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Abstract

As part of the registration process of plant protection
products (PPPs) and their active substances in the EU,
the risk of PPPs for bees has been assessed so far by using
the European honey bee (Apis mellifera L.) as a surrogate
species. In the past few years other bee species have been
discussed to augment data on honey bees. The addition
of bee species in the registration process goes along with
adapting test methodologies to new bee species and
understanding how to use these species at different tiers
(laboratory, semi-field and field levels). Here we first
discuss the importance of bees as test organisms, outline
the current state of research relevant to the methodology
and design of experiments with bees and highlight recent
activities in the standardization of test procedures.
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Zusammenfassung

Im Rahmen der Zulassung von Pflanzenschutzmitteln
und ihren Wirkstoffen in der EU wurde das Risiko für Bie-
nen bisher anhand der Westlichen Honigbiene (Apis mel-
lifera L.) als Modellorganismus für alle Bienenarten be-
wertet. In den letzten Jahren wurde kontrovers disku-
tiert, ob Wildbienenarten in der Risikobewertung eben-

falls berücksichtigt werden sollten, um die bisherigen
Datenanforderungen für Honigbienen zu erweitern. Dies
geht damit einher, etablierte, standardisierte Methoden
für die Honigbiene an zusätzliche Wildbienenarten anzu-
passen und zu verstehen, wie diese Arten auf den ver-
schiedenen Testebenen (Labor-, Halbfreiland- und Frei-
landtests) eingesetzt werden können. In diesem Artikel
gehen wir zunächst auf die Bedeutung von Bienen als
Testorganismen ein, diskutieren den derzeitigen Stand
der Forschung, die für die Methodenentwicklung und
das experimentelle Design für das Arbeiten mit Bienen
wichtig ist, um abschließend einen Ausblick auf aktuelle
Aktivitäten in der Standardisierung von Testmethoden zu
geben.

Stichwörter: Honigbiene, Hummeln, Solitärbienen,
Ökotoxikologie, Risikobewertung, Sensitivität,
Methodenentwicklung

Bees in agricultural landscapes

Pollinators are an integral part of global biodiversity;
insects – primarily bees – are the most prominent pollina-
tor group of many crops and wild plants (POTTS et al.,
2010). As a domesticated species, European honey bees
(Apis mellifera L., Hymenoptera: Apidae) are economi-
cally important pollinators (MORSE and CALDERONE, 2000;
MWEBAZE et al., 2010; BARTOMEUS et al., 2014; ORÉ BARRIOS

et al., 2017). However, the great majority of bee species
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are non-Apis bees that display varying levels of sociality
(MICHENER, 2007). Germany hosts almost 600 wild bee
species (WESTRICH et al., 2011) including colony-building
bumble bees as well as ground-nesting and hole-nesting
solitary bee species. Wild bee species contribute signifi-
cantly to crop pollination (KLEIN et al., 2007; GARIBALDI et
al., 2013), and many of them forage and nest in agricul-
tural landscapes. An increase in their abundance and
diversity can increase crop productivity (VENTURINI et al.,
2017; CATARINO et al., 2019 but BARTOMEUS et al., 2014).
The exact number of wild bee species using agricultural
landscapes has yet to be estimated for the different
regions of Germany (and worldwide). Bees in agricultur-
al landscapes are exposed to a variety of stressors, which
are recognized as drivers of wild bee declines and honey
bee colony losses (GOULSON et al., 2015). It is essential to
reduce and regulate these factors in order to maintain or
increase ecological and economic benefits.

Bees as model organisms in the registration process

Plant protection products (PPPs) are one of the stressors
identified as a major driver for bee declines (SÁNCHEZ-
BAYO and WYCKHUYS, 2019). Depending on the geograph-
ical and political region, their legalization and use with
respect to their environmental impact is policed by reg-
ulatory authorities, e.g. the United States Environmen-
tal Protection Agency (USEPA), Brazilian Institute of
the Environment and Renewable Natural Resources
(IBAMA) and Australian Pesticide and Veterinary Medi-
cines Authority (APVMA) (HANDFORD et al., 2015). In
this review, we focus on the legislative framework and
schemes applied in Europe. Within the European Union,
PPPs are regulated by means of the registration process
of plant protection products and their active substances
(EUROPEAN PARLIAMENT, COUNCIL OF THE EUROPEAN UNION,
2009). This process involves the evaluation of hazards
of PPPs to beneficial insects, including bees, based on a
specific use and employing standardized test proce-
dures. So far, these tests are designed to use the Euro-
pean honey bee as a surrogate species for all bee spe-
cies.

After the publication of the EFSA Bee Guidance Docu-
ment (EUROPEAN FOOD SAFETY AUTHORITY, 2013) and of a
growing number of studies that showed losses of insect
diversity and abundance (BIESMEIJER et al., 2006;
HALLMANN et al., 2017; SEIBOLD et al., 2019), the discus-
sion about other surrogate species in the risk assessment
procedure became more intense (e.g. BOYLE et al., 2019).
First attempts were made to expand and adapt the exist-
ing guidelines to other bee species, especially bumble
bees and solitary bees (FISCHER and MORIARTY, 2011;
RORTAIS et al., 2017). While the process has not imple-
mented the use of other bee species on a regular basis,
new guidelines were recently adopted to assess risks for
bumble bees (Apidae: Bombus terrestris) (OECD, 2017b,
2017c) and in the future for solitary bees (Apidae: Osmia
bicornis) (OECD, 2019b).

Honey bees
As discussed above, testing European honey bees as a
model organism for bees in general has been the usual
way of evaluation, and test methods for honey bees in the
laboratory, under semi-field and field conditions have
been well-established (EPPO, 2010). They include acute
and chronic exposure tests of adult honey bees (OECD,
1998a, 1998b, 2017a) and honey bee larvae (OECD,
2013, 2016), and a test on honey bee development
(OECD, 2007). Honey bees are eusocial insects that form
perennial colonies with many thousands of individuals.
Consequently, they can be repeatedly sampled for indi-
vidual bees almost year-round, are commercially avail-
able, are widely distributed and are therefore ideally suit-
ed for experimental usage (THOMPSON and PAMMINGER,
2019).

Non-Apis bees
A proper risk assessment of pesticides to bees must inte-
grate two aspects: (a) the toxicity of the pesticide and (b)
the probability of exposure (VAN DER VALK et al., 2013).
Toxicity of pesticides to non-Apis bees has been suggested
to be extrapolatable from data on honey bees (HEARD et
al., 2017; LEWIS and TZILIVAKIS, 2019; REID et al., 2020;
THOMPSON and PAMMINGER, 2019). However, honey bee
LD50 values may not always be good predictors across
different bee species (MAYACK and BOFF, 2019), and sensi-
tivity among different taxa can be variable (ARENA and
SGOLASTRA, 2014; LEWIS and TZILIVAKIS, 2019) and depen-
dent e.g. on body mass (THOMPSON, 2016). Even if toxicity
data can be extrapolated, there might be still a need for
higher tier experiments to account for different exposure
probabilities in a realistic setting (THOMPSON, 2016).

The probability of exposure to PPPs depends not only
on the intensity of agricultural practice but also on cer-
tain aspects of bee biology including nest location and
foraging range as well as time, period of day and number
of days when foraging (BRITTAIN and POTTS, 2011; VAN DER

VALK et al., 2013). Exposure risks to non-Apis bees from
PPPs is assumed to be similar or higher than to the Euro-
pean honey bee (Table 1), but in most cases there are still
major data gaps that complicate an assessment (ROUBIK,
2014).

To account for some of the described differences in life
history traits between bee species, impacts of pesticides
on some non-Apis bee species are considered in some cas-
es of the current registration process even though test
procedures have not been established and harmonized
for every tier and every species. While inclusion of tests
on bee species other than honey bees may be desirable in
order to be protective of non-Apis bees, it can be chal-
lenging to work with them in laboratory or (semi-)field
trials. Wild bee species often produce smaller numbers of
individuals per population, shorter periods of seasonal
activity and restricted food preferences (Table 2, ROUBIK,
2014).

In order to conduct regular trials with a particular spe-
cies in the framework of the registration process, a spe-
cies has to be available in large numbers, standardizable
Journal für Kulturpflanzen 72. 2020
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and easily measurable in its endpoints1 and representa-
tive in its life history traits of a larger (sub)group of bee
species (SGOLASTRA et al., 2019). Ideally it should also
have a prolonged or relatively flexible foraging season so
that it can be used in various settings. So far there have
been very few species meeting these requirements.

Bumble bees. Like honey bees, bumble bees are eusocial
and form colonies housing defined casts (Table 2). Colo-
nies in the temperate zones are founded by a single

queen that forages and raises the first generation of
workers (BENTON, 2009). Workers then take over brood
care and forage while the queen lays eggs. The size of a
colony increases until reproductive offspring are pro-
duced. While the colony then slowly dies, the reproduc-
tive offspring leave the nest and mate, and the gynes
hibernate and initiate new colonies in the next season. In
a few instances, depending on climate and species, an
autumn/winter generation may be established (STELZER

et al., 2010), but data on its reproductive success is lack-
ing.

In contrast to the assessment of honey bee colonies,
the production of queens and males is a crucial part in a
bumble bee colony cycle and an important endpoint in
the assessment of colony performance. However, the
number of reproductive offspring is often highly variable
even within the same species. Factors influencing this

1Measurement Endpoint: a measurable ecological characteristic that is
related to the valued characteristic chosen as the assessment endpoint
and is a measure of biological effects (e.g. death, reproduction, growth)
of particular species, and can include measures of exposure as well as
measures of effects; Assessment Endpoint: a qualitative/quantitative
expression of a specific factor with which a risk may be associated as de-
termined through an appropriate risk assessment; an explicit expres-
sion of the environmental value that is to be protected

Table 1. Potential exposure routes and their relative importance to European bees (adopted from FISCHER and MORIARTY, 2011,
extended by additional information (GRADISH et al., 2019; SGOLASTRA et al., 2019)); – = no potential exposure; + = low potential
exposure; ++ = medium potential exposure; +++ = high potential exposure

Exposure European honey bees Bumble bees Solitary bees

Nectar +++ ++(+) + to +++

Pollen + to +++ ++ to +++ + to +++
Honey dew + to +++ -/+ –

Water + to +++ +(+) +(+)

Nesting material + + + to +++
Exposure to soil -/+ - to ++ - to +++

Foliar residues +++ +++ +++

Direct spray (at flowering) +++ +++ +++
Dust drift ++ ++ ++

Table 2. Life history traits of European bee species (based on information from PRŶS-JONES and CORBET, 1991; WINSTON, 1995;
GOULSON, 2003; MICHENER, 2007; CUEVA DEL CASTILLO et al., 2015; WESTRICH, 2018; SGOLASTRA et al., 2019)

European honey bees Bumble bees Solitary bees

Sociality Eusocial (perennial) Eusocial (annual) Semi-social, para-social, 
sub-social, quasi-social or 

solitary (short-lived)

Casts Queens, drones, worker bees Queens, males, worker bees Females, males

Number of individuals per 
nest

Up to 50.000 On average 25–150 (species-spe-
cific; worldwide mean 20 to 

1848)

Single to multiple individuals 
per nest; in some species 

aggregations of 10,000 nests 
and more

Fecundity Approx. 1,500 eggs per day Approx. 4 to 16 eggs in batches 
at a time

Approx. 2 eggs per day (10–40 
eggs over entire life span)

Food sources Polylectic 
(often mass flowering crops)

Poly- to oligolectic Poly-, oligo- or monolectic*

Nest location Epigaic Epigaic and/or endogaic Epigaic or endogaic*

* often with specializations or special requirements
Journal für Kulturpflanzen 72. 2020



Journal für Kulturpflanzen, 72 (5). S. 162–172, 2020, ISSN 1867-0911, DOI: 10.5073/JfK.2020.05.06     Verlag Eugen Ulmer KG, Stuttgart

165

Ü
bersichtsarbeit
parameter include parasitism, land use context, life span
of the founding queen, time of initiation, and growth and
size of the colony (MÜLLER and SCHMID-HEMPEL, 1992;
SAMUELSON et al., 2018). This multitude of factors compli-
cates a standardization that has to be ensured for risk as-
sessment trials.

A further essential requirement for conducting stan-
dardized risk assessment trials is the availability of colo-
nies. Of the approx. 250 bumble bee species worldwide
(GOULSON, 2003), there are only a few species that have
been successfully established and raised in captivity
(Table 3). Although the foundations of bumble bee
domestication go back to the 19th century, rearing meth-
ods were not fully developed until the late 20th century
(EVANS, 2017). All (commercially) reared bumble bee
species are pollen storers who feed pollen from separate
pollen pots to their larvae directly by perforating the cell
wall (SAKAGAMI, 1976), in contrast to pocket makers who
feed pollen via a pocket at the side of the larval cell
(SLADEN, 1899). This characteristic is a good example of
how life history traits can define exposure probabilities to
pesticides (COLLA, 2014): pocket makers may feed con-
taminated pollen to (and only affect) the current cohort
of larvae while pollen storers may keep (and mix) it in
separate containers and later feed it to all larvae of the
colony.

Solitary bees. Of the almost 20.000 known bee species in
the world (nearly 2.000 in Europe; NIETO et al., 2014),
only a few have been reared in captivity to primarily sup-
port the pollination of specific crops in the agricultural
landscape (e.g. BOSCH and KEMP, 2002). The alfalfa leaf-
cutting bee Megachile rotundata, various mason bees
Osmia spp. and the ground-nesting wild bee species
Nomia melanderi are some of the few species that have
been used in ecotoxicological studies (Table 4, KOPIT und
PITTS-SINGER, 2018). Wild bee species differ in several key

traits, including their food and nesting resources (WCISLO

und CANE, 1996; MICHENER, 2007; ROUBIK, 2014), for
which they utilize either one host plant species (mono-
lecty), one host plant family (oligolecty) or more than
one host plant family (polylecty) (CANE und SIPES, 2006;
MÜLLER und KUHLMANN, 2008).

Sociality is another aspect that is highly variable
among wild bees, spanning a wide range that includes
solitary, semi-social, para-social, sub-social, quasi-social
and kleptoparasitic. Sociality can be an important aspect
of life history for assessing risks of PPPs to wild bees.
Some solitary bee species, e.g. species within the Halic-
tids, perform regurgitation (trophallaxis) like honey
bees; this extends exposure from one individual to many
(MARTINS, 2014) and may increase exposure probabilities
on a population rather than an individual level. Within
the species that are solitary, individual females serve as
reproductive units and have to take care of the offspring
themselves rather than being replaceable by a group of
workers who care for the brood (as in honey bees and
bumble bees). Hence, solitary bee females are more com-
parable to founding bumble bee queens who provide
resources to their offspring on their own (STONER, 2016).
PPP exposure of a single female can directly affect repro-
ductive success over the lifespan of this individual
(STRAUB et al., 2015).

Solitary bees usually occur as only one generation per
year (univoltine); a few species with higher degrees of
sociality have several generations per year (multi-
voltinism), correlated to environmental factors such as
temperature and food resources (WESTRICH, 1989).
Depending on the period of emergence, exposure proba-
bilities may vary greatly, and early-emerging females
with one generation face a different risk compared to
late-emerging females or species with two generations.
Finally, nesting requirements define exposure and can be
different between ground-nesting species that dig their

Table 3. Bumble bee species used in ecotoxicological assays (adopted from ARENA and SGOLASTRA, 2014 and references therein;
extended by additional references (WAY and SYNGE, 1948; WU et al., 2010; BIOBEST, 2020))

Native range Species name Rearing in captivity*

Europe Bombus lapidarius Yes

Bombus lucorum Yes
Bombus pascuorum No

Bombus terrestris Yes (ca)

Bombus vestalis No
North America Bombus impatiens Yes (ca)

Bombus occidentalis Yes

Bombus terricola No
Asia Bombus ignitus Yes (ca)

Bombus hypocrita Yes

Bombus patagiatus Yes

* ca = commercially available
Journal für Kulturpflanzen 72. 2020
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own cavities and the species that nest above ground or in
existing underground cavities (SGOLASTRA et al., 2019).
Some wild bee species use nesting resources like leaves,
soil, resin or fibres to line their brood cells, which may be
another source of contaminants (VAN DER VALK et al.,
2013).

The high diversity of life-history traits and environ-
mental requirements make solitary bees a group of orga-
nisms that are particularly difficult to rear in large num-
bers. Hence many species are not suitable as model orga-
nisms in the risk assessment of registration processes for
PPPs. The number of wild bee species used in ecotoxico-
logical tests is therefore limited (Table 4).

Developing methods

Using bee species other than honey bees in the registra-
tion process requires not only the knowledge of their
characteristics and life history traits but also establishing
routines and standards in handling, caring for the bees’
specific requirements and reliably measuring endpoints

in 1st tier (laboratory) and higher tier (semi-field and
field) trials. There have been numerous studies on vari-
ous species over the last decades that have collected valu-
able information on feeding, housing, rearing, overwin-
tering and endpoints in different experimental settings
(cf. references in EFSA PANEL ON PLANT PROTECTION

PRODUCTS AND THEIR RESIDUES, 2012 and SGOLASTRA et al.,
2019). However, a better understanding of the variability
of these traits among bees has only complicated the
development of standard procedures.

The Bee Protection Group of the International Com-
mission for Plant Pollinator Relationships (ICPPR) pro-
vides a forum, in which these aspects are addressed, and
coordinates international research and ring tests2. Its
working groups (e.g. Apis, non-Apis) focus on the devel-
opment of suitable test methods and the evaluation of
parameters and endpoints related to bee health and
effects of PPPs. Regulatory test guidelines and guidance

Table 4. Wild bee species other than Bombus sp. used in ecotoxicological assays (adopted from ARENA und SGOLASTRA, 2014 and
references therein; extended by information from additional references (e.g. WAY und SYNGE, 1948; HELSON et al., 1994; BOSCH und
KEMP, 2002; CAUICH et al., 2004; CORTOPASSI-LAURINO et al., 2006; NOCELLI et al., 2012; QUIROGA MURCIA et al., 2017; DHARAMPAL et al.,
2018; JÜTTE et al., 2019; PADILHA et al., 2020))

Native range Species name Nesting Rearing in captivity*

Europe Andrena flavipes† Ground-nesting No
Megachile rotundata Above-ground Yes (ca)

Osmia bicornis Above-ground Yes (ca)

Osmia cornuta Above-ground Yes (ca)
North America Andrena erythronii Ground-nesting No

Nomia melanderi Ground-nesting Yes (ucp)

Osmia lignaria Above-ground Yes (ca)
Osmia ribifloris Above-ground Yes

Asia Osmia cornifrons Above-ground Yes (ca)

Trigona iridipennis††† Above-ground No
Central and South America Melipona beecheii††† Above-ground Yes (ucp)

Melipona quadrifasciata††† Above-ground Yes (ucp)

Melipona scutellaris††† Above-ground Yes (ucp)
Nannotrigona perilampoides††† Above-ground Yes (ucp)

Plebeia emerina††† Above-ground Yes (ucp)

Scaptotrigona postica††† Above-ground Yes (ucp)
Scaptotrigona tubiba††† Above-ground No

Scaptotrigona xanthotricha††† Above-ground No

Tetragonisca angustula††† Above-ground Yes (ucp)
Tetragonisca fiebrigi††† Above-ground Yes (ucp)

Trigona nigra††† Above-ground No

Trigona spinipes††† Above-ground No

†also native to parts of Asia and North Africa; ††also native to parts of Asia; †††eusocial species * ca = commercially available, 
ucp = used for specific commercial purposes but not generally commercially available

2Ring test: an inter-laboratory test that allows to evaluate the perfor-
mance of testing laboratories, and is based on analysis of similar homo-
geneous samples
Journal für Kulturpflanzen 72. 2020



Journal für Kulturpflanzen, 72 (5). S. 162–172, 2020, ISSN 1867-0911, DOI: 10.5073/JfK.2020.05.06     Verlag Eugen Ulmer KG, Stuttgart

167

Ü
bersichtsarbeit
documents of the Organization for Economic Coopera-
tion and Development (OECD) are often based on data
and information collected and collated by the working
groups (OECD, 2019a).

Bumble bees
As mentioned earlier, laboratory (1st tier) test methods
for bumble bees have already been standardized and im-
plemented in guidelines for risk assessment processes
(OECD, 2017b, 2017c) using Bombus terrestris (Europe)
and Bombus impatiens (North America) as model species.
Queenless microcolonies of these two species have been
proposed to be a useful tool for evaluating a range of end-
points at colony level (KLINGER et al., 2019); however, dis-
advantages of using only worker bees are likely to out-
weigh the benefits (cf. WU-SMART and SPIVAK, 2018). For
example, one limitation of this method is nest initiation
by worker bees and subsequent drone production from
unfertilized eggs, which is difficult to standardize in the
framework of risk assessment.

While laboratory tests have been conducted on more
than those two bumble bee species (cf. Table 3), studies
on PPPs that include manipulative semi-field and field
experiments have so far only utilized the commercially
available species Bombus terrestris and Bombus impatiens
(CUTLER and SCOTT-DUPREE, 2014; GILL and RAINE, 2014;
GRADISH et al., 2016; WOODCOCK et al., 2017; SIVITER et al.,
2018; DIETZSCH et al., 2019; RUNDLÖF and LUNDIN, 2019).
These studies used the weight of a colony, the size/vol-
ume of the nest and/or the number of workers (colony
strength), males and gynes as proxies for a colony’s
development and success and thus as endpoints. Rearing
colonies from sister queens (queenright) in captivity by
commercial suppliers (e.g. Koppert, BioBest) should
allow for a way of standardization among colonies that
are exposed to the same environmental settings (VAN DER

STEEN, 2001; CABRERA et al., 2016). While such a restric-
tion of genetic variability in experimental bee colonies
neglects a wide range of naturally occurring genetic traits
and as a consequence may restrain the generalization of
test results (BAKKER, 2016), it may not yet have the
desired effect of reducing experimental error. Measuring
differences in certain endpoints such as gyne production
may only be achieved by highly replicating the number of
colonies in trials to accomplish an adequate protection
goal (e.g. detection of 25% reduction in queen produc-
tion; cf. CABRERA et al., 2016). Semi-field and field trials
have proven different parameters to be significant for col-
ony success, including initial colony strength and its in-
fluence on trial duration, colony development and repro-
ductive success in different seasons (DIETZSCH et al.,
2018). Food availability is another crucial factor for
queen production and queen weight (FRANKE et al.,
2018). To further reduce variability in endpoints, colo-
nies should not only contain a similar initial number of
workers and brood stages and show an appropriate work-
er/brood ratio but also develop with a synchronized
speed (KLEIN et al., 2018). This latter criterion is very
time-consuming to achieve and requires laboratory space

and capacities to conduct assessments for a possibly large
number of replicates. While synchronized developmental
speed has been shown to work in semi-field trials (KLEIN

et al., 2018) and was included as a criterion in ring tests
(KNÄBE et al., 2019), it may not be feasible to achieve in
field experiments with multiple colonies per site and
multiple replicates in each treatment. Other aspects such
as colony disturbance during the experimental (semi-)
field phase (including removal of wax ceilings for brood
nest evaluation) and its influence on endpoints have yet
to be experimentally addressed.

Solitary bees
Although establishment of – at least 1st tier – guidelines
for solitary bees in the risk assessment process has been
initiated (OECD, 2019b), so far standardized methods
have not been approved. As for bumble bees, laboratory
toxicity tests were performed on many different species
(Table 4), yet most experiments on effects of PPPs, par-
ticularly higher tier tests, have used only commercially
available species, e.g. Osmia bicornis, Osmia lignaria and
Megachile rotundata (ABBOTT et al., 2008; SANDROCK et al.,
2014; RUNDLÖF et al., 2015; BECKER and KELLER, 2016;
NICHOLLS et al., 2017; WOODCOCK et al., 2017; DIETZSCH et
al., 2019 but DHARAMPAL et al., 2018). This might be prob-
lematic since the three species belong to the same family
(Megachilidae) and display relatively similar life history
traits, hence may only mirror very few aspects of expo-
sure and behavior of solitary bee species. In addition,
availability is not always ensured for all areas of a species’
native range in the framework of the registration process.
Since imports of such species are restricted, and different
regions (e.g. EU authorization zones) within the same
registration area may require different native species, the
use of a small set of commercially available species can
complicate the implementation of adequate tests.

While the difficulty in bumble bee experiments is the
handling of high variability within endpoints, problems
in experiments with solitary bees occur in relation to
standardized feeding of contaminated food under labo-
ratory conditions, general breeding requirements and
year-round management/availability of viable individu-
als. On a laboratory level, methodologies were refined
over the last years and standardized ring tests were con-
ducted (ROESSINK et al., 2018), which led to the above
mentioned proposal for a new guideline (OECD, 2019b).
Additional 1st tier experiments explored artificial rearing
as well as acute and chronic PPP exposure of solitary bee
larvae (SGOLASTRA et al., 2015; BECKER and KELLER, 2016;
EERAERTS et al., 2019). A greater challenge are semi-field
and field trials where hatching times and hatching ratios
of bee individuals have to be synchronized, and assess-
ment of nest provisioning and mortality rates of adults
have to be monitored continuously. Experimental basics
such as choice of easily assessable nesting material,
hatching times as well as activity patterns and longevity
of the solitary bee species over the season were method-
ologically addressed by some studies (BOSSE et al., 2014;
DIETZSCH et al., 2014; KNÄBE et al., 2016; KONDAGALA et al.,
Journal für Kulturpflanzen 72. 2020
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2016). They gave valuable information for semi-field ring
tests, which resulted in repeatable and meaningful
results of the measured endpoints (KNÄBE et al., 2019).
Manipulative approaches that combined laboratory
methods with field exposure conditions (e.g. experi-
ments on contaminating nesting material; JÜTTE et al.,
2018) highlighted specific exposure routes with little rel-
evance to honey bees and bumble bees. Further experi-
mental aspects such as disturbance during the nesting
phase due to assessments (Kunz et al., unpublished data)
and establishment of a suitable reference substance for
brood studies (LÜCKMANN et al., 2018a) have to be consid-
ered in future optimizations of test methodologies.

Across species
Besides experiments that only use one species of bee,
recent years saw more – primarily laboratory – experi-
ments involving multiple bee species (ARENA and SGOLAS-
TRA, 2014; UHL et al., 2019). These studies allow direct
comparison of sensitivity rather than relying on me-
ta-analyses of data from multiple studies (like discussed
in LEWIS and TZILIVAKIS, 2019; THOMPSON and PAMMINGER,
2019). Direct comparisons of bees in laboratory and
semi-field studies (honey bee vs. bumble bee, honey bee
vs. solitary bee; HEARD et al., 2017; SGOLASTRA et al., 2017;
ALKASSAB et al., 2018; ANSELL, 2019; JÜTTE et al., 2019)
show clear differences in the sensitivity of bees and in
some cases contradict results from the above mentioned
meta-analyses. The direct-comparison approach high-
lights the need for applying the same laboratory and/or
environmental conditions on multiple species to better
understand and assess effects. Although standardization
of test methods for different solitary bee species is still in
progress, experimental efforts (DEVILLERS et al., 2003;
ARENA and SGOLASTRA, 2014; UHL et al., 2016; JÜTTE et al.,
2019) have addressed the question of whether and to
what extent honey bees are indeed a suitable surrogate
for other bee species in the registration process.

Knowledge gaps and outlook

By explicitly integrating other bee species into standard-
ized protocols, the current revision of the EFSA Bee Guid-
ance Document (EUROPEAN FOOD SAFETY AUTHORITY, 2013)
emphasizes the need for a broader risk assessment in the
PPP registration process. Most of the recently developed
test methods for bumble bees (higher tier trials) and sol-
itary bees (all tiers approaches) indicated some short-
comings; they highlight the need for further improve-
ments in standardizing toxicity tests. The (submitted)
manuscripts of the ICPPR non-Apis working group on
protocols for bumble bees and mason bees under
semi-field conditions (FRANKE et al., 2020; KLEIN et al.,
2020) as well as the results of laboratory ring tests on
oral exposure of solitary bees (ROESSINK et al., 2018)
point to model species and test designs for future risk
assessment. Further interdisciplinary research can play
an integrative role in evaluating and extrapolating these

existing data. For example, experiments on the toxico-
genomics (MANJON et al., 2018; BEADLE et al., 2019;
TROCZKA et al., 2019) and the phylogenetics of bees
(HAYWARD et al., 2019) clarify mechanisms that correlate
with the sensitivity of bee species and hence may facili-
tate finding model species to extrapolate from. Yet, the
goal to identify surrogate species among solitary bee
species remains extremely difficult to attain due to the
huge variability within important life-history traits. The
bee species used so far do not adequately cover this vari-
ability (e.g. only hole-nesting solitary bee species and
bumble bee pollen storers in higher tier studies). Con-
cepts like the “focal species” approach, which is used in
higher tier risk assessment of mammals and birds, could
give some directions to choosing and testing appropriate
bee species (LÜCKMANN et al., 2018b). A ‘focal species’ is a
real species that uses the crop of interest when a pesticide
is applied. It is considered to be representative of all oth-
er species of the same feeding guild that may occur in the
particular crop (EUROPEAN FOOD SAFETY AUTHORITY, 2009).

Future research should also cover aspects essential for
everyday agricultural practice such as the impact of tank
mixtures and additives on bee health (ROBINSON et al.,
2017; CARNESECCHI et al., 2019; WERNECKE et al., 2019),
which has not yet been systematically tested on honey
bees and other bee taxa. By expanding risk assessment to
a landscape level and incorporating modelling approach-
es, exposure routes and landscape-scale/landscape-con-
text effects of PPPs are evaluated for bee popula-
tions/communities rather than individual bees (DANNER

et al., 2014; RORTAIS et al., 2017; SIMON-DELSO et al., 2017;
UHL and BRÜHL, 2019). This allows for factors such as spa-
tiotemporal migratory population dynamics that are dif-
ficult to detect with single field experiments due to lim-
itations of experimental duration and of spatial scale
(UHL and BRÜHL, 2019). By considering a multitude of po-
tential stressors at various spatial and temporal scales we
may be able to minimize or even exclude risks for bees in
anthropogenic landscapes.
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