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Summary
The European Farm to Fork strategy strives to reduce pes-
ticide use and risk by 50% by 2030, preserving agricultural 
productivity, biodiversity, and human health. Novel research 
on crop diversification and new field arrangements, support-
ed by digital technologies, offers sustainable innovations for 
pest control. This study evaluates digital yellow water traps, 
equipped with a camera and associated artificial intelligence 
model for continuous pollen beetle monitoring in diversified 
agricultural landscapes. Data were collected in oilseed rape 
from three harvest years (2021─2023) at the experimen-
tal site patchCROP, a landscape experiment established to 
study the effects of spatial and temporal crop diversification 
measures on yield, ecosystem services, and biodiversity. In 
patchCROP, crops were planted in smaller, 0.5 ha (72 × 72 m) 
squares called “patches" with different pesticide manage-
ment strategies and were compared to surrounding commer-
cial fields. The digital yellow water traps and AI were evaluat-
ed and found to be useful for gauging pollen beetle immigra-
tion into the crop. Across all years, higher insect pest pressure 
was recorded in the patches compared to commercial fields 
but did not necessarily compromise yields. Implementation 
of pesticide management strategies, including targeted insec-
ticide applications at specific insect pest thresholds, were not 
associated with reduced yields in patches with flower strips. 
Future studies should consider examining the role of field size 
and alternative diversification approaches to fine-tune insec-
ticide reduction strategies at the landscape scale.
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1. �Introduction
Global trends indicate a decrease in biodiversity associated 
with agriculturally managed lands (Landis, 2017). In addition 
to agricultural intensification, characterized by habitat loss, 
intense land-use, and fertilizer application, and other global 
challenges, including climate change, urbanization, and pol-
lution, plant protection products (hereafter pesticides) play a 
major role in the decline of insect species diversity in Europe 
(Habel et al., 2019). Agricultural diversification, and in par-
ticular crop heterogeneity, was found to effectively increase 
biodiversity (Sirami et al., 2019). Diversified cropping systems 
with new spatial field arrangements, wider crop rotations, 
and site-specific crop selection require innovative technolo-
gies to support the decision-making regarding crop protec-
tion measures. These new technologies can serve as monitor-
ing tools and are ideally tested in the agricultural landscape 
context in collaboration with farmers (Busse et al., 2021).

The demand for rapeseed oil, the product of Brassica napus 
L., commonly called oilseed rape (OSR), is increasing in Eu-
rope (Vinnichek et al., 2019); however, producers face sev-
eral challenges. Farmers often face competition from global 
OSR markets (Busse et al., 2021). Under conventional man-
agement, OSR requires high levels of nutrient inputs, inten-
sive pest monitoring, and pesticide applications. Compared 
to OSR disease management, insect pest control presents a 
greater challenge due to the limited range of available man-
agement options; as a result, insect pest control heavily relies 
on insecticides (Zheng et al., 2020). When applied prophy-
lactically and routinely, insecticides can decrease economic 
competitiveness of OSR, encourage resistance in insect pest 
species, and reduce parasitoid populations which act as bio-
logical control (Williams, 2010).

Some of the major OSR insect pests in Germany include pol-
len beetles (Brassicogethes aeneus), cabbage stem flea bee-
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tles (Psylliodes chrysocephala), various weevil species (Ceu-
torhynchus picitarsis, C. pallidactylus, C. obstrictus), and the 
brassica pod midge (Dasineura brassicae) (Williams, 2010). In 
some hotspots like Germany, Poland, and the UK, OSR produc-
ers are coping with an increased insect pest burden (Arthey, 
2020), including the increasing trend of pollen beetles (Shor-
tall et al., 2023) and cabbage stem flea beetle larvae in the 
UK (Ortega-Ramos et al., 2023). Insect pest management is 
further complicated by legal insecticide regulations and pro-
hibitions of certain active ingredients, including the EU ban 
on neonicotinoid seed treatments (Lundin, 2021). High lev-
els of pyrethroid resistance in OSR insect pests (Zheng et al., 
2020), particularly in the pollen beetle (Heimbach & Müller, 
2012), and increasingly in seed weevil species (Daum et al., 
2023), underscore the risks of relying on one mode of action 
for pest management. New control strategies are needed 
(Daum et al., 2023), particularly non-chemical ones (Heim-
bach & Müller, 2012), to manage insect pests in OSR. Biocon-
trol agents, including parasitoids and natural predators, (Wil-
liams, 2010), could help alleviate some of these challenges.

In addition to increased research on and use of biocontrol 
agents, adjustment of insect pest management strategies is 
crucial. In the literature, various agricultural diversification 
strategies were identified to increase biodiversity and reduce 
the demand for external inputs like pesticides without com-
promising crop yield (Tamburini et al., 2020). Changing land-
scape configuration, such as using smaller fields, has been 
shown to support the complementary goals of arthropod pest 
suppression and enhanced cropland biodiversity (Haan et 
al., 2020). Using alternative or integrated pest management 
(IPM) strategies can curb pest populations without the exces-
sive application of pesticides. Improved and reliable insect 
pest monitoring can lead to earlier detection of pests (Bick 
et al., 2023), allow for precise pesticide application (Döring et 
al., 2012), and help OSR producers adjust their management 
strategies (Ortega-Ramos et al., 2023). Precise monitoring 
could also be used to forecast pollen beetle abundance (Shor-
tall et al., 2023), detect their immigration into OSR (Bick et al., 
2023), and provide early warnings to farmers.

The potential of OSR insect pests to damage and reduce yield 
depends on the crop’s growth stage. Insect pest species im-
migrate into the rapeseed crop at different times (supple-
mentary Fig. S1), further complicating their management. 
For example, pollen beetles are monitored using yellow wa-
ter traps and visual inspections of OSR plants (Bartels et al., 
2023). From stem elongation until the beginning of flowering 
(BBCH 30–60), yellow water traps help detect and estimate 
pollen beetle immigration. During inflorescence emergence 
(BBCH 50–60), an insect pest monitoring method known as 
plant scouting or plant beating is performed (Metspalu et 
al., 2015). To carry out plant beating, a tray is held under the 
main shoot and the main shoot is hit multiple times. The pol-
len beetles which fall off are counted and used to estimate 
adult pollen beetle abundance. If the pollen beetle threshold 
per main inflorescence is exceeded, insecticides are applied 
to conventionally managed crops. Throughout the relevant 
BBCH stages, yellow water traps are monitored, and plant 
beating is performed every three to four days.

Compared to cereals like winter wheat and winter barley, 
farmers in Germany spend more than double the amount 
of time monitoring insect pests in OSR (Thiel et al., 2023). 
Although the potential to reduce insecticide usage via pest 
thresholds without reducing yield is also higher in OSR, the 
time spent monitoring pests presents a significant economic 
burden when labour costs are high and insecticide costs are 
low (Thiel et al., 2023). Current precise pest monitoring meth-
ods are often time-consuming, labour-intensive, and require 
specific taxonomic knowledge, as such it is especially impor-
tant to implement innovative, affordable, human-centred 
design; one such solution is artificial intelligence (AI)-pow-
ered pest monitoring (Montgomery et al., 2021; Rosado et 
al., 2022). Digitalization, characterized by the use of digital 
tools, technologies, sensors, and robots to assist with or per-
form tasks in an agricultural setting, also has great potential 
in transforming pest monitoring and management (Cardim 
Ferreira Lima et al., 2020; Preti et al., 2021). One such digital 
technology is optical sensors, which allow for earlier detec-
tion of pollen beetle immigration into OSR (Bick et al., 2023). 
Comprehensive, digitalized monitoring of pest dynamics 
would allow for more precise and situation-specific applica-
tion of pesticides.

In this study, the new technology of digital yellow water traps 
(DYWTs) was compared to yellow water traps (YWTs), also 
known as Moericke traps. We hypothesized that the inclusion 
of innovative technologies, such as AI-powered insect pest 
monitoring using DYWTs leads to improved decision-making 
of crop protection measures for agricultural diversification 
strategies, resulting in optimized insect pest control methods 
without compromising OSR yield. This research aimed to (1) 
compare pollen beetle dynamics of DYWTs and YWTs in terms 
of counts; (2) evaluate the reliability of DYWTs' AI classifica-
tion for pollen beetle immigration detection; and (3) use con-
tinuous monitoring data provided by the DYWT’s AI to assess 
the impact of diversified landscapes and reduced insecticide 
applications on pollen beetle dynamics.

2. Materials and Methods

2.1 Study area
The study was conducted over three spring growing seasons 
(2020–21, 2021–22, 2022–23) in the landscape experiment 
patchCROP (52°27’05.4”N, 14°09’41.5”E). patchCROP was 
established in 2020 in Brandenburg, Northeastern Germany 
by the Leibniz Centre for Agricultural Landscape Research 
(ZALF). The landscape experiment was set up in a 70 ha field 
surrounded by 750 ha of agricultural fields. patchCROP is set-
tled within an on-farm context in collaboration with the com-
mercial farm Komturei Lietzen, who carried out all field man-
agement operations. In the main field, the dominant soil tex-
ture are loamy sands to sandy loams with 66% to 85% sand in 
the first 25 cm topsoil derived from glacial deposits. Average 
soil organic carbon content is low, ranging from 0.3% to 1.1% 
in the top 30 cm in May 2022. Soil pH varies from 5 to 7.3. The 
average yearly precipitation amounted to 460 mm, 616 mm, 
and 464 mm for the years 2020, 2021 and 2022, respectively. 
Daily maximum temperatures of 29.3°C were reached in July 
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2022 and daily lowest temperature of -9.4°C was measured 
in February 2021. Climatic data (supplementary Fig. S2) were 
obtained from two weather stations located in the eastern 
and western end of the main patchCROP field with a 15 min 
temporal resolution.

2.2 patchCROP landscape experiment and sam-
pling design

The aim of patchCROP is to use temporal and spatial crop di-
versification to balance crop production with other ecosystem 
services and biodiversity while minimizing nutrient losses and 
pesticide applications. A main field akin to a checkerboard is 
the core of the patchCROP landscape experiment. Adjacent, 
commercial, sole-cropped fields serve as reference areas. The 
sole-cropped fields encompass a large area and are planted 
with only one crop per growing season. Sole-cropping is also 
called monoculture. As opposed to continuous monoculture 
or monocropping systems, where the same crop species is 
planted for consecutive seasons, sole-cropped fields undergo 
crop rotation.

Prior to the start of the landscape experiment, the main field 
of patchCROP was analysed for its heterogeneity regarding 
crop performance and soil properties; it was then divided 
into high-yield and low-yield potential zones using an ad-
vanced cluster analysis (Donat et al., 2022). Crops within the 
main field are planted in smaller, 0.5 ha (72 × 72 m) squares 
called “patches.” In total, there are 30 patches across the 
main patchCROP field (Fig. 1). Their numeric identifiers range 
from 12 to 119 (e.g., Patch 12, Patch 74 etc). Each patch is 
subdivided into centrally located, permanent quadrants (18 
× 18  m each) which facilitate sampling across different dis-
ciplines: biodiversity, soil, yield, and multipurpose, a mixed 
discipline area, used for more destructive sampling methods.

Throughout the main field, a crop is allotted three patches, 
each with a different management strategy: Con, Red, Red 
+ FS. One of the patches, Con, has a conventional manage-
ment strategy according to decisions made by the commer-
ical farm (“business as usual”). Conventional decisions are 
based on IPM conducted by the farmer, who considers typical 
plant protection measures at the farm level. A second patch, 
Red, has a reduced management strategy. The reduced man-

Fig. 1. Map of the patchCROP landscape experiment. patchCROP and the surrounding reference fields are shown. The location of the oilseed 
rape (OSR) patches and reference fields are highlighted to show the three harvest years (2021, 2022, 2023). Adjacent reference fields without 
OSR are not shown. Right corner: Close-up view of digital (DYWT) and yellow water trap (YWT) placement in a patch’s biodiversity quadrant. 
In addition to containing the YWTs, the biodiversity quadrant is used for experiments and data collection related to biodiversity (e.g. capturing 
insects in pitfall traps). The soil quadrant is used for soil sampling and related experiments. The yield quadrant is used for taking biomass cut-
tings and other harvest related data collection. The multipurpose quadrant is used for data collection that is more destructive to the crop and 
would be detrimental to experiments in other quadrants. (Bar: Barley, CC: cover crops, Soy: soybean, Maiz: Maize, Whe: Wheat).
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agement strategy uses optimized, situation-specific plant 
protection based strictly on control thresholds. Decisions are 
made based on precise, weekly monitoring and pest counts, 
and strict adherence to the results of forecasting models. The 
third patch, Red + FS, also follows the decision-making pro-
cess of Red and pushes the treatment to later stages and/or 
the upper limits of pest infestation. Red + FS also potential-
ly omits insecticide treatments to fully exploit the benefits 
of migrating antagonists from surrounding perennial flower 
strips (Table 1). The flower strips surrounding Red + FS patch-
es are assumed to increase natural insect pest control, there-
fore further reducing insecticide needs (Tschumi et al., 2015). 
Sowing appropriate flower species, namely those with high 
UV reflectance, nectar availability, and a blooming time ear-
lier to OSR, can further support parasitoid populations (Hatt 
et al., 2018). Since March 2021, monitoring and recommen-
dations for Red, Red + FS, and Ref_Red have been carried out 
by researchers of the Julius Kühn Institute (JKI), the German 
Federal Research Centre for Cultivated Plants. Prior to March 
2021, all patches received the same pesticide applications.

The large, adjacent sole-cropped fields are commercially 
managed. They are monitored to compare the effect of spa-
tial diversification (field size) and temporal diversification 
(crop heterogeneity) (Fig. 1). Within each sole-cropped field 
is a 0.5 ha area divided into two halves. One half, Ref_Con, 
has a conventional management strategy comparable to the 
Con patch in patchCROP. The other half, Ref_Red, has a re-
duced management strategy comparable to the Red patch 
in patchCROP. The patch Red + FS has no counterpart in the 
sole-cropped, reference fields. Per year there is a single moni-
toring site for each of the five oilseed management strategies 
(Table 1): Con, Red, Red + FS, Ref_Con, Ref_Red.

For this study, data were collected annually during spring-sum-
mer in 2021, 2022, and 2023 across five OSR monitoring sites 
(Table 1, Fig. 1): three patches in patchCROP with diversified 
crop rotation (Con, Red, Red + FS) and two reference sites in 
a neighbouring, sole-cropped field (Ref_Con, Ref_Red) with 
narrow, business as usual crop rotation. patchCROP was de-
signed with patches allotted to a high-yield potential zone or 
a low-yield potential zone. The two zones have a different 

five-year, legume-supported, crop rotation. OSR patches are 
located within the high-yield potential zone of patchCROP. 
The high-yield potential crop rotation includes OSR – winter 
barley – cover crops – soybean – cover crops – maize – win-
ter wheat. The low yield crop rotation, although not studied 
here, is cover crops – sunflower – winter oats – cover crops 
– maize – lupin – winter rye. The reference fields have a dif-
ferent crop rotation than the patches. Field 11-00, the OSR 
reference for 2021 and 2023, had a previous crop rotation of 
wheat – maize – barely – OSR –barley –OSR. Field 06-01, the 
OSR reference for 2022, had a previous crop rotation of OSR 
– barley – cover crops – maize – wheat. Planting date, harvest 
date, and nitrogen (N) fertilizer dose were similar each year 
for the five OSR monitoring sites (Table 2). The OSR variety 
“Ambassador” was used in all years.

2.3 �Data collection

2.3.1 �Crop data

Yield was determined in the yield quadrant (18 × 18 m) of the 
patches using an experimental plot harvester in six sub-plots 
of 9 m length and 2 m cutting width (harvest area of 18 m2). 
In the reference fields, yield was determined by harvesting six 
20m2 sub-plots in the central area of each reference. Yields 
were converted to 9% moisture level.

The treatment index (TI) was calculated for each monitoring 
site and year in relation to four plant protection categories: 
herbicides, insecticides, fungicides, and growth regulators 
(Roßberg et al., 2002). TI represents the number of pesticide 
applications in a farm area (e.g., a field), for a crop, or on a 
farm. TI considers reduced application rates and partial area 
treatments, where each pesticide product is counted sepa-
rately in case of tank mixtures (BMEL, 2021). Until 2022, all TI 
numbers originated from the on-farm management software 
AGROCOM NET. Since 2023, the 365FarmNet software was 
used (last access date 11.07.2023). A detailed list of insecti-
cide products by year, monitoring site, and concentration can 
be found in supplementary Table S1.

� (Equation 1)

Table 1. Yearly locations of the five oilseed rape (OSR) monitoring sites. The sites change each year based on crop rotation. Each year, the 
monitoring sites are spread across three patches in the patchCROP landscape experiment (Con, Red, and Red + FS) and a reference area in 
a single field (Ref_Con and Ref_Red). Con and Ref_Con are managed conventionally, following IPM practices according to EU directives. Red 
and Ref_Red are managed using a more rigorous IPM protocol determined by researchers at the Julius Kühn Institute. Red + FS also has a 
reduced management strategy and is additionally bordered by flower strips.

Abbreviation Management strategy Field type Harvest Year

2021 2022 2023

Con Conventional patchCROP Patch 73 Patch 74 Patch 65
Red Reduced patchCROP Patch 39 Patch 50 Patch 58
Red + FS Reduced + flower strip patchCROP Patch 21 Patch 20 Patch 19
Ref_Con Conventional Reference field

Field 11-00 Field 06-01 Field 11-00
Ref_Red Reduced Reference field



Original research article | 5    

Landbauforschung – Journal of Sustainable and Organic Agriculture, Vol. 72 No. 1 (2023). S. 1–24, | DOI: 10.5073/LBF.2023.01.03 | Dovydaitis et al.

2.3.2 �Insect pest monitoring and taxonomic classifi-
cation

In the patches, yellow water traps were installed exclusive-
ly in the biodiversity quadrant. In the reference monitoring 
sites, yellow water traps were installed along the driving lane. 

Two types of yellow water traps were installed. A convention-
al yellow water trap (YWT) was compared to a recently de-
veloped digital yellow water trap (DYWT) (Fig. 2). Both trap 
types were secured on a stick using zip ties and their height 
was increased as the crop developed. The yellow water traps 
were filled with water and a drop of dishwashing soap to en-

Fig. 2. Photographs of a yellow water trap (YWT) and a digital yellow water trap (DYWT) in an oilseed rape field. Note the solar power 
camera on top of the DYWT.

Table 2. Field management information for oilseed rape (OSR) and intensity of pesticide application (Treatment index – TI) in the patchCROP 
landscape experiment. The table is reported by pesticide class (insecticides, herbicides, fungicides, growth regulators) and harvest year (2021, 
2022 and 2023). The monitoring sites are separated based on their management strategies Con, Red, Red + FS, Ref_Con, and Ref_Red.

Harvest year 2021 2022 2023

Monitoring site Con Red Red 
+ FS

Ref_
Con

Ref_
Red

Con Red Red 
+ FS

Ref_
Con

Ref_
Red

Con Red Red 
+ FS

Ref_
Con

Ref_
Red

Planting date 1-Sep-20 26-Aug-21 29-Aug-22
Harvest date 23-Jul-21 20-Jul-22 24-Aug-23
Fertilizer N  
(kg/ha)

161.4 148.4 153.0

Treatment index of pesticide applications

TI Insecticides 5.0 4.0 4.0 4.0 3.0 3.0 2.0 1.0 3.0 1.0 6.0 3.0 2.0 3.9 1.0
TI Herbicides 1.8 1.8 1.8 2.3 2.3 3.8 1.6 1.6 3.8 1.6 3.3 1.8 1.8 3.8 1.8
TI Fungicides 1.3 1.3 1.3 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.8 0.8
TI Growth  
regulators

1.1 0.6 0.6 1.3 0.8 1.0 0.6 0.6 1.0 0.6 1.7 0.4 0.4 1.5 0.4

TI Sum 9.2 7.7 7.7 8.9 7.4 7.8 4.2 3.2 7.8 3.2 11.8 6.0 5.0 10.0 4.0
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sure insect pest trapping. Trap contents were collected twice 
a week from stem elongation stage (BBCH 30) until develop-
ment of pods (BBCH 70+).

The YWT had a circular shape with a diameter of 22 cm. It 
was covered by a plastic grid with gaps of approximately 
1 cm × 1 cm to prevent the entry of larger insects. The DYWT 
was the MagicTrap recently released to the market by Bayer. 
The MagicTrap is the final iteration of a series of DYWT pro-
totypes. It is square shaped, but otherwise shares a similar 
yellow colour, size, and grid size as the YWT. The MagicTrap 
is equipped with a battery-powered camera which can be re-
charged via USB-C cable or small, built-in solar-panels. The 
camera takes pictures at regular intervals throughout the day 
and then transfers the photos to Bayer’s MagicScout appli-
cation. Internet of things (IoT) coverage for the MagicScout 
is provided by the company 1NCE, which offers lifetime con-
nectivity for low bandwidth devices. An AI model detects, 
classifies, and counts the insects in the trap. The AI identifies 
some insect pests at the species level, including the pollen 
beetle and the cabbage-stem flea beetle. Comparatively, the 
MagicTrap AI categorizes weevil species as a single group. The 
AI model also classifies, counts, and reports non-pest insect 
species as bycatch. Farmers can use the MagicScout app to 
receive updates about insect pest dynamics. Photos taken by 
the DYWT cameras were asynchronous with the manual col-
lection times. Photos generally pre-date sample collection by 
a few hours and in some cases over 12 hours.

In 2021, one YWT was placed in each monitoring site (n=5). 
The Con, Red + FS, and Ref_Con sites were also equipped with 
DYWTs (n=3), totalling n=8 traps. In 2022, one YWT and one 
DYWT were placed in each monitoring site (YWT n=5 and 
DYWT n=5). After the validity of the DYWTs was established, 
only DYWTs were used in all five sites in 2023. Traps were po-
sitioned approximately one meter inside the driving lane to 
facilitate access later in the growing season and to ensure In-
ternet connectivity. To reduce interference between the ref-
erence and digital traps, traps were positioned approximately 
12 m apart from each other (Fig. 1).

Data collection was carried out every Monday and Thursday, 
when permitted by weather and safety protocols following 
pesticide applications. In 2021, monitoring took place from 
07 April until 03 June 2021 (BBCH 35–73); however, DYWTs 
were not available until 10 May 2021 (BBCH 62). For 2022 
and 2023, DYWTs were available the entire monitoring pe-
riod from 21 March until 23 May 2022 (BBCH 31–75) and 
from 6 March until 22 May 2023 (BBCH 24–71). Both YWT 
and DYWT samples were brought from the field using plastic 
jars, manually classified, and then transferred to glass vials 
filled with 70% ethanol. In addition to pollen beetles, other 
prominent OSR insect pests were identified at the species 
level using guides by Martinez (2014) and Klausnitzer (2005). 
Their counts were used for IPM decision making but are not 
reported in this study.

In addition to yellow water traps, plant beating was conduct-
ed in every monitoring site. Plant beating results were used 
to verify if thresholds were exceeded for pollen beetles and 
to inform IPM decisions. Per site, 25 OSR plants underwent 

plant beating. In the patches, plant beating was carried out 
on five plants in the biodiversity, yield, and multipurpose sam-
pling quadrants respectively, as well as five plants from each 
of the two driving lanes. In the reference sites, plant beating 
was carried out on 25 plants selected along the driving lane.

2.4 �Data analyses

Data analyses involved three parts: (1) method compari-
son of the YWT and DYWT, (2) evaluation of the AI model’s 
performance of classifying pollen beetles, and (3) analysis 
of pollen beetle dynamics affected by crop diversification 
at the landscape scale. All analyses were performed using 
R Statistical Software (v4.3.0; R Core Team 2023) in RStudio 
(v2023.3.1.446 “Cherry Blossom”; Rstudio Team, 2020). Vis-
ualizations were created using ggplot2 (v 3.4.2; Wickham, 
2016) and Microsoft Excel.

2.4.1 Method validation of DYWT using Deming Re-
gression

The manually determined pollen beetle counts from a YWT 
were compared to the manually determined DYWT counts 
from the same monitoring site and collection date. Pollen 
beetle counts from all sampling days and monitoring sites 
from 2021 (n=25) and 2022 (n=93) were aggregated into 
one data set for the method comparison analyses (total of 
n=118). Outliers were checked for. However, they were not 
removed, as they represented the immigration dynamics of 
pollen beetles into the rapeseed crop and were a result of 
natural fluctuations, not data collection error (Reuman et al., 
2008).

The Shapiro-Wilk test determined that the YWT and DYWT 
count data were not normally distributed, so Spearman’s rank 
correlation coefficient was used to test for correlation be-
tween the two traps. The Wilcoxon signed-rank test was then 
used to look for significant differences between the paired 
samples of YWT and DYWT counts. Lin’s concordance correla-
tion coefficient was used to establish the level of agreement 
between YWTs and DYWTs.

After finding a correlation between the two trap types, Dem-
ing regression was performed as a more robust method com-
parison analysis between YWTs and DYWTs using the mcr 
package (v1.3.2; Potapov et al., 2023). Unlike simple linear 
regression, which only accounts for error in the dependent 
variable, Deming regression accounts for error in both the 
reference variable, in this case YWTs, and the test variable, 
DYWTs (Ludbrook, 2010). The data were tested for hetero-
scedasticity using the Breusch-Pagan test (p <. 001). Heter-
oscedasticity was present, so a weighted Deming regression 
was applied instead of a simple Deming regression (Bahar et 
al., 2017). Only positive integers can be included in a weight-
ed Deming regression, so fewer YWT and DYWT pairs (n=72) 
were included. Confidence intervals were calculated using 
the jackknife (Linnet’s) method with a confidence level of 
95% (Linnet, 1993). Given that the measurement error (δ) is 
not established for yellow water traps, δ=1 was used as de-
fault (Ellsäßer et al., 2021).
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2.4.2 AI Evaluation with Confusion Matrices

The AI model’s ability to classify pollen beetles was tested 
using DYWT samples from 2022 (n=93) and 2023 (n=97). Al-
though DYWTs were used in 2021, they were not equipped 
with a camera and therefore had no associated AI model. 
Data from 2022 and 2023 were aggregated, then evaluated 
using confusion matrices generated via the caret package (v 
6.0.94; Kuhn, 2008). A confusion matrix measures the per-
formance of classification models in machine learning (Thar-
wat, 2018). It compares actual values to predicted values by 
calculating the true positives, false positives, true negatives, 
and false negatives produced by the AI model based on a bi-
nary classification (Tharwat, 2018). For this study, the actual 
value was the manually determined pollen beetle counts in a 
DYWT from a single date and monitoring site. The predicted 
value was the pollen beetle count according to the AI’s classi-
fication for the same DYWT sample. The binary classification 
was based on a series of thresholds that represent possible 
severities of pollen beetle immigration or flight into the OSR 
crop: 5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 200, 300, 400 
and 500 pollen beetles.

A true positive (TP) occurs when the actual pollen beetle 
count and the predicted pollen beetle count both exceed the 
immigration threshold. A false positive (FP) occurs when the 
predicted value exceeds the immigration threshold, but the 
actual value does not. A true negative (TN) is when both the 
actual value and the predicted value are under the immigra-
tion threshold. A false negative (FN) occurs when the actual 
value exceeds the immigration threshold, but the predicted 
value does not.

From the confusion matrix (supplementary Fig. S3) gener-
ated for each threshold, five metrics were calculated which 
provided a more detailed overview of the AI model’s perfor-
mance: sensitivity, specificity, balanced accuracy, precision 
and F1 score. These metrics range from 0 to 1, where 0 repre-
sents the worst performance and 1 represents the best per-
formance (Powers, 2007; Tharwat, 2018). Their calculations 
can be found in the supplementary information (Equations 
S1–S5).

2.4.3 Evaluating pollen beetle dynamics and crop 
performance in a diversified agricultural land-
scape
Pollen beetle dynamics and crop performance were assessed 
using general linear models (GLM) and simple correlation 
analysis. First, we used data from yellow water traps to assess 
the relationship between pollen beetle immigration, field 
size, and management strategies using GLMs. We then used 
GLMs to assess the relationship between yield, field size, and 
management strategies. Finally, we performed simple corre-
lation tests to compare the dynamics of pollen beetle counts 
in yellow water traps to the pollen beetle counts from plant 
beating.

GLMs for pollen beetle dynamics were built in R using the 
MASS package (v7.3.58.4; Venables & Ripley, 2002). GLMs for 
yield were built using the stats package in R (v4.3.0; R Core 
Team 2023). We followed GLM guidelines suggested by Smith 

& Warren (2019). Pollen beetle count data from all three years 
was included and assumed the previously tested interchange-
ability between YWTs and DYWTs. In 2021, DYWTs were not 
used in all five monitoring sites, so the data (n=79) came from 
manually counted YWT samples. For 2022 (n=99) and 2023 
(n=114), data came from the AI-classified DYWT samples.

For GLMs related to pollen beetle immigration, a Poisson 
model was selected because the response variable (adult pol-
len beetle abundance) was non-parametric count data. For 
visualizations of pollen beetle immigration dynamics, all data 
points were included. Overdispersion was present, so outli-
ers (Z >3) were removed from the response variable and the 
data were refitted using a negative binomial model. For GLMs 
related to crop performance, a Gaussian model was select-
ed, because the response variable (yield) was normally dis-
tributed. A full model that included all five monitoring sites 
was built. The full model included the type of the monitoring 
site (patch or field), management strategy (conventional, re-
duced, reduced +  flower strip), year, and BBCH as fixed ef-
fects. The model failed to converge, so BBCH was removed. 
The model was incrementally tested using Akaike Information 
Criterion (AIC) scores to select the model with the best fit. 
The final model included type of the monitoring site, man-
agement strategy, and year. Two additional models were built 
to further analyse the response of pollen beetle dynamics on 
yield to field type. In these models, monitoring sites in the 
main patchCROP field (Con and Red) were compared to their 
counterparts in the reference field (Ref_Con and Ref_Red). 
The Mass and stats packages also calculated the significance 
of the GLM models.

For the simple correlation analysis between yellow water 
traps and plant beating, pollen beetle count data were aggre-
gated from the inflorescence emergence stage (BBCH 50–60) 
in the years 2021, 2022, and 2023. Plant beating counts and 
yellow water trap counts from the same monitoring site and 
date were analysed together as a total of n=126 pairs. The 
Shapiro-Wilk test established that both the yellow trap and 
plant beating counts were not normally distributed (p < 0.001 
for both methods), so the nonparametric Spearman’s rank 
correlation rho was performed using the stats package in R 
(v4.3.0; R Core Team 2023).

3. Results

3.1 Method validation of DYWT

In 2021, YWTs (number of traps, n=3) and DYWTs (n=3) col-
lected 1,110 and 1,218 pollen beetles, respectively. In 2022, 
YWTs (n=5) and DYWTs (n=5) collected 5,830 and 5,470 pollen 
beetles, respectively. Overall, the dynamics of pollen beetles 
in both YWTs and DYWTs followed the same pattern; howev-
er, variation existed. Based on the aggregated paired samples 
from spring 2021 and spring 2022 (n=118), Spearman’s rank 
correlation rho suggests a strong, statistically significant rela-
tionship between the pollen beetle counts in YWT and DYWT 
(Table 3). Likewise, the Wilcoxon signed rank test with conti-
nuity correction showed no evidence for a systematic differ-
ence between YWT and DYWT. Lin’s concordance correlation 
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coefficient suggests a moderate agreement between the two 
types of yellow water traps.

In the weighted Deming regression, the slope of the regres-
sion line (0.91) was just under the identity line (Fig.  3). The 
95% confidence interval for slope (0.72–1.09) was around one, 
suggesting that there was no proportional systematic error be-
tween pollen beetle counts in YWT and DYWT. The intercept 
of the weighted Deming regression was positive (0.76) and the 
intercept 95% confidence interval (-1.95–3.47) contained zero, 
indicating there is no constant systematic error between the 
YWT and DYWT pollen beetle counts. Altogether, the manual 
and digital traps can be used interchangeably to assess pollen 
beetle dynamics and provide similar results.

3.2 Evaluation of AI Model

The performance of the DYWT’s AI model was evaluated using 
a gradient of pollen beetle immigration, ranging from a small 
number of beetles (n=5) to hundreds of beetles (n=500). Ta-
ble  4 showcases the model’s performance at different pos-
sible immigration severities, where the AI determined if the 
pollen beetle count was over or under the set threshold.

The AI model had very high sensitivity (0.98–1.00). From 
thresholds of 25 pollen beetles and higher, the AI model had 
perfect sensitivity. This suggests that the model is effective 
at correctly detecting when the immigration threshold is ex-
ceeded, especially at higher counts of pollen beetles. The AI 
model had moderate specificity for immigration thresholds 
under 100 pollen beetles (0.78–0.85). As the immigration 
threshold of pollen beetles increased, specificity generally 
performed worse. At the thresholds n= 100 and n=400, spec-
ificity was the lowest at only 0.50. The variation in specificity 
suggests variability in the AI model’s ability to correctly de-
termine true negatives (i.e., when the pollen beetle count is 
under the immigration threshold). Precision was high (0.89–
0.98), suggesting that the model is generally capable of avoid-
ing false positives. As the thresholds increased, precision also 
increased, resulting in a high ratio of true positives among all 
the predicted positive cases.

The balanced accuracy provides an average score of sensitiv-
ity and specificity. For thresholds between five and 75 pol-
len beetles, the balanced accuracy is high, ranging between 
0.89 and 0.92. From thresholds of 100 pollen beetles and 
above, the balanced accuracy is lower, ranging from 0.75 to 
0.83. This is due to the low specificity at higher thresholds. 
The F1 score, a combined metric of sensitivity and precision, 
ranged from 0.94–0.99. The higher the F1 score, the more 
balanced the model is between precision and sensitivity. This 
indicates that the AI model performed well regardless of the 
pollen beetle immigration threshold. Overall, the AI mod-
el performed very well in terms of sensitivity and precision. 

Table 3. Statistical summary on method comparison between yellow water traps (YWT) and digital yellow water traps (DYWT).

YWT and DYWT pairs (n=118), aggregated from harvest years 2021 and 2022 pollen beetle counts

Shapiro-Wilk YWT p < 0.001
Shapiro-Wilk DYWT p < 0.001
Spearman’s rank correlation rho rho = 0.84, p < 0.001
Wilcoxon signed rank p = 0.884
Concordance correlation 0.94
Concordance correlation 95% confidence interval 0.91 – 0.96
Breusch-Pagan test p < 0.001

YWT and DYWT pairs (n=72), aggregated from harvest years 2021 and 2022, only positive integer pairs

Weighted Deming regression intercept 0.76
Weighted Deming regression slope 0.91 (n=72)
Intercept 95% confidence interval -1.95 – 3.47
Slope 95% confidence interval 0.72 – 1.09
Spearman’s rank correlation rho rho = 0.76

Fig. 3. Deming regression comparing YWT and DYWT pollen bee-
tle counts. The 1:1 or identity line is for reference and the shaded 
cone is the confidence region. Data is aggregated from spring 2021 
and spring 2022.
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The variability in specificity suggests that the model could be 
improved for identifying negative cases, especially at higher 
immigration. Despite the variability, the AI model correctly 
determined when the pollen beetle counts exceeded various 
severity thresholds.

3.3 Pollen beetle dynamics and crop performance 
in a diversified agricultural landscape

Pollen beetle dynamics varied in both the temporal and spa-
tial dimension. For the temporal dimension, the three years 
exhibited different patterns of pollen beetle dynamics (Fig. 4). 
According to the full model (Table 5), there were significant 
yearly differences. Pollen beetle abundance was highest in 
2021, with lower pollen beetle abundance in 2022 and 2023. 
The management strategy did not have a statistically signif-
icant effect on adult pollen beetle abundance (Table 5). For 
the spatial dimension, pollen beetle counts were found to 
be higher in patch-sized monitoring sites when compared to 
field-sized monitoring sites (Table  5). When comparing the 
monitoring sites of the same management strategy, there 
was a marginally significant (p < 0.1) increase in pollen beetles 
for Con (Table 6) and a highly significant (p = 0.001) increase 
in pollen beetles for Red (Table 7) compared to their refer-
ence field counterparts Ref_Con and Ref_Red.

In 2021 (Fig. 4), pollen beetle abundance was notably high-
er in the three patches as compared to the reference sites. 
Insecticide was applied on 26 March (BBCH 28) to all moni-
toring sites (supplementary Table S1, 2020–2021) to control 
against rape stem weevils and cabbage stem weevils. There 
were four peaks in pollen beetle abundance on 22 April (BBCH 
59), 29 April (BBCH 60), 10/13 May (BBCH 66/67), and 31 May 
(BBCH 72). Insecticides against pollen beetles were applied 
to Con and Ref_Con on 23 April. In 2022 (Fig. 4), pollen bee-
tle dynamics were more similar across patches and reference 
sites. There was a prominent peak in pollen beetle immigra-
tion on 24 March (BBCH 50). Insecticides were applied on 26 
March to control against rape stem weevils and cabbage stem 

weevils in all monitoring sites except Ref_Red (supplementa-
ry Table S1, 2021–2022). A second, less severe pollen beetle 
immigration occurred on 19 April (BBCH 59). No additional 
insecticides were applied for the remainder of the season. In 
2023 (Fig. 4), there were more frequent but less pronounced 
peaks in pollen beetle abundance. The initial immigration oc-
curred on 20 March (BBCH 32). Insecticide against rape stem 
weevils and cabbage stem weevils was applied on 22 March 
to the patches but to neither of the reference sites (supple-
mentary Table S1, 2022–2023). The peak pollen beetle immi-
gration happened on 24 April with a less severe immigration 
on 2 May (BBCH 64). On 26 April, insecticide to control pollen 
beetles was applied to Con, Red and Ref_Con. Insecticide to 
control brassica pod midges was applied on 8 May in Con.

Pollen beetle dynamics differed not only from year to year, 
but also between the yellow water traps and plant beating. 
Counts from both monitoring methods were compared dur-
ing the inflorescence emergence stage (BBCH 50–60). Spear-
man’s rank correlation rho suggested a statistically significant, 
moderate correlation (rho = 0.46, p < 0.001) between the pol-
len beetle counts in the yellow water traps and from plant 
beating. Notably, the relationship between the yellow water 
traps and plant beating varied from year to year, as demon-
strated by the differing slopes of regression lines in Fig. 5 for 
2021, 2022, and 2023. This underpins the loose relationship 
between pollen beetle immigration (yellow water traps) and 
crop infestation (plant beating), and thus damage.

OSR yield varied among management strategies, field sizes, 
and years. There were yearly fluctuations in OSR yields, with 
significantly higher yields in 2022 compared to 2021, and 
lowest in 2023 in all monitoring sites (supplementary Table 
S2). The lower yield in 2023 was caused by excessive rain-
fall in July (43.9 mm) and continuous rainfall events in August 
(47.5  mm until harvest on August 24). This caused delayed 
harvest and thus yield reduction, mainly due to shattering of 
pods, leading to average OSR yields of 2.59 t/ha compared to 
3.67 and 4.2 t/ha in 2021 and 2022, respectively. For all crop-
ping seasons, Ref_Con generally resulted in the highest OSR 

Table 4. Confusion matrix metrics for the digital yellow water trap (DYWT) AI model.

Pollen beetle immigra-
tion threshold

Sensitivity 
(Recall)

Specificity Precision Balanced Accuracy F1

n = 5 0.99 0.85 0.89 0.92 0.94
n = 10 0.98 0.82 0.91 0.90 0.94
n = 15 0.98 0.84 0.94 0.91 0.96
n = 20 0.99 0.82 0.94 0.91 0.97
n = 25 1.00 0.83 0.95 0.91 0.97
n = 50 1.00 0.79 0.97 0.90 0.99
n = 75 1.00 0.78 0.98 0.89 0.99
n = 100 1.00 0.50 0.96 0.75 0.98
n = 150 1.00 0.53 0.96 0.77 0.98
n = 200 1.00 0.57 0.97 0.79 0.98
n = 300 1.00 0.60 0.99 0.80 0.99
n = 400 1.00 0.50 0.99 0.75 0.99
n = 500 1.00 0.67 0.99 0.83 0.99
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Fig.  4. Pollen beetle counts in 
yellow water traps from spring 
2021, 2022, and 2023. Every 
monitoring site and collection 
date is included. Solid lines 
represent the sole-cropped ref-
erence fields and dashed lines 
represent patchCROP patches.

Table 5. All monitoring sites—Summary of negative binomial GLM to model the abundance of pollen beetles in response to monitoring 
site size (field or patch), management strategy (reduced, conventional, or reduced + flower strips), and collection year (2021, 2022, 2023).

Model Parameter Estimate SE P

Intercept 3.04 0.29 < 0.001***
Monitoring site size (Reference: Field)
Patch 0.74 0.26 0.001**
Management strategy (Reference: Conventional)
Reduced - 0.10 0.26 0.708
Reduced + Flower strip 0.04 0.34 0.896
Year (Reference: 2021)
2022 
2023

- 0.62 
- 1.34

0.30 
0.29

0.01* 
< 0.001***
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yields (Fig.  6). In 2021 and 2022, GLM showed lower aver-
age yields in the patches compared to yields in the reference 
fields (supplementary Tables S3–S10), but this difference was 
not observed in 2023 (supplementary Table S12). The effect 
of management strategies on OSR yield varied from year to 
year. In 2021, management strategies did not have a signif-
icant effect on yield in the full model (supplementary Table 

S3) or when analysing only the patches (supplementary Table 
S6). By contrast in 2022, differences existed between man-
agement strategies. GLM showed that the 2022 Red and Red 
+ FS monitoring sites had slightly lower yields than monitor-
ing sites with conventional management strategies (supple-
mentary Table S7); however, when examining only the patch-
es in 2022, there were no significant differences in OSR yield 

Table 7. Reduced monitoring sites—Summary of negative binomial GLM in monitoring sites with reduced management strategies. Models 
the abundance of pollen beetles in response to site size (patch or field) and collection year (2021, 2022, 2023).

Model Parameter Estimate SE P

Intercept 2.84 0.39 < 0.001***
Monitoring site size (Reference: Field)
Patch 1.00 0.35 0.001**
Year (Reference: 2021)
2022 
2023

- 0.43 
- 1.62

0.46 
0.45

0.353 
< 0.001***

Table 6. Conventional monitoring sites—Summary of negative binomial GLM in monitoring sites with conventional management strate-
gies. Models the abundance of pollen beetles in response to site size (patch or field) and collection year (2021, 2022, 2023).

Model Parameter Estimate SE P

Intercept 2.85 0.40 < 0.001***
Monitoring site size (Reference: Field)
Patch 0.67 0.37 0.071
Year (Reference: 2021)
2022 
2023

- 0.44 
- 0.95

0.48 
0.46

0.364 
0.01*

Fig.  5. Scatter plot comparing 
pollen beetle counts in yellow 
water traps versus pollen bee-
tle counts from plant beating. 
Regression was not used to an-
alyse the link between the two 
methods; however, regression 
lines are included on the scatter 
plot to better represent the re-
lationship between yellow wa-
ter traps and plant beating.
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regarding management strategies (supplementary Table S9). 
In 2023, assuming a similar disadvantage across monitoring 
sites due to delayed harvest, yield was significantly lower in 
Red and Ref_Red (Fig. 6) and highest in Con and Ref_Con (sup-
plementary Table S11). Notably in the patches, Red + FS yields 
were only slightly lower than Con yields (supplementary Ta-
ble S14).

The treatment index (TI) was calculated to classify the in-
secticide reduction potential without compromising yields 
(Fig. 7). In autumn 2020, all patches and references received 
identical pesticide applications. Starting in 2021, insecticide 
application was situation specific. Therefore, the differenc-
es in insecticide TI between monitoring sites was marginal, 
amounting only 20% less in reduced monitoring sites in the 
first cropping season. The use of insecticides was consider-
ably lower in 2021/22, due to overall lower insect pest pres-
sure and the implementation of reduction strategies from the 
beginning of the vegetation. In 2022/23, insect pest pressure 
was higher, causing a slight increase of overall insecticide use. 
However, insecticide usage remained at lower levels in the re-

duced monitoring sites than in the first year due to additional 
autumn insecticide reduction. By implementing a reduction 
approach where insecticide application was strictly situation 
dependent and not prophylactic, the TI of insecticides was re-
duced by over 50% over three years in the Ref_Red compared 
to Ref_Con monitoring site. Compared to Con, the insecticide 
TI was reduced by 35% in Red and 50% in Red + FS.

4. Discussion
The patchCROP landscape experiment was selected for 
this study to investigate diversified agricultural landscapes 
of the future (Pereponova et al., 2023). The hypothesis is, 
that through creating small-scale and site-specific cropping, 
we can reduce insect pest pressure on OSR and use digital 
technologies to monitor their dynamics. For the study, newly 
developed DYWTs were validated and then used to provide 
high-resolution, continuous pollen beetle monitoring. Differ-
ent field sizes (small-scale diversified patches vs. large-scale, 
sole-cropped reference fields) and land use intensities were 
found to have trade-offs in pest dynamics and crop yields.

Fig.  6. Average oilseed rape 
(OSR) yield (in t/ha) for 2021, 
2022, and 2023 and their re-
spective monitoring sites. 
Conventional sites (Con) were 
managed with IPM practices 
according to EU directives. 
Reduced sites (Red) were mo-
nitored by researchers at the 
Julius Kühn Institute, who then 
provided more rigorous IPM re-
commendations. Sites bordered 
by flower strips (Red + FS) also 
had a reduced management 
strategy. Error bars indicate 
standard deviation. (pC: patch 
in the patchCROP landscape ex-
periment, Ref: a sole-cropped, 
reference field).

Fig.  7: The treatment index 
(TI) describes the intensity of 
insecticide applications per 
growing season and manage-
ment strategy. In the 2021/22 
growing season, the intensity 
of insecticide treatments in all 
management strategies was lo-
wer than in the 2020/21 and 
2022/23 growing seasons. (in 
patchCROP: Con: conventional, 
Red: reduced, Red + FS: reduced 
+  flower strips; in Reference 
fields: Ref_Con: conventional, 
Ref_Red: reduced)
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4.1 Validation of DYWT
Despite some daily variation between the pollen beetle counts 
in YWTs and DYWTs, the overall patterns of pollen beetle dy-
namics in both yellow water trap types were very similar. The 
method validation of the yellow water traps demonstrated 
a satisfactory trapping efficacy with DYWT and a statistically 
proven interchangeability between pollen beetle counts ob-
tained from YWTs and DYWTs, both of which are aspects to 
be considered successful camera traps (Preti et al., 2021). The 
daily variation between counts in YWTs versus DYWTs may 
be due to the highly mobile nature of pollen beetles. To find 
preferred resources, pollen beetles move not only from field 
to field, but also from plant to plant (Seimandi-Corda et al., 
2021). Previous studies have also found that pollen beetles 
are not homogenously distributed across fields. Following 
immigration into OSR via anemotaxis (Skellern et al., 2017), 
early aggregation of pollen beetles often occurs upwind, 
also via anemotaxis, meaning that the pollen beetles cluster 
downwind of prevailing winds (Bick et al., 2023). Pollen bee-
tles were also found to aggregate first at field edges during 
inflorescence development (BBCH 55–59) and then more 
centrally during flowering (Bick et al., 2023). Given that the 
YWTs and DYWTs were spaced 12 m apart, the difference in 
YWT and DYWT counts is likely not a methodological differ-
ence between the devices. Instead, the discrepancies could 
be explained by spatial variability of pollen beetles, prevail-
ing winds, tendency to cluster at edges and then the centre 
of fields, and possible preference for available food sources 
in the vicinity of the yellow water traps. Overall, the results 
suggest that DYWTs are a viable and accurate means of mon-
itoring pollen beetle immigration dynamics in diversified ag-
ricultural landscapes.

4.2 Validation of AI
After validating the DYWTs as a suitable methodology for 
monitoring the immigration dynamics of pollen beetles, we 
validated the performance of the AI model. The evaluation 
of the AI model demonstrated its effectiveness at classifying 
pollen beetles based on immigration severities ranging from 
five to 500 pollen beetles. The AI model exhibited high sensi-
tivity and precision, especially at higher pollen beetle immi-
gration severities, indicating that the model could correctly 
detect when the pollen beetle count in a DYWT exceeded a 
pre-established severity. The high F1-score further indicates 
that the AI model is a very good classifier (Bjerge et al., 2023; 
Mendoza et al., 2023), because it could detect and properly 
classify a range of pollen beetle immigration dynamics. These 
are important criteria for the timely and precise monitoring 
of insect pests, as well as for sending farmers reminders to 
visit traps (Rosado et al., 2022), thus showing that the AI 
model in the commercial DYWT is a valuable support tool for 
targeted pest management interventions.

Future research directions may involve expanding AI-pow-
ered pest monitoring to species in crops other than OSR (Car-
dim Ferreira Lima et al., 2020), allowing for a more compre-
hensive assessment of pest dynamics in diversified cropping 
systems. Integrating real-time environmental data, such as 
including temperature sensors near each trap, could further 

improve the information sent to farmers by the DYWT (Rosa-
do et al., 2022). The commercial DYWT is regularly retrained 
to better identify insect pests and improve its performance 
using pictures obtained from each cropping season. Further 
training of its taxonomic classification abilities and integrat-
ing deep learning (Christin et al., 2019; He et al., 2019) could 
provide valuable insights into the factors influencing insect 
pest population dynamics or may improve regional prediction 
through decision support systems.

4.3 Pollen beetle dynamics in a diversified land-
scape setting
In our study, the patches in diversified settings had higher pest 
pressure and lower average OSR yields compared to larger, 
sole-cropped fields. However, when comparing yields among 
the patches, there was not a consistently large difference in 
yields between the Con, Red, and Red + FS monitoring sites. 
When compared to Con insecticide applications and yields, 
reduced insecticide applications in Red and Red + FS (Table 2) 
did not lead to a significant yield decrease (Fig. 6) in 2021 or 
2022, or for Red +  FS in 2023. The timely insecticide appli-
cations by weekly expert decisions likely helped keep yield 
losses to a minimum. Intensive insect pest monitoring in Red 
and Red + FS monitoring sites prevented insecticide spraying.

Various beneficial interactions arising from crop diversifica-
tion with smaller field size may have contributed to enhanced 
crop resilience in Red + FS and partly in Red. For example, the 
strong interaction of insect pollination, insect density, and in-
sect diversity, and as well as the diversified field conditions 
(Ouvrard & Jacquemart, 2019) present in Red + FS could have 
benefited yields without the spraying of additional insecti-
cides. Given that conventional methods of spraying insecti-
cides have been shown to reduce pollen beetle parasitism 
(Hausmann et al., 2021), the reduced amounts of insecticides 
in Red + FS might have accelerated biological control of pol-
len beetles by their parasitoids. Furthermore, OSR is an in-
sect-pollinated crop, so reduced insecticide usage potentially 
offset the negative effects of smaller field sizes via improved 
pollination, thus outweighing yield loss (Perrot et al., 2018). 
Flower strips, which have been reported to enhance pollen 
beetle parasitism (Krimmer et al., 2022), could have also led 
to effective natural control of insect pests in Red + FS. In the 
future, if flower mixtures that appeal to OSR parasitoids are 
planted, the benefits of flower strips could be further en-
hanced (Hatt et al., 2018). Finally, Red + FS sites were closest 
to coppices along the patchCROP border. The more diverse 
landscape offered by trees and bushes may have fostered a 
greater parasitism rate compared to the other sites (Vero-
mann et al., 2009), which were located farther from wooded 
areas.

In terms of pest dynamics, pollen beetles are highly mobile, 
and their immigration is more likely in areas with higher in-
festation, whereas in areas with comparatively higher insec-
ticide applications, their abundance is lower (Rusch et al., 
2011). This discrepancy might also explain why Ref_Red had 
overall lower pollen beetle counts in the yellow water traps 
than its patch counterpart Red. The insect pest pressure in 
Ref_Red was possibly reduced by its conventional surround-
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ings. Because the entire reference field surrounding Ref_Red 
was managed with insecticides, a comparability to reduced 
patches is limited and a pest dilution effect was assumed. 
Overall, the interactions which govern real, working agroeco-
systems are highly complex. Although these interactions are 
challenging to disentangle at the landscape level, this study 
was able to elucidate interactions among various landscape 
structures and insecticide reduction approaches, not only in 
terms of biodiversity, but also for productivity and feasibility.

In Germany, there are no established insecticide application 
thresholds for pollen beetles found in YWTs. The indication to 
apply insecticides against pollen beetles is determined by the 
plant beating counts (Bartels et al., 2023; Freier et al., 2018). 
YWTs serve as a warning device to notify farmers of the immi-
gration of pollen beetles. When pollen beetles are discovered 
in YWTs, farmers should perform plant beating to determine 
damage thresholds. Our findings are a larger scale field ex-
periment which support those of Metspalu et al. (2015), who 
concluded that YWTs are a good indicator of pollen beetle 
movement and long-term continuous monitoring, whereas 
plant beating is more suitable for rapid monitoring and deci-
sion making, such as determining pollen beetle thresholds in 
OSR. Although the DYWT AI can correctly alert farmers about 
pollen beetle immigration, the final decision to apply insecti-
cide should still be indicated by the established pollen beetle 
thresholds from plant beating, not the pollen beetle count in 
the yellow water traps.

The implementation of digital yellow water traps (DYWTs) 
represents a significant advancement in the technical dimen-
sion of agricultural landscape monitoring. These traps offer 
high-resolution data, which facilities continuous monitoring 
of pollen beetles (Metspalu et al., 2015) and helps farmer 
improve targeted control. Importantly, by looking at the pho-
tographs and insect pest summary provided by the associat-
ed phone application, farmers can limit the time spent in the 
field checking for pollen beetle immigration. Instead, farm-
ers can use DYWTs as an alert system for pollen beetle im-
migration and prioritize their time doing plant beating when 
necessary. This combination allows OSR farmers to achieve 
the ecological benefits of adhering to insect pest thresholds 
and the principles of IPM while incurring a lower cost of la-
bour (Thiel et al., 2023). The combination of farm-relevant 
data and pest management decision-making alongside the 
promotion of ecosystem services for biological pest control 
make DYWTs a suitable tool for IPM (Schellhorn et al., 2015). 
A well-informed IPM decision might ultimately result in the 
omission of insecticide treatments. If insecticide is deemed 
necessary under IPM, the choice of an appropriate insecticide 
to control OSR insect pests in spring is foremost led by issues 
of resistance management (changing modes of action) and 
considerations of the least side effects for beneficial insects. 
The limited number of authorised insecticides underscores 
the need of monitoring and adherence to threshold values 
prior to insecticide treatments.

Ideally, a constellation of different data types would be con-
sidered in future IPM methodologies. For example, habitat 
characteristics like relative altitude, litter (crop residue) thick-
ness, soil moisture, and proximity to the previous year’s OSR 
fields at both local and landscape scale would also be includ-

ed, as they contribute to pollen beetle abundance and should 
be considered for IPM (Rusch et al., 2012). Additionally, me-
teorological data, especially temperature and wind speed, 
would be incorporated to better predict the abundance of 
pollen beetle immigration (Skellern et al., 2017). Using con-
ventional insect pest monitoring methods, the inclusion of all 
these observations is hardly feasible; however, future tech-
nologies will hopefully allow seamless integration of all rele-
vant insect pest monitoring data.

5. Conclusion
The successful validation of DYWTs and the performance of 
the AI model confirm their suitability as tools for continuous 
monitoring of pollen beetle immigration in diversified agri-
cultural landscapes. The combination of DYWTs and AI image 
classification packaged into a smartphone application is an 
efficient and human-centred technology. These innovative 
technologies can support farmers in the rigorous monitor-
ing of pollen beetles, while simultaneously reducing the la-
bour-intensive nature of conventional insect pest monitoring 
methods. The DYWTs provide accurate, timely information 
which can help farmers know when to go to the field and 
perform plant beating to determine pollen beetle thresholds. 
Whereas DYWTs serve in identifying insect pest trends and 
patterns, plant beating can give a clearer indication of cur-
rent pollen beetle infestation. When used together, the two 
methods are powerful tools for pollen beetle monitoring in 
OSR and have the potential to support more specific, targeted 
applications of insecticides.

Although DYWTs were useful tools for pollen beetle moni-
toring, we reject the hypothesis that agricultural diversifi-
cation through patch-cropping resulted in lower pesticide 
application without compromising OSR yields. Over three 
harvest years, OSR yield was lower in the smaller sized patch-
es compared to large fields, although this discrepancy was 
less expressed in monitoring sites with conventional pest 
management. Notably, we found that the situation specific 
insecticide reduction was not the most relevant controlling 
yield factor for monitoring sites in 2021 and 2023, nor in the 
patches in both 2021 and 2022. This proves the validity of 
the concept of thresholds and suggests that farmers can rely 
on threshold values, which with their rigorous application 
contributes to reduce pesticide applications without com-
promising OSR yield in smaller fields. Perennial flower strips 
showed their potential in playing an important role in reg-
ulating pollen beetle dynamics in smaller fields. Integrating 
DYWTs with additional data sources and more sophisticated 
AI could further illuminate the complex interactions between 
insect pest dynamics, crop performance, and diversification 
strategies. Researchers could use this robust knowledge in 
changing crop mosaics and semi-natural habitats to develop 
sustainable pest management strategies.
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Supplementary information

Fig. S1. Timeline of oilseed rape (OSR) insect pests in the context of the patchCROP landscape experiment, modified after Bartels et al. 
(2023). The assortment of species, their phenological variation, and the differences in what stage of the plant they damage add to the 
labour-intensive nature of pest monitoring in OSR.

Fig. S2. Weather data for three oilseed rape vegetation periods 2020-2021, 2021-2022 and 2022-23 average monthly, and daily maximum 
and minimum air temperature (Temp in°C), and cumulative precipitation (Precip in mm).
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Fig. S3. In the confusion matrix, 
manually determined pollen 
beetle counts are the actual val-
ues and AI classified pollen bee-
tle counts are the predicted val-
ues. Every threshold has its own 
confusion matrix. (TP: count of 
true positives, FP: count of false 
positives, FN: count of false neg-
atives, TN: count of true nega-
tives).

Using the confusion matrix generated for each threshold, 
five metrics were calculated which provided a more detailed 
overview of the AI model’s performance: sensitivity, specific-
ity, balanced accuracy, precision and F1 score. Their calcula-
tions are described below:

1) Sensitivity, or recall, is the true positive rate. It is the pro-
portion of samples correctly identified by the AI as over the 
threshold to DYT samples that were actually over the thresh-
old (including samples the model missed). A highly sensitive 
model minimizes false negatives. It is calculated by:

� (Equation S1)

2) Specificity is the true negative rate. It is the proportion 
of DYT samples that were correctly identified as under the 
threshold. It is calculated by:

� (Equation S2)

3) Balanced accuracy assesses how many times the AI model 
was correct overall in determining if the DYT samples were 
over or under the threshold. It is calculated by:

� (Equation S3)

4) Precision is the proportion samples that were correct-
ly identified by the AI as over the threshold to all over the 
threshold identifications (including false predictions). A high-
ly precise model minimizes false positives. It is calculated by:

� (Equation S4)

5) The F1 score is the balanced harmonic mean between sen-
sitivity and precision. It is calculated by:

� (Equation S5)
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Table S1. Insecticide applications in OSR from the 2020–21, 2021–22, and 2022–23 cropping cycles.

Ye
ar patchID/

RefID
Monitor-
ing Site

Date Insecti-
cide

Indicated to control 
against

All OSR pests targeted by the  
insecticide

Concentra-
tion

20
20

-2
02

1

Patch 21 Red + FS 18-Sep-20 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea 
beetle, Pollen beetles, cabbage seed 
weevils, aphid vectors, brassica pod 
midge

0,075 l/ha

5-Oct-20 Biscaya Diamond back moth lar-
vae (Plutella xylostella)

Biting insects (except: cabbage stem 
flea beetle), brassica pod midge

0,300

5-Oct-20 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

26-Mar-21 Cyperkill 
Max

Rape stem weevil Biting insects 0,050

Patch 39 Red 18-Sep-20 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea 
beetle, Pollen beetles, cabbage seed 
weevils, aphid vectors, brassica pod 
midge

0,075 l/ha

5-Oct-20 Biscaya Diamond back moth lar-
vae (Plutella xylostella)

Biting insects (except: cabbage stem 
flea beetle), brassica pod midge

0,300

5-Oct-20 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

26-Mar-21 Cyperkill 
Max

Rape stem weevil Biting insects 0,050

Patch 73 Con 18-Sep-20 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea 
beetle, Pollen beetles, cabbage seed 
weevils, aphid vectors, pod midge

0,075 l/ha

5-Oct-20 Biscaya Diamond back moth  
larvae (Plutella xylostella)

Biting insects (except: cabbage stem 
flea beetle), brassica pod midge

0,300

5-Oct-20 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

26-Mar-21 Cyperkill 
Max

Rape stem weevil,  
cabbage stem weevil

Biting insects 0,050

23-Apr-21 Mavrik 
Vita

Pollen Beetle Biting insects (except: rape stem weevil, 
cabbage stem weevil), brassica pod 
midge, pollen beetle

0,200

Reference 1 
– Field 11-00 

Conven-
tional

Ref_Con 18-Sep-20 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea 
beetle, Pollen beetles, cabbage seed 
weevils, aphid vectors, brassica pod 
midge

0,075 l/ha

5-Oct-20 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

26-Mar-21 Cyperkill 
Max

Rape stem weevil,  
cabbage stem weevil

Biting insects 0,050

23-Apr-21 Mavrik 
Vita

Pollen Beetle Biting insects (except: rape stem weevil, 
cabbage stem weevil), brassica pod 
midge, pollen beetle

0,200

Reference 1 
– Field 11-00 

Reduced

Ref_Red 18-Sep-20 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea 
beetle, Pollen beetles, cabbage seed 
weevils, aphid vectors, brassica pod 
midge

0,075 l/ha

5-Oct-20 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

26-Mar-21 Cyperkill 
Max

Rape stem weevil Biting insects 0,050
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Table S1. Continued.

Ye
ar patchID/

RefID
Monitor-
ing Site

Date Insecti-
cide

Indicated to control 
against

All OSR pests targeted by the  
insecticide

Concentra-
tion

20
21

-2
02

2

Patch 20 Red + FS 26-Mar-22 Trebon 
30 EC

Rape stem weevil,  
cabbage stem weevil

Pollen beetle, rape stem weevil, cabbage 
stem weevil, cabbage seed weevil

0,200 l/ha

Patch 50 Red 7-Oct-21 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea bee-
tle, Pollen beetles, cabbage seed weevils, 
aphid vectors, brassica pod midge

0,075 l/ha

26-Mar-22 Trebon 
30 EC

Rape stem weevil,  
cabbage stem weevil

Pollen beetle, rape stem weevil, cabbage 
stem weevil, cabbage seed weevil

0,200

Patch 74 Con 10-Sep-21 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea bee-
tle, Pollen beetles, cabbage seed weevils, 
aphid vectors, brassica pod midge

0,075 l/ha

29-Sep-21 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050

26-Mar-22 Trebon 
30 EC

Rape stem weevil,  
cabbage stem weevil

Pollen beetle, cabbage shoot rape 
stem weevil, cabbage stem weevil, 
cabbage seed weevil

0,200

Reference 1 
– Field 06-01 

Conven-
tional

Ref_Con 10-Sep-21 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea bee-
tle, Pollen beetles, cabbage seed weevils, 
aphid vectors, brassica pod midge

0,075 l/ha

29-Sep-21 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050

26-Mar-22 Trebon 
30 EC

Rape stem weevil,  
cabbage stem weevil

Pollen beetle, rape stem weevil, cabbage 
stem weevil, cabbage seed weevil

0,200

Reference 1 
– Field 06-02 

Reduced

Ref_Red 7-Oct-21 KARIS 10 
CS

Cabbage stem flea beetle Broad spectrum: cabbage stem flea bee-
tle, Pollen beetles, cabbage seed weevils, 
aphid vectors, brassica pod midge

0,075 l/ha
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Table S1. Continued.

Ye
ar patchID/

RefID
Monitor-
ing Site

Date Insecti-
cide

Indicated to control 
against

All OSR pests targeted by the  
insecticide

Concentra-
tion

20
22

-2
02

3

Patch 19 Red + FS 23-Sep-22 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050 l/ha

22-Mar-23 Karate 
Zeon

Rape stem weevil Biting insects, brassica pod midge 0,075

Patch 58 Red 23-Sep-22 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050 l/ha

22-Mar-23 Karate 
Zeon

Rape stem weevil Biting insects, brassica pod midge 0,075

26-Apr-23 Mavrik 
Vita

Pollen beetle Biting insects (except: rape stem wee-
vil, cabbage stem weevil), brassica pod 
midge, pollen beetle

0,200

Patch 65 Con 23-Sep-22 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050 l/ha

20-Oct-22 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

22-Mar-23 Karate 
Zeon

Rape stem weevil,  
cabbage stem weevil

Biting insects, brassica pod midge 0,075

20-Apr-23 Trebon 
30 Ec

Rape stem weevil,  
cabbage stem weevil

Pollen beetle, rape stem weevil, cab-
bage stem weevil, cabbage seed weevil

0,200

26-Apr-23 Mavrik 
Vita

Pollen beetle Biting insects (except: rape stem wee-
vil, cabbage stem weevil), brassica pod 
midge, pollen beetle

0,200

8-May-23 Karate 
Zeon

Brassica pod midge Biting insects, brassica pod midge 0,075

Reference 1 
– Field 11-00 

Conven-
tional

Ref_Con 23-Sep-22 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050 l/ha

20-Oct-22 Cooper Cabbage stem flea beetle Biting insects, aphids, brassica pod 
midge

0,080

20-Apr-23 Trebon 
30 Ec

Rape stem weevil,  
cabbage stem weevil

Pollen beetle, rape stem weevil, cab-
bage stem weevil, cabbage seed weevil

0,200

26-Apr-23 Mavrik 
Vita

Pollen beetle Biting insects (except: rapeseed stem 
weevil, cabbage stem weevil), brassica 
pod midge, pollen beetle

0,170

Reference 1 
– Field 11-00 

Reduced

Ref_Red 20-Oct-22 Cyperkill 
Max

Cabbage stem flea beetle Biting insects 0,050 l/ha
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Table S7. 2022 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to monitoring site size and management 
strategy.

Model Parameter Estimate SE P

Intercept 46.68 0.86 < 0.001***
Monitoring site size (Reference: Field)
Patch - 5.15 0.99 < 0.001***
Management strategy (Reference: Conventional)
Reduced - 2.73 0.99 0.01*
Reduced + Flower strip - 2.70 1.31 0.01*

Table S6. 2021 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to management strategy in the patches.

Model Parameter Estimate SE P

Intercept 35.17 0.81 < 0.001***
Management strategy (Reference: Conventional)
Reduced - 0.16 1.15 0.890
Reduced + Flower strip 0.35 1.15 0.783

Table S5. 2021 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to site size in monitoring sites with reduced 
management strategies.

Model Parameter Estimate SE P

Intercept 38.26 0.70 < 0.001***
Monitorng site size (Reference: Field)
Patch - 3.26 0.99 0.001**

Table S4. 2021 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to site size in monitoring sites with conven-
tional management strategies.

Model Parameter Estimate SE P

Intercept 39.30 0.56 < 0.001***
Monitoring site size (Reference: Field)
Patch - 4.13 0.79 < 0.001***

Table S3. 2021 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to monitoring site size and management 
strategy.

Model Parameter Estimate SE P

Intercept 39.08 0.59 < 0.001***
Monitoring site size (Reference: Field)
Patch - 3.70 0.68 < 0.001***
Management strategy (Reference: Conventional)
Reduced - 0.60 0.68 0.384
Reduced + Flower strip 0.13 0.90 0.882

Table S2. Summary of Gaussian GLM across three cropping cycles 
(2020-21, 2021-22, 2022-23). Models OSR yield in response to 
year, monitoring site size, and management strategy.

Model Parameter Estimate SE P

Intercept 41.40 0.97 < 0.001***
Year (Reference: 2021)
2022 
2023

5.30 
- 10.77

1.00 
1.00

< 0.001*** 
< 0.001***

Monitoring site size (Reference: Field)
Patch - 3.38 0.91 < 0.001***
Management strategy (Reference: Conventional)
Reduced - 5.49 0.91 < 0.001***
Reduced + Flower strip - 2.62 1.20 0.01*

Table S10. 2022 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to management strategy in the patches.

Model Parameter Estimate SE P

Intercept 41.76 1.23 < 0.001***
Management strategy (Reference: Conventional)
Reduced - 3.19 1.74 0.0864
Reduced + Flower strip - 2.93 1.74 0.1126

Table S9. 2022 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to site size in monitoring sites with reduced 
management strategies.

Model Parameter Estimate SE P

Intercept 44.17 0.65 < 0.001***
Monitoring site size (Reference: Field)
Patch - 5.61 0.92 < 0.001***

Table S8. 2022 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to site size in monitoring sites with conven-
tional management strategies.

Model Parameter Estimate SE P

Intercept 46.45 0.57 < 0.001***
Monitoring site size (Reference: Field)
Patch - 4.69 0.81 < 0.001***
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Table S14. 2023 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to management strategy in the patches.

Model Parameter Estimate SE P

Intercept 30.57 1.68 < 0.001***
Management strategy (Reference: Conventional)
Reduced - 10.93 2.38 < 0.001***
Reduced + Flower strip - 4.18 2.38 0.0993

Table S13. 2023 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to site size in monitoring sites with reduced 
management strategies.

Model Parameter Estimate SE P

Intercept 18.71 1.57 < 0.001***
Monitoring site size (Reference: Field)
Patch 0.93 2.22 0.686

Table S12. 2023 – Yield GLM. Summary of Gaussian GLM. Models 
OSR yield in response to site size in monitoring sites with conven-
tional management strategies.

Model Parameter Estimate SE P

Intercept 34.08 1.83 < 0.001***
Monitoring site size (Reference: Field)
Patch - 3.51 2.59 0.205

Table S11. 2023 – Yield GLM. Summary of Gaussian GLM. Mod-
els OSR yield in response to monitoring site size and management 
strategy.

Model Parameter Estimate SE P

Intercept 32.97 1.37 < 0.001***
Monitoring site size (Reference: Field)
Patch - 1.29 1.58 0.4208
Management strategy (Reference: Conventional)
Reduced - 13.15 1.58 < 0.001***
Reduced + Flower strip - 5.29 2.09 0.01*


