Co-fumigation with phosphine and sulfuryl fluoride: Potential for managing strongly phosphine-resistant rusty grain beetle, *Cryptolestes ferrugineus* (Stephens)

Rajeswaran Jagadeesan162*, Manoj K. Nayak1, Virgine Singarayan2 Paul R. Ebert2

1Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane 4001, Queensland, Australia
2School of Biological Sciences, 374 Goddard Building, The University of Queensland, St Lucia 4072, Queensland, Australia

*Corresponding author: r.jagadeesan@uq.edu.au ; raj.jagadeesan@daf.qld.gov.au

DOI 10.5073/jka.2018.463.223

Abstract

Populations of rusty grain beetle, *Cryptolestes ferrugineus*, have developed a very high level of resistance (1300×) to the fumigant phosphine (PH3) in Australia. Resistant insects triggered control failures, threatening the country’s annual grain market worth AU$ 8 billion. Although PH3 protocols were amended to manage this new resistance, fumigation requires lengthy exposure periods which has practical difficulties. While there is no suitable replacement for PH3, the current study explores potential approaches to enhance the efficacy of this fumigant. One possibility is co-fumigation of PH3 with another complementary fumigant, sulfuryl fluoride (SO2F2 or SF), with the dual goals: enhanced efficacy and minimise use of both fumigants. A cohort of mixed age eggs and adults of PH3-resistant *C. ferrugineus* was fumigated with PH3 and SF individually, as well as in combination inside desiccators at 25°C and 60%RH for 168 h. Two doses below the maximal registered rates for SF (8.9 mg L−1, equivalent to 1500 g hm−3) and PH3 (1.0 mg L−1) were tested. Co-fumigation was performed simultaneously for 168 h. Our results revealed that, the mixture of 1.1 mg L−1 or 2.2 mg L−1 of SF and 0.5 mg L−1 of PH3 over 168 h achieved complete control against resistant *C. ferrugineus* eggs and adults, whereas each of the tested doses failed individually. Our study confirms that SF and PH3 enhance the efficacy of each other when used in combination, which holds great potential for managing resistant *C. ferrugineus*.

Key words: stored grain, phosphine resistance, sulfuryl fluoride, co-fumigants, resistance management

1. Introduction

Phosphine (PH3), an effective fumigant is commonly used to disinfest stored grains and processed products from insect pests. However genetic resistance to this fumigant in insect pests is widespread and increasing (Schlipalius et al., 2012). For example, in Australia, populations of rusty grain beetles, *Cryptolestes ferrugineus* (Stephens), have developed a high level of resistance (1300×) to PH3 and resistant insects require high concentrations (1 mg L−1) and long exposure periods up to 14 days (Nayak et al., 2013). Thus, resistant insects of this species are a threat to grain industry as live insects of this species can jeopardize the country’s access to international grain export markets worth of AU$8 billion annually. Although, new PH3 protocols were developed (Kaur and Nayak, 2015) with higher PH3 rates, there is an urgent need to find alternative pest control strategies that can enhance the efficacy of PH3 specifically to shorten the fumigation period. One of such approaches is co-
fumigating PH₃ with another fumigant. Sulfuryl fluoride (SO₂F₂ or SF) is an ideal choice for co-
fumigation as it exhibits complementary properties to PH₃.

Like PH₃, SF is a broad spectrum fumigant, that is currently being used as an alternative to PH₃,
specifically to eliminate PH₃-resistant insects (Nayak et al., 2016). However, SF is a greenhouse gas
(Tsai, 2010) and leaves fluoride residues on the treated materials (Sirirajanji and Rajendran, 2008). It
is also relatively expensive compared to PH₃. Therefore industry is receptive to strategies to
minimise use of this fumigant on commodities. In this context, co-fumigation of PH₃ with SF would
be of considerable interest for the grain industry as this approach aims to use low dose rates of both
the fumigants over relatively short exposure periods. Such an approach may help industry not only
to overcome PH₃-resistant insects but also minimise the usage of SF on treated commodities.
Additional benefits from this approach may include, shorter fumigation periods, less treatment cost,
and reduced selection pressure in insects to both fumigants.

Preliminary research on the efficacy of the PH₃ + SF mixture have indicated that both the fumigants
at reasonably low concentrations, have enhanced the efficacy of each other (Misumi et al., 2010;
Naito et al., 2006) against grain pests, including PH₃-resistant phenotypes (Jagadeesan et al., 2016b).
However, these studies were conducted over short exposure periods (16-48 h) aiming to reveal the
type of toxicity relationship between PH₃ and SF in the mixture and so no prior information is
available in relation to developing co-fumigation protocols. Thus the present study was conducted
to assess the efficacy of co-fumigation of PH₃ with SF against eggs and adults of PH₃-resistant C.
ferrugineus. We have evaluated concentrations similar to field application rates in both the
fumigants, over an exposure period of 168 h (7 days), towards developing a joint fumigation
protocol, as a part of integrated pest and resistance management strategy.

2. Materials and Methods

2.1 Insect strain and life stages

A PH₃-resistant strain, QCF122 collected from Edgeroi, south east Queensland, was used in this study
(Nayak et al., 2013). A cohort of 100 adult beetles of mixed age and sex, were released into 100 ml
glass jar containing 50g of recommended dietary media (barley flour + 5% yeast) (Jagadeesan et al.,
2016a) and allowed to lay eggs in the media for 3 days. Thereafter, the experimental jars containing
parental adults and 0-3 day old eggs along with the dietary media were fumigated with selected
PH₃, SF and the PH₃ + SF concentrations (Tab 1).

2.2 Fumigation bioassay

For both SF and PH₃, the derivation of the source gas, initial concentration measurement using gas
chromatograph, and estimating the required volume of gas for achieving desired concentrations
within the air-tight desiccators for bioassays were explained in detail previously (Jagadeesan and
Nayak, 2017). The experimental jars containing eggs and adults were placed inside the desiccators
and fumigated using gas-tight syringes. Two concentrations for each fumigant were selected based
on their field application rates. This includes, 0.5 and 1.0 mg L⁻¹ for PH₃, and 1.1 mg L⁻¹ (187.5 g hm⁻³)
and 2.2 mg L⁻¹ (375 g hm⁻³) for SF. These concentrations were tested individually and in
combinations as per the treatment structure explained in Table 1. The fumigation for individual
treatments (PH₃ alone or SF alone), was performed independently over 168 h at 25°C and 60% RH,
whereas co-fumigation by injecting required volume of PH₃ and SF into the air-tight desiccators
simultaneously (at the same time) and the fumigation continued for 168 h. After the fumigations,
the treated jars were aerated and shifted to controlled environment room for recovery at 25°C and
60% RH. The entire experiment was replicated twice and each treatment contained two technical
replicates. The mortality of adults was recorded 48 h after the fumigation bioassay, whereas for
eggs, mortality was recorded after 6 weeks by estimating per cent reduction in the emergence of F₁
adults in treated jars in comparison to the control.
3. Results and Discussion

As anticipated both of the tested concentrations of PH$_3$ failed individually to achieve complete control against eggs and adults of PH$_3$-resistant *C. ferrugineus* over 168 h at 25°C. A significant proportion of eggs (57 and 84.6%) and adults (2 and 47.6%) survived at 0.5 and 1 mg L$^{-1}$ PH$_3$, respectively (Table 1). In the case SF, although complete mortality in adults was achieved at both the selected doses (1.1 and 2.2 mg L$^{-1}$) individually, substantial proportion of eggs survived at these concentrations. For example, the egg mortalities were 83.6 and 98.8%, for 1.1 mg L$^{-1}$ and 2.2 mg L$^{-1}$, respectively, confirming that these concentrations of SF failed to achieve complete control, individually (Table 1). Comparison of our results across SF alone and PH$_3$ alone treatments, clearly indicates that SF is effective against PH$_3$-resistant insect pests irrespective of the insect life stages and re-affirm our recent conclusion that PH$_3$ resistance does not confer cross resistance to SF in PH$_3$-resistant grain insect pests, including *C. ferrugineus* (Jagadeesan and Nayak, 2017).

Table 1 Efficacy of co-fumigation of phosphine (PH$_3$) with sulfuryl fluoride (SF) against eggs and adults of rusty grain beetle, *Cryptolestes ferrugineus* at 25°C and 60% RH over 168 h (7 days)

<table>
<thead>
<tr>
<th>Individual treatments (168 h)</th>
<th>Mortality (mean ± SD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH$_3$ alone (mg L$^{-1}$)</td>
<td>Adults</td>
</tr>
<tr>
<td>0.5</td>
<td>2.0 ± 1.3</td>
</tr>
<tr>
<td>1.0</td>
<td>47.6 ± 13.3</td>
</tr>
<tr>
<td>Control</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>SF alone (mg L$^{-1}$)</td>
<td>Adults</td>
</tr>
<tr>
<td>1.1</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>2.2</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>Control</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simultaneous co-fumigation (168 h)</th>
<th>Mortality (mean ± SD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH$_3$ (mg L$^{-1}$) + SF (mg L$^{-1}$)</td>
<td>Adults</td>
</tr>
<tr>
<td>0.5 + 1.1</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>0.5 + 2.2</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>1.0 + 1.1</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>1.0 + 2.2</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>Control + Control</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

Examination of combination treatments, clearly showed that co-fumigation of PH$_3$ at 0.5 mg L$^{-1}$ along with 2.2 mg L$^{-1}$ of SF over 168 h was sufficient to achieve complete control against eggs and adults of strongly PH$_3$-resistant *C. ferrugineus* (Table 1). This is an important finding indicating that PH$_3$-resistant insects can effectively be managed by adopting a combination regime containing half of the maximal registered rate of phosphine with one fourth of maximal registered rate of SF over a standard exposure period of 7 days at 25°C. Similar enhancement in toxicity of the PH$_3$ + SF mixture was also observed against different life stages of maize weevil *Sitophilus zeamais* (Motschulsky) (Misumi et al., 2010; Naito et al., 2006) and granary weevil, *S. granarius* (L.) (Naito et al., 2006) over 48 hr at 15°C, supporting the results of the present study. Currently, we are testing series of PH$_3$ and SF co-fumigation regimes, including the effective regime identified in this study on sequential pattern. In this, co-fumigation was achieved in two separate fumigations with SF first for 78 h followed by PH$_3$ for 78 h with a break period of 12 h for aeration. Preliminary results of this experiment suggest that both simultaneous and sequential co-fumigations are equally effective in enhancing the efficacy of PH$_3$ and SF. Overall, our study has confirmed that co-fumigation of PH$_3$ with SF, either simultaneously or sequentially enhances the efficacy of each other, and holds great potentials for managing PH$_3$-resistant grain insect pests.

Acknowledgement

The authors sincerely acknowledge the financial support of the Australian Government’s Cooperative Research Centres Program (http://www.pbcrc.com.au) (Project No: PBCRC3114). We thank Dr. Gregory Daglish for his useful comments on the manuscript, and Mrs. Hervoika Pavic and Linda
Bond for their technical assistance in maintaining insect cultures and in executing fumigation bioassays.

References

JAGADEESAN, R., NAYAK, M., PAVIC, H., SINGARAYAN, V., EBERT, P., 2016b. Co-fumigation with phosphine (PH₃) and sulfuryl fluoride (SO₂F₂) for the management of strongly phosphine-resistant insect pests of stored grain, XXV International Congress of Entomology. Entomological Society of America, USA, Orlando, Florida, USA.

Response of Callosobruchus chinensis L. to plant extracts and to the parasitoid Anisopteromalus calandrae
Qurban Ali1, Mansoor ul Hasan2, Muhammad Umar Qasim1, Muhammad Asghar2, Shahzad Saleem3
1Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
2Department of Entomology, University of Agriculture, Faisalabad, Pakistan
3Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
Corresponding Author: Qurban_ent@yahoo.com
DOI 10.5073/jka.2018.463.224

Abstract
Present investigation was carried out to elucidate the extracts of botanicals i.e., Cichorium intybus, Glycyrrhiza glabra, Trachyspermum ammi and Terminalia chebula, for their possible toxic effect against C. chinensis population. The results revealed that mortality was highest (94.649%) in case of T. ammi treatment, followed by T. chebula with mortality value 56.929%. Mortality was 52.363% where application of T. intybus was carried out. Minimum mortality (34.500%) was observed in G. glabra treated grains. A natural ecto-parasitoid, Anisopteromalus calandrae was used to manage C. chinensis population. A. calandrae male and female adults (5, 10 and 15 pairs) were released to analyze the parasitism efficiency. A. calandrae was reared in the laboratory on C. chinensis larvae. Honey was offered as a suitable food to parasitoid. The parasitism data was recorded after the adult emergence of bruchid beetles. The experiment conducted under Completely Randomized Design and results statistically evaluated using statistical software at 5% level of significance. A. calandrae parasitized both larval and pupal stages of C. chinensis and preferred 4th instar larvae of C. chinensis. Large amount of A. calandrae may efficiently control the C. chinensis population. As compared to control (1558.7 host adult), the minimum host emergence (699.00 host adult) was observed with high population density of A. calandrae. It was also