyman

1.22 Weight differences of honey bees after administration of sublethal doses of dimethoate
Annette Kling, Stephan Schmitzer

Section 2 – Testing effects on honey bee brood

2.1 Detailed brood evaluation under field conditions: advantages and disadvantages
Roland Becker, Johannes Lückmann

2.2 Validation of the 22-day Honey Bee Larval Toxicity, Repeated (Chronic) Exposure Study Design
Daniel Schmehl, Silvia Hinarejos, Jamie Ellis, Stephen Clark

2.3 From field to food – Will pesticide contaminated pollen diet lead to a contamination of larval food?
Franziska Böhme, Gabriela Bischoff, Klaus Wallner

2.4 Reference data project 2014 – 2015 for the assessment of control data
Martina Janke, Dorothee J. Lüken, Werner von der Ohe

2.5 The acute and chronic Oomen feeding test – adapted methods and further options
Johannes Lückmann, Stephan Schmitzer

Section 3 – Semi-field and field testing methodologies

3.1 Which endpoints can reliably be assessed in semi-field and field pollinator species testing without estimating false positive or false negative? MDD’s and replicates issue
Marco Candolfi, Holger Bargen, Sigrun Bocksch, Olaf Klein, Silvio Knaebe, Bronisława Szczesniak

3.2 Current status of the Oomen feeding test – modifications of the method to current needs
Johannes Lückmann, Stephan Schmitzer
3.3 ICP-PR Bee Brood Working Group – Variability of brood termination rates in reference to validity criteria and limited effectiveness of method improvement in honeybee semi-field studies (OECD GD 75)
Bronislawa Szczesniak, Ed Pilling, Sigrun Bocksch, Roland Becker, Johannes Lückmann

3.4 Thiamethoxam Honey Bee Large Scale Colony Feeding Study – Design and Interpretation
Natalie Ruddle, Charlotte Elston, Helen Thompson, Jay Overmyer, Max Feken, Sigrun Bocksch, Marcus Hill

3.5 The homing flight ring test: method for the assessment of sublethal doses of plant protection products on the honey bee in field conditions

3.6 Non-uniform distribution of treated sucrose solution via trophallaxis by honeybees affects homing success variability and mortality
Severin Zumbrunn, Matthieu Guichard, Lukas Jeker

3.7 Set-up of tunnel trials: Importance of technical background for the outcome of a study
Gundula Gonsior, Heike Gätschenberger, Annette Vallon, Bronislawa Szczesniak

3.8 ‘Focal species’ – can this well-known concept in higher-tier risk assessments be an appropriate approach for solitary bees?
Johannes Lückmann, Michael Faupel, Jan-Dieter Ludwigs

3.9 Semi-field testing of the solitary bee Osmia bicornis (L., 1758) (Hymenoptera, Megachilidae) in flowering Phacelia tanacetifolia – Chances, improvements and limitations
Johannes Lückmann, Christian Claßen, Oliver Mayer, Oliver Jakoby

3.10 Bumble bee semi-field studies: choice and management of colonies to reduce variability in assessment endpoints
O. Klein, L. Franke, J. Fricke, J. Sorlí, S. Knaebe

3.11 Bumble bee queen production in semi-field studies: assessment of endpoints and challenges
L. Franke, O. Klein, J. Fricke, J. Sorlí, S. Knaebe

3.12 Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees
Sarah C. Wood, Ivanna V. Kozii, Roman V. Koziy, Tasha Epp, Elemir Simko

3.13 Tank mixtures of insecticides and fungicides, adjuvants, additives, fertilizers and their effects on honey bees after contact exposure in a spray chamber
Anna Wernecke, Malte Frommerberger, Abdulrahim Alkassab, Jakob H. Eckert, Ina P. Wirtz, Jens Pistorius
Section 4 – Testing methodologies for non-Apis bees

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Progress of working group Non-Apis testing</td>
<td>N. Hanewald, N. Exeler, Olaf Klein, Silvio Knäbe, Roberta Nocelli, Thaisa Roat, Sjef van der Steen</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of an ICPPR Non-Apis workshop – Subgroup higher tier</td>
<td>Silvio Knaebe, Annika Alscher, Christian Classen, Nina Exeler, Lea Franke, Julian Fricke, Malte Frommberger, Juan Sorlí Guerola, Sabine Hecht-Rost, Stefan Kimmel, Olaf Klein, Johannes Lueckmann, Claire Molitor, Britta Peters, Christof Schneider</td>
</tr>
<tr>
<td>4.3</td>
<td>An international workshop on pesticide exposure assessment for non-</td>
<td>Silvia Hinarejos, Richard Bireley, Jordi Bosch, Natalie Boyle, Wayne Hou, Theresa Pitts-Singer, Rajwinder Singh, Thomas Steeger, Neil Williams</td>
</tr>
<tr>
<td></td>
<td>Apis bees</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Technical Innovations In Bumble Bee Semi-Field and Field Tests</td>
<td>Matthew Allan</td>
</tr>
<tr>
<td>4.5</td>
<td>Including Bombus impatiens in the mix: Developing semi-field</td>
<td>Cynthia Scott-Dupree, Angela E. Gradish, Tara Celetti, Chris Cutler</td>
</tr>
<tr>
<td></td>
<td>pesticide risk assessment methodology for the North American surrogate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bumble bee</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>A method for a solitary bee (Osmia sp.) first tier acute contact and</td>
<td>Ivo Roessink, Nicole Hanewald, Christoph Schneider, Nina Exeler, Alexander Schnurr, Anna-Maria Molitor, Eugenia Soler, Stefan Kimmel, Claire Molitor, Guy Smagghe, Sjef Van der Steen</td>
</tr>
<tr>
<td></td>
<td>oral laboratory test: an update</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Oral toxicity test with solitary bees: Experiences on the acute feeding</td>
<td>Bettina Hodapp, Stefan Kimmel</td>
</tr>
<tr>
<td></td>
<td>test</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Field exposure study: handling three different pollinator species and</td>
<td>Stefan Kimmel, Stefan Höger</td>
</tr>
<tr>
<td></td>
<td>several matrices of residue analysis</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Exposure by nesting material? – Investigation of potentially suitable</td>
<td>Tobias Jütte, Charlotte Steinigeweg, Jens Pistorius</td>
</tr>
<tr>
<td></td>
<td>methods for higher tier studies with solitary bees</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>A review of available bumble bee colony end-points and</td>
<td>M. Sultan, N. Exeler, M.T. Almanza, A.R. Cabrera, G. Sterk</td>
</tr>
<tr>
<td></td>
<td>identification of current knowledge gaps</td>
<td></td>
</tr>
</tbody>
</table>
4.11 Non-Apis (Bombus terrestris) versus honeybee (Apis mellifera) acute oral and contact sensitivity – Preliminary results of ECPA company data evaluation
Axel Dinter, Anne Alix, Roland Becker, Peter Campbell, Mark Miles, Ed Pilling, Natalie Ruddle, Amanda Sharples, Gabe Weyman, Laurent Oger

4.12 Impact of pesticide residue on Japanese Orchard Bees (Osmia cornifrons) development and mortality
Ngoc Phan, Ed Rajotte, David Biddinger

4.13 Synergistic effects between variety of insecticides and an EBI fungicide combinations on bumble bees (Bombus terrestris L.)
Risto Raimets, Marika Mänd, James E. Cresswell

4.14 Developing methods for field experiments using commercially reared bumblebee colonies – initial colony strength and experimental duration as influential factors
Anke C. Dietzsch, Malte Frommberger, Jens Pistorius

Section 5 - Monitoring

5.1 Large-scale monitoring of effects of clothianidin dressed OSR seeds on pollinating insects in Northern Germany: Effects on large earth bumblebees (Bombus terrestris)
Guido Sterk, Britta Peters, Zhenglei Gao, Ulrich Zumkier

5.2 27 Year polderen about bees and pesticides in the Netherlands; working group Pollinating insects, pesticides and biocides
J.J.M. van der Steen

5.3 Honey bee poisoning incidents in Germany
Jens Pistorius, David Thorbahn, Gabriela Bischoff

5.4 The U.S. National Strategy to Promote the Health of Honey Bees and Other Pollinators and the Role of MP3s
Thomas Steeger

5.5 Pesticide and Metabolites Residues in Honeybees: A 2014-2017 Greek Compendium
Konstantinos M. Kasiotis and Kyriaki Machera

5.6 Residues in bee-relevant matrices
Peter Trodtfeld, Reinhard Friessleben, Christian Maus

5.7 Neonicotinoids & Pollinators: Indian Perspective
Raj Thakur, K. Kumaranag, Uzma Manzoor, P. Chakrabarthy
5.8 Results of a monitoring program of pesticide residues in Beebread in Spain. Using Toxic unit approach to identify scenarios of risk for management programs
Elena Alonso Prados, Raquel Martín Hernández, Mariano Higes Pascual

5.9 Residues of plant protection products in honey – pilot study for a method to define maximum residue levels in honey (MRLs)
Sabine Hecht-Rost, Annika Alscher, Gaby Oswald, Anne Sagner, Klaus Wallner

5.10 How do Regulatory Requirements and Assumptions Correlate to Practical Experience in Residue Studies with Nectar and Pollen?
Silvio Knaebe, Pierre Mack, Andreas Appeltauer, Annette Kling

5.11 A research about different residues in pollen and honey samples
Dorothee J. Lüken, Werner von der Ohe

6.1 List of participants

Authors