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Abstract  
A population dynamic model was combined with a genetic model and embedded into a cellular automaton. 
The model was evaluated with data from two three year field trials which were conducted on commercial fields 
in Lower Saxony and Saxony where target-site resistance to acetolactate synthase (ALS) inhibitors was 
detected in Apera spica-venti. The cropping system consisted of continuous winter wheat in the trial period. On 
four plots different herbicide strategies were tested. These were continuous application of a soil herbicide, 
alternation between ALS inhibitor and soil herbicide, continuous use of an ALS inhibitor and two applications 
per growing season with different mode of actions (MoA). In the beginning of the trial soil samples were taken 
to estimate the number of viable seeds in the seed bank. This data was used to produce seed distribution maps 
by interpolating the estimated seed data over the field. These seed maps were then used as the initial seed 
bank in the model and simulations over three years were executed with the assumption of herbicide use as 
conducted in the field trial. A comparison of the model output with the field data showed very good analogies 
in the weed density. Also the development of resistance was reproduced well. The model can now be used to 
assess herbicide management strategies concerning the development of herbicide resistance for A. spica-venti. 
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Zusammenfassung  
Ein populationsdynamisches Modell wurde mit einem genetischen Modell verbunden und in einen zellularen 
Automaten eingebunden. Das Modell wurde mit Daten von zwei dreijährigen Feldversuchen evaluiert. Diese 
wurden auf Resistenzstandorten (Target-Site Resistenz gegen Acetolactat Synthase (ALS) Hemmer) in 
Niedersachsen und Sachsen durchgeführt. Angebaut wurde Winterweizen während des Versuchszeitraums. In 
vier verschiedenen Versuchsgliedern wurden unterschiedliche Herbizidstrategien untersucht. Diese waren 
kontinuierlicher Einsatz eines Bodenherbizids, Wechsel zwischen einem ALS-Hemmer und einem 
Bodenherbizid, kontinuierlicher Einsatz eines ALS-Hemmers und zwei Herbizidapplikationen mit Produkten 
verschiedener Wirkmechanismen innerhalb einer Vegetationsperiode. Zu Versuchsbeginn wurden 
Bodenproben entnommen und das Samenpotential im Boden bestimmt. Diese Daten wurden genutzt um 
durch Interpolation Samenverteilungskarten zu erstellen. Diese Daten wurden dann als 
Anfangssamenverteilung für das Modell genutzt und Simulationen über drei Jahre durchgeführt mit 
denselben Herbizidstrategien aus den Feldversuchen. Der Vergleich der Felddaten mit den Modellausgaben 
zeigte eine gute Übereinstimmung in der Unkrautdichte. Auch die Resistenzentwicklung konnte wiedergeben 
werden. Das Model kann jetzt dazu genutzt werden Herbizidmanagementstrategien in Bezug auf ihr 
Resistenzentwicklungspotential zu bewerten. 

Stichwörter:  ALS Resistenz, genetisches Modell, populationsdynamisches Modell, Windhalm 

Introduction  
The world population is steadily increasing and will reach nearly 10 billion in the year 2050. 
Therefore the cultivated area per person is decreasing and the efficiency of agricultural production 
needs to be increased to ensure enough food, feed and fibers. To maintain high yield herbicides 
are an important tool in modern agriculture, to minimize the weed competition. But herbicide use 
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can lead to resistant weed population, especially when using repeatedly the same herbicide or 
mode of action (MoA). Only a limited number of MoA’s are available. For the treatment of A. spica-
venti in cereals 8 MoA’s are available in Germany (BUNDESAMT FÜR VERBRAUCHERSCHUTZ UND 

LEBENSMITTELSICHERHEIT, 2013). To three of them (HRAC groups A, B and C2) resistance has already 
been developed (HEAP, 2013). A good resistance management is needed in intensive agriculture 
where weed control is sometimes exclusively depending on herbicides. Models can be useful to 
study the long-term dynamics of herbicide resistance development in a weed population in a 
short time span. In the following a model will be presented which simulates the development of 
target-site resistance in an A. spica-venti population, and data of two field trials are reported. For 
each trial, the resistance development was monitored over three years on four plots with different 
herbicide treatments. On both fields target-site resistance to an ALS inhibitor was detected before 
the beginning of the trial. The model output was compared to the field data from the two long-
term field trials.  

Material and methods 
Field trial 

From fall 2008 to summer 2011 two field trials were conducted in Lower Saxony and Saxony, from 
now on called site A and B respectively. Both A. spica-venti populations showed target-site 
resistance to sulfonylureas a subgroup of ALS inhibitors. On the two commercially used fields an 
area of approximately 1 ha was divided into four plots and valuation and sampling occurred on a 
10 m grid in the first year and on a 6 m grid in the second and third year respectively. Winter wheat 
was cultivated over the three years on both fields. On the four plots different herbicide 
management systems were conducted (Tab. 1).  

Tab. 1 Application rates and active ingredients for the four plots. 

Tab. 1 Aufwandmengen und Wirkstoffgehalte  für die vier Versuchsglieder. 

growing 
season 

plot 1 

(soil herbicide) 

plot 2 

(ALS inhibitor) 

plot 3

(alternation ALS 
inhibitor and soil 
herbicide) 

plot 4 

(different MoA’s) 

2008 / 2009 Bacara Forte 1.0 l/ha Husar OD 0.1 l/ha + 
Mero 0.6 l/ha 

Husar OD 0.1 l/ha + 
Mero 0.6 l/ha 

IPU 3.0 l/ha 

Axial 50 1.2 l/ha 

 
Flufenacet, 120 g/l 
Flurtamone, 120 g/l 
Diflufenican, 120 g/l 

Iodosulfuron, 100 g/l Iodosulfuron, 100 g/l 
Isoproturon, 500 g/l 

Pinoxaden, 50 g/l 

2009 / 2010 Bacara Forte 1.0 l/ha Husar OD 0.1 l/ha + 
Mero 1.0 l/ha 

Bacara Forte 1.0 l/ha 
Bacara Forte 1.0 l/ha 

Ralon super 1.2 l/ha 

 
Flufenacet, 120g/l 
Flurtamone, 120g/l 
Diflufenican, 120g/l 

Iodosulfuron, 100g/l 
Flufenacet, 120g/l 
Flurtamone, 120g/l 
Diflufenican, 120g/l 

Flufenacet, 120g/l 
Flurtamone, 120g/l 
Diflufenican, 120g/l  

Fenoxaprop-P-ethyl, 
69g/l 

2010 / 2011 Bacara Forte 1.0 l/ha Husar OD 0.1 l/ha + 
Mero 1.0 l/ha 

Husar OD 0.1 l/ha + 
Mero 1.0 l/ha 

IPU 3.0 l/ha 

Axial 50 1.2 l/ha 

 
Flufenacet, 120g/l 
Flurtamone, 120g/l 
Diflufenican, 120g/l 

Iodosulfuron, 100g/l Iodosulfuron, 100g/l Isoproturon, 500 g/l 
Pinoxaden, 50g/l 

In Table 1 the application rates and the active ingredients are listed. The aim of this design was to 
investigate the development of resistance under different herbicide strategies. In plot one and 
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four no ALS inhibitors were used over the three years. Here the development of the resistance was 
surveyed under the influence of a soil herbicide treatment and the application of two herbicides 
with different MoA’s within the growing season. In plot two and three ALS inhibitors were in use. 
Plot two was treated with an ALS inhibitor in all three growing seasons, whereas in plot three the 
treatment altered with a soil herbicide. The valuation of A. spica-venti plant density as well as the 
sampling of plants was done before and after the application in every growing season. The 
sampled plants were analyzed for a mutation on the ALS gene at position Pro197. 

Generating seed distribution maps 

In the beginning of the trial period soil samples were taken at site A at 16 grid points in plots two 
and four. The soil samples were taken by sampling four soil cores up to 30 cm depth around the 
grid points with a geological drill (Pürckhauer). At location B at 22 grid points, in plots two and 
four, five soil cores were taken up to 20 cm depth. The soil cores for each grid point were mixed. 
The different sample numbers and depths resulted from the different depths of the cultivated soil 
layers through the different tillage systems on both sites.  

At location A the field was ploughed each year and at site B conservation tillage was conducted. 
To obtain enough soil at location B, one additional soil core was taken. The sampling was done to 
estimate the number of A. spica-venti seeds in the seed bank. Therefore the soil samples were laid 
out in the greenhouse and the germinated plants were counted and sampled to analyze them for 
ALS resistance. Sampling occurred only on two plots, because the first plot was already treated at 
the time of the sampling and it was assumed that the number of seeds in the seed bank were 
homogenous over the field. The number of germinated A. spica-venti plants was converted to 
viable seeds per m² at the analyzed grid points. To generate seed distribution maps for the 
sampled plots the data were interpolated using the kriging method (Fig. 1). The interpolation was 
done with the software SURFER Version 11 (Golden Softare, Inc., Golden, Colorado, USA, 2013). To 
get kriging weights semivariograms were created and models were fitted to them (OLIVER, 2010). 
Variogram calculation and the model fitting were carried out by the software GS+ Geostatistics for 
Environmental Sciences Version 9 (Gamma Design Software, LLC, Plainwell, Michigan, USA 1989-
2013). 

 

Fig. 1 Example for the creation of the seed distribution maps for one plot. 

Abb. 1 Beispiel für die Erstellung der Samenausbreitungskarten für ein Versuchsglied.   
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Model structure 

The model design was described in (RUMMLAND et al., 2012). A population dynamic model was 
combined with a genetic model and embedded into a cellular automaton (Fig. 2). The population 
dynamic model is divided into 5 development stages, which are connected via transition 
probabilities. The three genotypes (susceptible, homozygous resistant and heterozygous resistant) 
are connected through the inheritance which is modeled using the Hardy-Weinberg-Law. A part of 
the produced seeds in the last stage are distributed into the neighboring cells. The model starts 
with an initial seed bank. For the initial number of seeds in the soil the previous created seed 
distribution maps were used. The simulated area had the same size like the plots in the field trial. 
The survival probability depending on the used herbicide was set for every herbicide to 5%, 
except for the ALS resistant individuals whose survival probability was set to 95% for the 
treatment with an ALS inhibitor. All parameters were set to the same values for both locations.  

 

Fig. 2 Model design: a population dynamic model embedded into a cellular automaton. 

Abb. 2 Modelldesign:  ein populationsdynamisches Modell eingebunden in einen Zellularen Automaten. 

Results  
In Figures 3 and 4 the mean density of A. spica-venti in the field was compared to the modeled 
densities. For the field data the standard deviation is also shown. At both locations the field data 
showed an increase in A. spica-venti density in plots with ALS inhibitor treatment, as well as a 
decrease in plots without ALS inhibitor use. Furthermore the field data showed years with very 
high densities in all four plots compared to the other years. This is especially seen in plots with 
higher plant densities in the previous years. The germination seemed to be favored in this year. 
For location A this was the case in the third year of the trial period and location B showed high A. 
spica-venti densities in the second year. This could only be reproduced by the model through 
raising the value for the germination probability. In the years with elevated germination the 
standard deviations of the plant density data from the field are the greatest. Here the differences 
between model results and field data are also the greatest.  
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Fig.3 Comparison of the mean A. spica-venti density with the model output for location A. 

Abb. 3 Vergleich der mittleren A. spica-venti-Dichte mit der Modellausgabe am Standort A. 

Fig. 4 Comparison of the mean A. spica-venti density with the model output for location B. 

Abb. 4 Vergleich der mittleren A. spica-venti-Dichte mit der Modellausgabe am Standort B. 

The highest discrepancy between field data and model output is seen in the third year before the 
application at location A in the plot with continuous use of an ALS inhibitor. Here the model over 
estimates the plant density by twice as much. But the field data showed also that the density 
increased slightly after the application. Probably more plants germinated after the valuation was 
done. A trend is not seen concerning the over or under estimation of A. spica-venti density. In 
general it can be stated that the model is capable of reproducing the A. spica-venti density, but 
only by altering the germination probability. 
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The development of target-site resistance in the field and in the model is shown in Figures 5 and 6. 
The graphs illustrate the proportion of ALS resistant and susceptible plants. The resistance 
development in plots with the use of ALS inhibitors was reproduced well by the model. In the 
model as well as in the field a reduction in susceptible plants is seen. In plots without ALS inhibitor 
use the model showed no changes in the proportion of susceptible plants in the population, this 
could not be seen in the population from the field trial. In the field the proportions of susceptible 
and resistant plants in plots without ALS inhibitor use are fluctuating. This could not be 
reproduced by the model. 

 

Fig. 5 Comparison of the portion of target-site resistant and susceptible A. spica-venti plants in the field and in 
the model, for location A. 

Abb. 5 Vergleich des Anteils Target-Site resistenter und sensitiver A. spica-venti Pflanzen im Feld und im Modell, für 
den Standort A. 

 

Fig. 6 Comparison of the portion of target-site resistant and susceptible A. spica-venti plants in the field and in 
the model, for location B. 

Abb. 6 Vergleich des Anteils Target-Site resistenter und sensitiver A. spica-venti Pflanzen im Feld und im Modell, für 
den Standort B. 
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Discussion  
In general the model is capable of simulating A. spica-venti density and the development of target-
site resistance. Germination varies between years. If the seed density is low in the soil this has only 
minor impacts on the plant density, like it is seen in Figure 3 in the graph in the bottom right-hand 
site (the absolute variant). In the third year the A. spica-venti density only exceeds slightly the 
densities of the previous years. In the three other plots the increase in weed density was much 
higher. It seems that the number of seeds have had been reduced through the effective weed 
control in the two years before and the thereby associated inhibition of new seed input. But if the 
number of seeds in the seed bank is high weed density is increasing dramatically in such years. 
Weather has a great influence on the germination characteristics of A. spica-venti (KAMPE, 1976). 
Wet and warm weather situations favor the germination (GERHARDS and MASSA, 2011; KRYSIAK et al., 
2011). Unfortunately it is not possible to predict weather conditions years in advance. So it 
complicates the simulations of A. spica-venti development into the future. Simulations of scenarios 
should therefore consider at least two runs with different germination probabilities, one low value 
and a higher probability, to get a possible range of results. 

The model describes the development of ALS target-site resistance well, if the selection pressure, 
due to the use of an ALS inhibitor still exists. The fluctuations in the field data could not be 
reproduced in plots without the use of an ALS inhibitor. The survival of susceptible and resistant 
individuals in the field is random, if they are not resistant to the used herbicide. Perhaps a more 
stochastical model approach could help to reproduce the noted fluctuation. 

Summarizing it can be said that the model is reproducing the field data and that it can be used to 
test herbicide management strategies for their resistance development potential. It is not capable 
of predicting exact plant densities, but trends can be predicted. It is not only applicable for A. 
spica-venti. It could also be applied for other annual weed species as long as there is enough data 
about the species to feed the model. Needed input data are for example seed production, 
germination rates, survival rates for seedlings and seed viability in the seed bank.  
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