Hackfruchtkrankheiten

und

Nematodenforschung

F E S T S C H R I F T

anläßlich der Einweihung des Neubaus
für das Institut für Hackfruchtkrankheiten und Nematodenforschung
der Biologischen Bundesanstalt für Land- und Forstwirtschaft
in Münster (Westf.)

B e r l i n 1 9 6 0

Herausgegeben

von der Biologischen Bundesanstalt für Land- und Forstwirtschaft
Berlin-Dahlem

Im Buchhandel zu beziehen durch den Verlag Paul Parey, Berlin und Hamburg
Auslieferung: Berlin SW 61, Linderallee 44–47 (Westberlin)
Inhalt

Goffart, H., Rücksicht über die Entwicklung des Institutes für Hitzfruchtkrankheiten und Nematodenforschung 3
Goffart, H., Phytonematologie in Deutschland .. 14
Goffart, H., Die taxonomische Bewertung morphologisch-anatomischer Merkmale bei den Gattung Heteroderma (Nematoda) 24
Weischer, E., Der Einfluß des Bodens auf die Verteilung pflanzenpathogener Nematoden in Rebanlagen .. 31
Weischer, E., Aktivitätsstadium und Strahlensensibilität beim Kornoffen nematoden (Heteroderma rostochiensis Woll.) 59
Heiling, A., Zum Einfluß von Blattbrand und Blattverlust auf Wachstum und Stoffwechsel vergiftungssensibler Rübenpflanzen 66
Broekhuis, F., Untersuchungen über eine virale Vergiftung der Snapsgurken 84
Stendel, W., Fortgeschrittene Feldversuche zur inneren Therapie der Rota-Rüben mittels systemischer Saatkeimpräparate 97
Thielemann, E., Über den Verlauf der Blattasgraden und das Auftreten der Vergiftungskrankheit bei Zuckerrüben in einem Versuch mit Feldberegnung im Tabener Jahr 1959 .. 110

Für die Übersetzung der Zusammenfassungen in English bzw. ihre Übersicht danken die Damen Herrn Dr. F. G. W. James, Rothamsted Experimental Station, Harpenden, Herts., England.
Rückblick über die Entwicklung des Instituts für Hackfrucht-krankheiten und Nematodenforschung

Im allgemeinen ist es zwar nicht üblich, schon nach 15jährigem Bestehen eines Institutes einen Rückblick zu geben. Die Übersiedlung in ein neues Dienstgebäude mag aber ein guter Grund sein, von der sonstigen Gepflogenheit abzusehen und kurze Rückschau zu halten.

Nach einer kurzen Verlegung des Instituts von Münster nach Drolshagen bei Versmold/Westf. erfolgte am 1. Juni 1949 die Rückkehr nach Münster, wo am
Rande der Stadt em. neues Unterkommen mit 11 Räumen und einem geeigneten Versuchsland gefunden wurde (Abb. 1). Unter den damaligen Verhältnissen waren wir früh, endlich obigermaßen geeignete Möglichkeiten für eine wissen-
sschaftliche Tätigkeit gefunden zu haben.
Um gleichem Zeitpunkt wurde das Arbeitsprogramm des Instituts, das jetzt als Bezeichnung "Institut für Holzforschung" führte, durch die Verlegung der bisherigen Institute für Getreide-, Ölforschung- und Pflanzenzüchtung in Kiel-Kützen-
berg durchgeführt, auf dem Gebiet der pflanzenparasitären Nema-

toden nach München erheblich erweitert. Der Sachbearbeiter dieses Arbeitsge-
bietes wurde gleichzeitig mit der Leitung des Instituts betraut.

Versuchsferder

Abb. 2. Lagekarte.

Etappenbahn

Gewächshäuser

Verkehrsgebäude

Gebäude und Verkehrsgebäude

Der ständig zunehmende Arbeitsanfall und Schriftenverkehr führte in wenigen Jahren notwendig zu einer Personaleinsparung. Sehr bald war damit die
Kapazität des ministrischen Instituts erschöpft. Manche neuen Probleme
konnten infolge der Räume nicht aufgenommen werden. Es fehlte vor allem
an geeigneten Räumen zum Aufstellen von Apparaturen und zum arbeitsge-
freien Arbeiten des Personals, weil die vorhandenen Räume stark überbelegt
waren. Nematodenkurse wurden aus diesem Grund außerhalb des Instituts

Am 1. Januar 1960 waren am Institut Münster 4 Wissenschaftler, 4 technische Kräfte, 1 Verwaltungsangestellte und 3 Lehmpfänger, an der Außenstelle Elsdorf 2 Wissenschaftler, 3 technische Kräfte und 2 Lehmpfänger ständig beschäftigt. Aus Mitteln der Deutschen Forschungsgemeinschaft bzw. aus anderen Quellen erhalten z. Z. 3 weitere technische Kräfte (1 in Münster, 2 in Elsdorf) ihre Vergütung. Zusätzlich werden in jedem Jahr Seasonarbeitnehmer in wechselnder Zahl beschäftigt.
Das Aufgabengebiet ist folgendermaßen aufgeteilt:

Außerordentliche Ehrenamt: Entomologische-epidemiologische Untersuchungen über Viren an Rüben, einschließlich Bearbeitung von Fragen des Blattlauswasserdienstes, Erforschung wässriger Schädlings im Rübenbau.

Zur besseren Kenntnis der Aufgaben der Instituts seit 1958 die Bezeichnung „Institut für Hackfruchtkrankheiten und Nematodenforschung“.

Literaturangaben können beim Verfasser angefordert werden.

Vernachlässige Veröffentlichungen aus dem Institut bis 1959

1948

Sti e, W., Der gegenwärtige Stand der Virusforschung bei Rüben. Zeitschr. Hanover, 1, 10–12.

1949

1950

**— Höhle und innenfaser Kartoffeln. Kasseler Wissenschaft 5, 123.

**— Nematoden in Haferfeldern. Schau-Beih. Landw. 100, 480.

— über den Hackfruchtkrankheiten und -schädlagen auf Landw. Wochenschr. Westf., Lippe, 107, 1484.

1951

1962

1952

1934

— Gegenwärige Fragen zum Rübennematodenproblem. Zucker, Hannover, 7, 133–137.

1935

— Häden an Klimax und Dichtapipehängen. Gartenwelt 55, 270.

1958

Hess, D. Was macht die Rota-Viruskrankheit (Rota-Virus 4) der Schweine beim Füttern? Landw. Wirtschaft, 46, 26–27.

Neue Gesichtspunkte zur Frage der Biologie und Ökologie des wuchernden Wurzelwurms. Nematologica 7 (Suppl.), 408–412.

1968

Das Gehirn der dermatozophalen Riesen-Bäke. Unna, 58, 25.

Aufbauschnitze mit Hoherfieber"-Regen zur Bekämpfung der Stockkrankheit des Rübenza. Z. Pflkrank. 65, 457–460.

1959

—, 100 Jahre Forschung über das Rebennematodenproblem. Züchter, Hannover 12, 201–204.

—, 100 Jahre Rotstreiörde schelltii. Nematologica 4, 89–90.

DR. H. GOFFART, Oberregierungsrat
Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Haselruhrkrankeiten und Nematodenforschung, Münster (Westf.).

Phytohexematologie in Deutschland

Pflanzenschutz* in Halle (Saale), die sich speziell mit der Bekämpfung der „Rübenmäßigkeit“ zu befassen hatte und die die erste phytopathologische Institution im damaligen Deutschen Reich überhaupt war. Es bedurfte jahrelanger eingehender Untersuchungen und rigoroser Umstellung in der Praxis, bis man die schlimmsten Ertragsausfälle bannen konnte.

Erst 1930 wurde nachgewiesen, daß Rüben- und Hafermagoten zwei Arten sind, die ihren eigenen Wirtsplanzenkreis haben. Der Hafermagoten, *Heterodera avenae* (*= H. majus*), kommt praktisch auf allen Ackerflächen vor. Zu einem Schäden wird er erst dann, wenn durch einen stärkeren Getreideanbau, namentlich von Hafer und Gerste, die Möglichkeit einer Massenzunahme ge-
geben ist. Infolge Einschränkung des Haferanbaues sind in den letzten Jahren die Schädlinge durch *Heterodera avenae* jedoch erheblich zurückgegangen.

Ein anderes Problem, das internationale Bedeutung erlangt hat, entwickelte sich vor fast 50 Jahren im norddeutschen Raum. Hier wurde zuerst in Klein-
gärten der Umgebung von Rostock (Mecklenburg) ein systembildender Nematode an Kartoffeln festgestellt, dem *Wollenweber* (1928) die Bezeichnung *Heterodera rostochiensis* gab. Durch die leichte Verschleppbarkeit des Schäd-
lings durch Boden, bewurzelte Pflanzen, Gerüche u. dergl. sowie durch den hau-

den Kartoffelbau, insbesondere auf kleingärtnertisch genutzten Flächen, ent-
wickele sich der Kartoffelnematode im Laufe von 3 Jahrzehnten zu einem ge-
fürchteten Schädling. Nach 1945 konnte er sich manchwohl auch auf landwirt-
schaftlich genutzten Flächen festsetzen und sogar in Gebiete mit Pflanzenkartoffel-
bau eindringen. Die meisten Kulturländer veranlassen durch einschneidende Be-
stimmungen sich diesen Schädling zu erwehren, der wohl aus den Anden Süd-
amerikas nach Europa eingespült wurde. Wie hoch die Schäden ausfallen sind, lässt sich schwer berechnen. In England wurden die Verluste 1949 jährlich
mit 2 Mill. £ angegeben. Durch den Rückgang des Kartoffelanbaues und durch wirksame Bekämpfungsmaßnahmen werden sie nach heutiger Mit-
teilung von F. G. W. Jones, Rothamsted, jetzt auf 500 000 £ geschätzt. Wenn
man für das Bundesrepublik Deutschland mit einer durchschnittlichen Anbaufläche
von 1,1 Mio. ha 0,5 % (= 5 500 ha) als befallen annimmt, von denen nur
50/50 % der normalerträge gemerkt werden, so ergibt sich bei einem Bundesforh-
schnittsertrag von 230 kg/ha ein Ausfall von 605 000 dr oder ein jährlicher Verlust von rund 11 Millionen DM. Hierbei sind die indirekten Schäden, die sich im Pilzkartoffelbau infolge Anbaubeschränkung, Verluste des Pfanzkartoffel-
anbaus auf viele Jahre und Exportverzögerungen bei bewurzelten Pflanzen aller Art ergeben, noch nicht berücksichtigt. Da eine Sanierung versuchter Böden äußerst schwierig und langwierig ist, werden seit einigen Jahren in den Kartoffelbau betreibenden Ländern der Bundesrepublik von landwirtschaftlich und gärtnerisch genutzten Flächen, namentlich von den für den Pfanzkartoffel-
anbau vorgesehenen Äckern, Bodenproben entnommen und auf Freisin von Kartoffelnematoden untersucht. Diesen Verfahren hat sich insbesondere in Nord-
deutschland weitgehend durchsetzen können. Nach den vorliegenden Ergebnissen wurden im Jahre 1958 rund 600 000 Bodenproben untersucht. Diese entsprechen etwa 150 t Erde, die nach dem üblichen Schlammverfahren geprüft wurden. Neben dieser prophylaktischen Maßnahme gelang es neuartig durch den An-
bau nematodenträsterner Neuzüchtungen, die Bodenpopulation schon nach einem Jahr teilweise um mehr als 90% der Ausgangsvorzuchtung zu senken. Es steht zu hoffen, daß selbst bei Berücksichtigung des Auftretens resistenzbrechender Rassen von einzelnen Stellen durch den Anbau solcher Züchtungen die Massen-
vermehrung des Kartoffelnematodens weitestgehend unterbunden werden kann.

Von den übrigen Nematodene-Arten hat noch *H. trifolii* eine beachtliche Ver-
breitung und kann rot- und Weißklee schädigen. Die Art kommt in der monog

Um die Mitte des vorigen Jahrhunderts wurde das Stegeläldchen, *Diploschistes
dispar*, als Schädling an Roggen beobachtet. Dieser rechtlich kaum große Nema
tode gehört wohl zu den am längsten bekannten Nematodenarten, denn offenbar hat schon *Albertus Magnus* ihn in Massen als Bewohner von Blättern

der Weinberge der Weinberge de *Diploschistes bolleum* angestrebt, die im Mittelalter

den Aufrauhm sogenannter Gewebe verwendet wurden. Seit 1969 ist *Diploschistes
dispar* aus Westfalen bekannt und hat sich in späteren Jahren auch an andeen

Stellen zu einem ausgesprochenen Schädling leichter und leichtester Böden ent-
dwickelt, die Roggen und Kartoffeln in seinen Wechsel miteinander tragen. In
gerade dieser einseitigen Feuchtigkeit kommt es zwangläufig zu Ausfällen nament-
lich an Winterroggen, die sich 60% und mehr betragen können. Da wegen der

gerechten Anbauzeitigkeit ein weit gestaltetes Fruchtwechsel hier nicht durch-
führbar ist, muß vorbeugend und auf andere Weise der Schädling bekämp

Men. Nach manchen Versuchen gelang es ohne Zeit hulländischen Züchtungen,
eine weitgehend resistente Roggen sorte zu züchten, die auch tragen mit dem bei uns am meisten angewandten Pelzigran Roggen kombiniert werden kann. Neben der

bevorzugt Roggen behaltenden Rasse greifen andere Stämme Zwischeng, Rotklö

Röhen oder Tabelt an. Die sich an Zwiebeln vermehrte Form tritt vor allem
ein Mittelrustland sicher in Erscheinung. *D. dispar* kann an Rotklee an

einigen Stellen in Nordrheinland, namentlich aber im Alpenvorland, beacht-
liche Anfälle hervorrufen. In manchen Jahren werden Zucker- und Zuckerrüben

durch eine andere sehr virulente Rasse des Stegeläldchens stark geschädigt. Die

im Volksmund als „Wurschäule“ oder „Althenhund“ bezeichnete Erkrankung
führt weniger auch die Besiedelung Hühnerkopfkrankheit und der Kräuter

den Namen Hühnerkopfkrankheit. Sie ist 1958 namentlich im west- und süd-

deutschen Raum auf vielen Feldern festgestellt worden und hat hier zu bedeutenden

2

Die bisher geschilderten Nematodenprobleme stellen gewissermaßen Brunn- punkte in der jungen Geschichte der Nematologie dar. Während dieses Zeit-
Folgendes wurde in Deutschland auch zahlreiche Untersuchungen über verschiedene psychologische Phänomene durchgeführt, die sich auf das Verständnis der Persönlichkeit und des Denkens der Menschen beziehen. Diese Arbeiten wurden von vielen Wissenschaftlern und Psychologen durchgeführt, darunter auch die Arbeiten von Freud und Adler, die die Grundlagen der modernen Psychologie bildeten.

Abbildung 1. Walter Bussard, 1923-1944.

In den letzten Jahren wurden auch neue Erkenntnisse zur Verhaltenslehre erarbeitet, die auf der Grundlage der Wissenschaftlichen Psychologie basieren. Diese Arbeiten ermöglichten es, eine bessere Verständigung der Menschen mit der Außenwelt und ihre Bedürfnisse zu verbessern.
erforderlich. Dabei ergab sich, daß *M. hapla* praktisch der einzige Freilandresultrierende dieser Gruppe ist, der sich auch an manchen Unkräutern vermehren kann. Alle anderen Arten sind bei aus Gewächshausausscheidungen. Auf viele andere Einzelveröffentlichungen von Autoren, die sich nur gelegentlich mit Nematodenfragen befassen, kann in diesem Rahmen leider nicht eingegangen werden.

Selbstverständlich wurde manche Untersuchung auch durch Arbeiten ausländischer Nematologen angeregt. Übereinige Zusammenarbeit ist gerade auf dem schwierigen Gebiet der Nematologie, die sich zahlreicher anderer naturwissenschaftlicher Fächerdrängen als Hilfswissenschaften bedienen muß, unbedingt Voraussetzung für einen Erfolg.

Um Bericht wäre unvollständig, wenn wir nicht auch die Bekämpfungsmöglichkeiten berücksichtigen würden, deren erste Versuche bis in die Anfänge der Bodenentwicklung zurückreichen, die aber erst in späterer Zeit dank der Mitwirkung der chemischen Industrie zu wesentlichen Fortschritten geführt haben. Eines der älteren Bodenentwicklungsmittel ist zunächst das Schwefelkarbonathal, das durch seine Wirkung auf raucharme, feste Nematoden, die das Vorkommen geingerter Phytotoxizität bietet und als Streuplant ausgebaut werden kann.

Jede Bodenentwicklung stellt aber auch einen Eingriff dar, den wir infolge der komplizierten mikrobiologischen Vorgänge im Boden noch nicht übersehen. Bei der Breitentwicklung vieler Mittel werden zu einem beträchtlichen Teil auch die Antigene abgespalten. Solche biologisch "leere" Böden erheben gegen über einer erneuten Infektion besonders anfällig zu sein und auch das Gleichgewichtsverhältnis bei den Nematoden zugunsten der Würzeln zu fördernd. In vielfachen Fällen führte eine Bodenbehandlung bei einem erneuten Anbau von Wurzelpflanzen zwar zu einer deutlichen Ertragserhöhung, aber gleichzeitig auch infolge des besseren Wurzelwachstums zu einem beständigen Widerstande der Nematodenpopulationen. Bei der Bekämpfung blattbewohnender Acker der Gattung Aphelenchoides hat sich mehrfach Spritz der Kulturmittel wie Parathion (z.B. K 606 forte 0,33 %) oder Systox (0,05 %) bewährt, jedoch auch erhebliche Ausfälle durch die Kulturpflanzen erzielt worden, daß einige Kulturpflanzen gegenüber diesen Präparaten empfindlich.

Die Phytonematologie hat in allen Teilen der Welt, so auch in Deutschland, namentlich in den letzten 15 Jahren eine stürmische Entwicklung genommen. Das ergibt sich schon aus der Zahl der Veröffentlichungen über Nematoden in der „Bibliographic der Phytonematologie“:

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Seitenzahl</th>
<th>Zahl der Veröffentlichungen über Nematoden absolut</th>
<th>je 100 Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1925</td>
<td>207</td>
<td>16</td>
<td>7,7</td>
</tr>
<tr>
<td>1930</td>
<td>160</td>
<td>17</td>
<td>16,9</td>
</tr>
<tr>
<td>1935</td>
<td>120</td>
<td>12</td>
<td>13,0</td>
</tr>
<tr>
<td>1939</td>
<td>344</td>
<td>80</td>
<td>23,2</td>
</tr>
<tr>
<td>1940</td>
<td>390</td>
<td>127</td>
<td>32,6</td>
</tr>
<tr>
<td>1952</td>
<td>380</td>
<td>130</td>
<td>47,4</td>
</tr>
<tr>
<td>1955</td>
<td>458</td>
<td>246</td>
<td>53,7</td>
</tr>
</tbody>
</table>

Bedingt durch Veränderungen in der Struktur von Landwirtschaft und Gartenbau, welcher die wirtschaftlich und biologisch artenbestätigte Betriebe mit einem vielgestaltigen Kulturpflanzenbauen zugunsten von Spezialbetrieben mit nur wenigen Kulturpflanzen beschaffen, erlauben die alten Nematodenprobleme keine Lösung, gleichzeitig schreiben sich infolge erheblicher Steigerung gartenbaulich genutzter Flächen mit dem zunehmenden Auftreten wandernder Nematoden neue Fragen in den Vordergrund. Es scheint daher Zeit zu sein, künftig namentlich die populationsdynamischen Verhältnisse bei Nematoden noch mehr

Die wichtigsten pflanzennematodenartigen Nematoden Deutschlands
und ihre Hauptpflanzenparasiten

<table>
<thead>
<tr>
<th>Anguina tritici</th>
<th>Weizenwurzelkäfer</th>
<th>Weizen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguina serpentina</td>
<td>Graufliegenkäfer</td>
<td>Graufliegen</td>
</tr>
<tr>
<td>Anguina graminis</td>
<td>Liebe</td>
<td></td>
</tr>
<tr>
<td>Aphelenchus cochleatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphelenchus tritici</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphelenchus turgidus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaprepes destructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaprepes destructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditylenchus dipsaci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditylenchus hermaphroditus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicotylenchus aspersus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemicentrotus typhicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera avenae (= major)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera rusticola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera carota</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera rostochiensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera schachtii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera gorgonica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterodera galloponis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Weitere erwähnenswerte Weibchen in der Literatur (und) auch in manchen Fällen.
Heterorhabditis humati
Heterorhabditis puncticola
Heterorhabditis russichensis
Heterorhabditis schachtii
Heterorhabditis treflus
Heterorhabditis uniformis
Heterorhabditidae sacc.
Heterorhabditis mariae
Heterorhabditidae sp.
Meloidogyne arenaria
Meloidogyne incognita
Meloidogyne javanica
Meloidogyne incognita acrita
Meloidogyne javanica
Parastrongyloides sp.
Parastrongyloides brachyurus
Parastrongyloides propinquus
Parastrongyloides sp.
Pectinaria sp.
Pratylenchus acutus
Pratylenchus longicaudatus
Pratylenchus mucronatus
Pratylenchus penetrans
Pratylenchus pratensis
Pratylenchus thornei
Radopholus similis
Trichodorus pratylenchis
Xiphinema sp.
Hopfen
Grtener
Kartoffel
Zuckerrohr
Klee
u. a. Leguminosen
Rebe
Gemüse
dikotyle Freiland-
gewächse
Wurzelknöllchen
erdige Freiland-
gewächse
Wurzelknöllchen
viele Gewächshaus-
pflanzen
Baumschulgewächse
Anpflanzung
Rebe
Rebe
Rebe
Rebe
Maliblumen
Mäsi
Gemüse, Baum-
schulgewächse
Gemüse
Baumschulgewächse
Gemüse, Baum-
schulgewächse
polybag
Baumschulgewächse
Rebe

DR. H. GOFFART, Oberrégierungsrat
Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Nachfruchtfraktionen und Nematodenforschung, Münster (Westf.).

Die taxonomische Bewertung morphologisch-anatomischer Merkmale bei den Zysten der Gattung Heterorhabditis (Nematoda)

mit einem abgerundeten und einem vorstehenden Hinterende, eine weitere ein-
wandfreie Trennung nach Arten nicht in jedem Falle zuliebe. Besonders schwie-
rig war es, die zitronensäureartigen Arten voneinander zu trennen, obwohl sich hier,
asio und Vulvagelat gewisse Abweichungen zeigen, die sich jedoch bisher noch
überschritten (Tab. 1). Auch das Auftreten einer subkristallinen Schicht oder der
gewisse Reste von ihr ist bei
Zysten, die dieses Merkmal besitzen, nicht immer mehr nachweisbar. Dasselbe
trifft für die Eierack und die gelbe Übergangsfarbe bei manchen Heteroderm-
Arten zu. Ähnliche Schwierigkeiten ergaben sich weiterhin bei Untersuchungen
über Form und Größe von Eiern und Larven.

Nun Möglichkeiten einer Differenzierung stellt J o n e s (1951) auf dem
ersten Internationalen nematologischen Symposium in Harpenden (England) mit.
Sie geben auf Untersuchungen des amerikanischen Nematologen A. L. T a y l or
und seiner Mitarbeiter zurück, die gewisse Abweichungen in der Struktur des
Zystensacke festgestellt haben. In den folgenden Jahren wurde dieses Merkmal
auch in Deutschland innerhalb untersucht und es schien, als ob es als ein kon-
stantes Kennzeichen der Diagnostizierung der Arten verwendet werden kann
S e h r n e y, 1957). Auf dem oben erwähnten Symposium deutete O u s t e n-
b r i n k an, daß auch bestimmte Teile des Vulvagages ausschließlich zu sein
scheinen. O u s t e n b r i n k und D e n O o d e n (1954) gelang es, H. s o h n e k i,
H. areoae (= major) und H. trifoliis voneinander zu trennen. Andere Arten wur-
den nicht untersucht. Auf Grund sorgfältigen Studiums des Hinterandes konnte
kurze Zeit später C o o p e r (1955) bemerkenswerte Unterschiede auch bei
anderen Heteroderm-Arten feststellen. Es gelang ihm, die in Großbritannien
vorkommenden Arten größtenteils zu identifizieren. H e a l i n g (1959) ver-
öffentlichte einen verhältnismäßig wichtigen Beitrag, der sich mit der
Identifizierung der Heteroderm-Arten auf Grund des Zystengrands befaßt.
Untersuchungen in ähnlicher Form führte T a y l o r (1958) für die USA durch.

In der vorliegenden Arbeit wird über vergleichende Untersuchungen berichtet,
bei einer auf die Namensannahme mehrere Jahre angestellt wurden. Zu-
ächst sollte geklärt werden, ob sich aus der Esernung von Vulva und Anus
gewisse Anhaltspunkte für eine Artenunterscheidung, wenn auch nur in grober Form,
ergeben. Weiterhin wurde die Frage überprüft, ob Zystensackmuster sowie
exo- und endodikulare Teile der Vulva konstante Merkmale darstellen, die
die einwandfreie Diagnostizierung verwendet werden können. Zur Beantwort-
ung dieser Fragen benützen wir Zystenmaterial, das wir stets unmittelbar
die Wurzeln der Hauptwurzflügeln abgenommen hatten.

A. Die Variabilität des Abstandes Vulva-Anus bei den
Zystenarten

In der Literatur wird der fürsten der Wort und Bild darauf hingewiesen
F i l l i p j e v und S c h a u r m a n n-S c h e k h o v e n, 1941; F r a n k l i n,
1951 (u. a.), daß Vulva und Anna bei H. rusticoloris nahe beieinander liegen.
Verdeht man hiermit ältere Abbildungen von H. s o h n e k i, z. B. bei S t r a-
b e l l (1888), so gewährleist man den Eindruck, als ob die Entfernung dieser Kör-
peröffnungen hier größer ist als bei H. rusticoloris. Es lag uns nun daran, die
liegende „nahe“ und „weit“ zu präzisieren. Aus diesem Grunde führten wir zahl-
reiche Messungen durch, die folgenden Ergebnis hatten:
Tabelle 1. Abstand der Entfernung von Vulva und Anus

<table>
<thead>
<tr>
<th>Arten</th>
<th>Vulva-Anus Abstand (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. rosetbaensis</td>
<td>56.7–100.4 µ (58.9 µ)</td>
</tr>
<tr>
<td>H. trifoli</td>
<td>40.5–76.2 µ (54.8 µ)</td>
</tr>
<tr>
<td>H. punctata</td>
<td>45.9–148.9 µ (63.8 µ)</td>
</tr>
<tr>
<td>H. kurati</td>
<td>41.3–62.1 µ (55.7 µ)</td>
</tr>
<tr>
<td>H. ovata</td>
<td>43.2–72.9 µ (62.9 µ)</td>
</tr>
<tr>
<td>H. gottlingiana</td>
<td>43.9–64.2 µ (59.9 µ)</td>
</tr>
<tr>
<td>H. schaidii</td>
<td>64.8–110.7 µ (77.1 µ)</td>
</tr>
<tr>
<td>H. crucifera</td>
<td>51.3–68.4 µ (63.3 µ)</td>
</tr>
<tr>
<td>H. carnipes</td>
<td>45.6–67.2 µ (61.1 µ)</td>
</tr>
</tbody>
</table>

Es fällt auf, daß bei Zysten mit einem abgerundeten Hinterende, namentlich bei H. rosetbaensis und bei H. punctata, die Entfernung Vulva-Anus in weit stärkerem Maße Schwankungen unterworfen ist als bei Zysten mit einem Vulvakegel. Offenbar zeigen Zysten des erstgenannten Typs viel mehr Variabilität als Zysten des letztergenannten. Innerhalb der Gruppe mit Vulvakegel schwankt aber die Entfernung Vulva-Anus im großen ganzen um so weniger, je kleiner der Wirtspflanzenkreis ist. Hier zeigen sich dann auch die größten Schwierig-

Abb. 1 Querschnitt durch eine Zystensahne.

keits einer Abtrennung von Arten, die der schaidii- oder der gottlingiana-
Gruppe angehören. Bei einem Vergleich der Mittelwerte fällt sie außerdem
sorption, daß gerade bei H. rosetbaensis die Entfernung Vulva-Anus nach
H. punctata am größten ist.

B. Die Struktur der Zystenoberfläche

Die Oberflächen der Zysten bestehen aus Erhebungen und Vertiefungen, die ein be-
stimmtes Muster ergeben. Dieses zeigt bei den Arten zwar eine gewisse Kon-
stanz, kann aber gelegentlich von der Norm beträchtlich abweichen. Neben bei
unterschieden ist das Muster erkennbar, aber auch sehr sehr Zysten besitzen
es oft noch deutlich ausgeprägt. Hauptsächlich lassen sich ein Punkt- und
ein Linienmuster unterscheiden.

1. Die meisten Zystenstadien bestehen ein Punkt- oder - besser - ein Poren-
muster, das es sich bei dem Punkt- in Wirklichkeit um Vertiefungen han-
delt. Ein Querschnitt durch die Zystensahne (Abb. 1) zeigt, daß die Poren in
Kanäle münden. Wiesner (1953) meint, daß sie keine physiologische Funktion als Regulatoren von Wasser und Sauерstoff besitzen, sondern in-
folge des Zystenschwachstums entstanden sind. Die Poren sind bald stärker,
bald weniger deutlich entwickelt, manchmal sogar sehr schwer zu finden und
varieren sowohl in ihrer Anordnung wie in der Größe. Bei höherer Poloni-
sierung ist das Poren muster bei H. rosetbaensis und H. punctata sehr
deutlich und meist in Reihen angeordnet (Tafel 2, Abb. 1 a, 2a). Es verläuft
an Hals, Mitte und Hinterende horizontal, d. h. im rechten Winkel zur Kör-

Beim zweiten Typ bestehen die Grundelemente aus Zickzack-Linien, die je nach Einstellung der Linien bald hell, bald dunkel erscheinen. Sie sind bei den zitronenförmigen Arten sehr häufig (Taf. 2, Abb. 4b, 5b, 6b, 7b, 8b, 9b, 10b). Neben größeren Zickzack-Linien finden sich auch kleinere, doch ihre Größe ist sehr variabel. Auch der Verlauf der Zickzack-Linien ist an den einzelnen Körperstellen ungleichmäßig. Auf der Vorder- und Hinterwand der Zysten liegt ein längeres Band von parallelen Linien an der Körpermitte, die also von der Körpermitte ausgehen und die Linienwanderung an dieser Stelle bei mittleren und großen Zysten der schachtii-Gruppe unregelmäßig und in ihrer Längsachse oft breitgedrückt (Taf. 2, Abb. 4b); am Halse und um die Vulva verlaufen sie jedoch mehr parallel oder wellenförmig.

Bei vergleichender Überprüfung einer größeren Anzahl Zysten verschiedener Arten und Größen lassen sich demnach zwei Hauptgruppen unterscheiden:

a) Zysten zeigen bei höherer Polariäserung in allen Größen am Halsansatz eine in Linien angeordnete, den Hals umscheidende, ziemlich regelmäßige „Punktionierung“. Unter dieser tritt in vielen Fällen das Willenmaurer zutage. Zur Zystenmitte hin ist das Willenmaurer zwar weniger deutlich, aber manchmal doch noch erkennbar. Verherrschend ist dann das Foraminifer. In Vulva-

Tafel 3 bringt einige Kurzlehrmuster, die teils an den Körperenden auftreten sind, teils weniger häufig vorkommen und zu Verwechslungen mit den Mustern anderer Heterodera-Arten Anlass geben können.

C. Die Struktur des Vulvakesels

Die Kenntnis der Verhältnisse bedienen wir uns der Terminologie von Cooper (1858). Die Hinterende der Zysten wird von Anus und Vulva bezeichnet (Abb. 1). Beide Körperöffnungen können mehr oder weniger weit voneinander entfernt sein (vgl. S. 26). Während sich die Vulva (Abb. 2) deutlich hervorhebt, ist der meist kleinere Anus unmerkbar. Auf ihn laufen zwei V-geordnete Linien zu (Taf. 4, Abb. 2), die bei H. roteocephala im allgemeinen deutlich zu erkennen sind, aber gelegentlich auch bei Zysten anderer Arten, wenn auch weniger deutlich, ausgeprägt sind (Abb. 3). Es ist noch wichtig, welche Bedeutung sie haben.

Die Vulva besteht aus zwei meist rundlichen, manchmal etwas vorspringenden Knöpfen, die durch den Vulvaschlit getrennt werden. Besonders klein (14 µ) ist der Vulvaschlit bei Heteroder a nemus (Taf. 4, Abb. 9).

Abb. 2. Schema des Hinterandes einer Heterodera-Zyste (nach Cooper).

a) Der circumaxialer Typ. Er findet sich bei Arten, die ein rundes Körpere nde haben, also bei H. rusticaeensis und H. punctata. Junge Weibchen dieses Typs bilden eine spindelförmige Valva, aber keine Brücke (Taf. 4, Abb. 1). Mit zunehmendem Alter scheinen Spannungen in der Körperwand aufzu treten, die wegen des Fehlens der Brücke zu einer Erweiterung der Valva führen. Ein schließlich eine runde Öffnung entsteht (Taf. 4, Abb. 3 u. 3). Damit geht die Valva verloren, und es bleiben nur Reste der darunter liegenden Vagina erhalten. Von den zitronenzittrigen Zysten nimmt H. costi eine ähnliche Entwicklung. Bei jungen Weibchen kann sich die Membran aber auch abelförmig abheben und dann abfallen, so daß ebenfalls eine runde Öffnung entsteht (Taf. 4, Abb. 5).

b) Der semiaxialen Typ tritt bei den übrigen zitronenzittrigen Zysten auf. Durch die Valvabrücke wird das Fenster halbiert. Sie ist auch bei alten Zysten vorhanden und kann ihrer unterhöhlenen Ausbildung als diagnostische Merkmal verwendet werden. Beim circumaxialen Typ werden zwei Untertypen unterschieden:

1. Der bifenestratus Typ, wenn die Brücke kräftig ist und das Fenster derart zuge, daß die Halbfenster zwei getrennte Teile darstellen, z. B. bei H. buvali (Taf. 4, Abb. 6).
2. Der ambifissistrate Typ, wenn die Brücke schlanke ist, so daß der Ein-
druck zweier selbständiger Halbschenkel nicht entsteht. Hierbei gehören
H. schachtii, H. trifolii, H. güttingena, H. crucifera und H. carote
(Taf. 4, Abb. 7, 8, 10, 11, 12). Die Identifizierung der Arten dieses Typs
erfordert eine gewisse Übung. Vor allem müssen stets noch andere Unter-
scheidungsmerkmale herangezogen werden.

Wenn man die Keilspitze von innen betrachtet, so zeichnen sich hier folgende
Merkmale ab: Die Vulva setzt sich nach innen in die Vagina fort, die im Längs-
chnitt ihr viereckelartig gestaltet ist (Abb. 4). Parallel zur Vulvabrücke tritt
in manchen Fällen noch eine sogenannte Unterrücke auf, die gegabelt ist (z. B.
Taf. 5, Abb. 9). Außerdem sei auf endokutikuläre klumpenförmige Verdichtun-
gen hingewiesen, die bei einigen Heterodera-Arten auftreten und von Co ope r

Abb. 3 Hinterrande von H. trifolii mit den beiden V-Varianten des Afterlaufenden Linsen.

(1955) als „Bullae“ bezeichnet werden. Sie treten bei H. arenae sehr deutlich an
die Vulva heran (Taf. 5, Abb. 8) und sind bei dieser Art besonders groß. Bei
deren Arten, z. B. bei H. schachtii und H. trifolii, sind sie kleiner und liegen
in weiterem Abstand um die Vulva herum (Taf. 5, Abb. 7 u. 8). Bei der
H. güttingena-Gruppe fehlen sie jedoch oder es sind nur kleine Ansätze vor-
handen (Taf. 5, Abb. 10). Form und Größe der „Bullae“ bzw. ihr Fehlen ist
artsspezifisch. Über ihren Ursprung und ihre Aufgabe besteht noch keine
Klarheit.

Der ganze Vulvakopf ist bei einigen Arten von einem walstoffähnlichen Rand
umgeben. Die eingeschlüsselte Fläche wird von Co ope r nicht ganz zweckmäßig
also „Basin“ bezeichnet. Sie verläuft nämlich oft mehr oder weniger plan, kann
auch gelegentlich auch leicht knickig sein. Ob das Merkmal differential-
diagnostisch verwendet werden kann, scheint vorerst noch fraglich zu sein.

Abb. 4 H. schachtii. Vulva und Unterbrücke.

D. Allgemeine Merkmale der in Deutschland bekannten Heteroder-Arten

Nach heutiger Auffassung (vgl. A. L. T. o l o r, 1958) wird die Gattung Heterodera in folgende vier Gruppen unterteilt:

1) Da während der Untersuchung gelegentlich frisches Material für dichtende Untersuchungen nicht zur Verfügung stand, sind einige Angaben des Veröffentlichungs von Cooper (1933) und Holting (1938) mangelhaft worden.
Zusammenfassung

Die Identifikation der Heterodera-Arten ist ein wichtiges Mittel für den Bewertungsbericht bei der Pflanzenschutz und im Ackerbouwesen. Es wurde die Frage gestellt, ob es möglich ist, an Hand morphologisch-anatomischer Merkmale eine einwandfreie Diagnosierung durchzuführen. Als mögliche Unterscheidungsmerkmale wurden untersucht:

a) der Abstand Vulvas-Anus,

b) die Struktur der Zystenoberfläche,

c) die Struktur des Vulvagefäßes.

Während die unter a) und b) genannten Merkmale nicht immer artspezifisch sind, scheinen die exo- und endokutikularen Teile des Vulvagefäßes mit sehr wenigen Ausnahmen eine einwandfreie Identifizierung erlauben. Die Artenzahl der in Deutschland bisher gefundenen Heterodera-Arten sind in einer Übersicht am Schluß der Veröffentlichung zusammengestellt.

Summary

The identification of cysts of Heterocera species is important for advisory work, for plant quarantine and for plant health inspections. The following features of cysts are being studied to enable, if possible, identification on morphological and anatomical grounds:

a) the distance from vulva to anus,

b) the structure of the cyst wall,

c) the structure of the vulva cone.

Features a) and b) are not specific but the internal and external structure of the vulva cone c), with few exceptions, seems to afford means of accurate identification. A comparison will be made of the various features of Heterodera species found in a survey of those occurring in Germany.

Literatur

Tab. 1: Züchtung verschiedener Sierpel-Arten.
| Table 2 |
Taf. 2: a) oberes Kutikulamuster von Zystax der Gattung Heterodera.
Die Puren in den Abbildungen 7a, 8a, 9a usw. sind in Wirklichkeit hell. Aus didaktischen Gründen wurde jedoch eine andere optische Ebene eingesetzt, so daß sie im allgemeinen dunkel erscheinen; nur an einigen Stellen erscheinen sie infolge Bündelung der Zyctenspalte hell.
b) unteres Kutikulamuster. Legende siehe Taf. 2a.
Taf. 2: Weniger häufig auftretende Kutikularmustern verschiedener Netzulmen-Arten.

von außen
Taf. 4: Anatomie bei Heloderma-Arten von außen.
von innen

Zur Endemie der pflanzennahen Nematoden in Rebanlagen

DR. B. WEISCHER,
Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Hackfruchtkrankheiten und Nematodenforschung, Münster (Westf.).

Der Einfluß des Bodens auf die Verbreitung pflanzennaher Nematoden in Rebanlagen

In der vorliegenden Arbeit wird über Beobachtungen an verschiedenen wandernden Wurzelnematoden berichtet. Die Erlesungen wurden im westlichen
Weinbaugebiet durchgeführt (Abb. 1). Über das allgemeine Auftreten und die phytopathologische Bedeutung dieser Nematoden für den Weinbau ist, außer die bisherigen Untersuchungen eine Beantwortung dieser Frage zulässig, bereits an anderer Stelle berichtet worden (Weischer 1959). Weinberge sind für die Behandlung bodenkundlicher Probleme besonders geeignet, weil hier Biotope mit sehr ausgeprägten spezifischen Eigenschaften vorliegen. An klimatisch ähnlichen, bodenmäßig aber sehr unterschiedlichen Orten wird die gleiche Kulturpflanze seit langer Zeit ohne geregelter Fruchtwechsel nahezu ununterbrochen angebaut. Infolge dieser Gleichförmigkeit kann sich der Einfluss des Bodens auf die

Zur Feststellung der Nematodenfauna wurden an den in Abb. 1 gekennzeichneten Orten jeweils in mehreren Weinbergen Bodenproben aus der Rhizosphäre der Reben genommen. Die Entnahme erfolgte in 10, 30, 50 und 70 cm Tiefe. Von den gefundenen Arten konnten nur die Pflanzenparasiten eingehender analysiert werden. Die außerdem noch vorherrschenden saprophytischen und zumindesten Nematodes, die an Zahl die Pflanzenparasiten überwiegen, wurden nur summa-
Ort	Boden	1% Feinerde	1% KCl	1% in 50 g	1% in 100 g	Mg	Gesamt-	Gesamt-
--------------	----------------	-------------	--------	------------	-------------	------	kolhydrat	steins-
Nismal	Muschelkalk	90–100	3,6	2,9	3,0	1,24	0,14	0,11
Langenur	Muschelkalk	90–90	7,1	28	33	45		
Igel 1	Kalk/Gips	70–80	7,2	10	10	8,4	2,42	0,29
Igel 2	Rustsandstein	80–90	7,3	5,6	80	69		
Bernkastel	Schieferei	90–90	6,7	113	25	25		
Alsenauer	Schieferei	90–90	6,0	62	52	15,9	1,30	0,16
Dernau	Graswiese	90–90	7,2	19	67	16,9	1,04	0,32
Oberhof	Schieferei	70–80	7,2	10	10	8,4	2,42	0,29

Die angegebenen Werte geben die Verhältnisse in 2 cm Tiefe wieder.

<table>
<thead>
<tr>
<th>Nematoden</th>
<th>Untersuchungsorte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nittel</td>
</tr>
<tr>
<td>Paratylenchus</td>
<td>+</td>
</tr>
<tr>
<td>sp. I</td>
<td></td>
</tr>
<tr>
<td>sp. II</td>
<td>-</td>
</tr>
<tr>
<td>sp. III</td>
<td>-</td>
</tr>
<tr>
<td>sp. IV</td>
<td>+</td>
</tr>
<tr>
<td>Heliothylengordius</td>
<td>-</td>
</tr>
<tr>
<td>digonicus (1)</td>
<td>+</td>
</tr>
<tr>
<td>sp. X. nematodes</td>
<td>-</td>
</tr>
<tr>
<td>Protogordius</td>
<td>+</td>
</tr>
<tr>
<td>sp.</td>
<td></td>
</tr>
<tr>
<td>Xiphinema</td>
<td>-</td>
</tr>
<tr>
<td>sp.</td>
<td></td>
</tr>
<tr>
<td>Protogordius</td>
<td>-</td>
</tr>
<tr>
<td>thornei</td>
<td></td>
</tr>
<tr>
<td>Macrosiphunculus</td>
<td>+</td>
</tr>
<tr>
<td>sp.</td>
<td></td>
</tr>
</tbody>
</table>

Die genannten Beispiele zeigen, dass bei vielen Nematoden die Eigenschaften des Bodens für das Auftreten und die Verbreitung wichtiger sind als das Vorhandensein einer Wirtspflanze, in diesem Falle der Heide. Die Artverbreitung und u. a. von S. G. I. (1932) geäußerte Ansicht, dass die Bodenfaktoren in der Wirkung auf die Nematoden immer zurückgetakt gegenüber dem Verhältnis der Pflanzenfeldern oder fehlen einer Wirtspflanze, gilt also hier nicht.

festgestellte Auftreten von Protopenenchus procerus in einem Weinberg bei Königswinter (Rhein) scheint eher eine Ausnahme als die Regel zu sein.

Der Volksmeinung halber sei noch erwähnt, daß in einer Fläche, die bis 1917 als Weinberg genutzt wurde und jetzt mit Erdbeeren bestanden ist, einige Exemplare von Protopenenchus penetans gefunden wurden. In einer benachbarten, jetzt nicht mit Reben bestandenen Parzelle waren die Tiere nicht vorhanden. Es ist anzunehmen, daß sie mit Erdbeerpflanzen eingeschleppt worden sind.

Dem Leiter des Institutes für Rebenknackheiten der Biologischen Bundesanstalt in Bernkastel/Mosel, Herrn Oberregierungsrat Dr. Niemeyer, und seinen Mitarbeitern sei für die Hilfe bei den Untersuchungen besonders gedankt.

Zusammenfassung

Summary

The influence of soil type on the distribution of migratory root eelworms attacking grapes was studied. The occurrence of some species of Paratrygonchus, Protopenenchus and Macrotrichophorus is strictly limited by soil type and each of the species was found in distinct kinds of soil only. In one place, where sand borders upon loam with a sharp separating line, this line also separated two species of Paratrygonchus. No mixed populations of the two species were observed. In Protopenenchus this border also limited occurrence. The heavy soil contained about 700 individuals per 200 cm of soil but, just behind the separating line, not one Protopenenchus was found. Macrotrichophorus was encountered only at one place with a very heavy and compact clay soil. In Helicotylenchus no
limiting influence of soil type on distribution was observed. This genus was found in sand as well as in clay. In *Pratylenchus thornei*, the only species of this genus found on grapes, the distribution seems to be influenced more by factors such as temperature and humidity rather than by the soil type. *P. thornei* was encountered only in vineyards situated in valleys and not on slopes, where the fluctuations in temperature and water content of the soil are much higher.

Literatur

Seminovskiy, J. W., Population studies on stem rebborns (*Heterodera tropica*). *Nematologica* 1, 1936, 129–141.

DR. B. WEISCHER

Biolgieische Bundesanstalt für Land- und Forstwirtschaft, Institut für Hefteurkreichungen und Nematodenforschung, Münster (Westf.).

Aktivitätszustand und Strahlenempfindlichkeit beim Kartoffelnematoden (*Heterodera rostochiensis* Woll.)

Während der letzten Jahre wurde am Institut eine Reihe von Untersuchungen über den Einfluß ionisierender Strahlen auf die Entwicklung und Verbreitung zystenbildender Nematoden durchgeführt. Sie hatten das Ziel, die wirtsbe- kannten Nematodenbiologie dieser Tiergruppe zu erforschen und die Möglichkeit einer Abtötung schädlicher Nematoden mit Hilfe ionisierender Strahlen zu prüfen. Im Laufe dieser Untersuchungen war festgestellt worden, daß einjährige Zysten des Kartoffelnematoden eine erstaunliche hohe Strahlenempfindlichkeit, also unmerkliche Schäden vertragen (Weischer 1957). Bei der Fortsetzung der Versuche wur- den dann auch jüngere Zysten (3 Monate alt) unter den gleichen Bedingungen für verschiedene lange Zeiten (100–400°) den Strahlen eines Uranumrapparates (50 mg Ra) ausgesetzt, wobei die Tiere eine Strahlenempfindlichkeit von rund 400 r/h erlitten. Der biologisch wirksame Bestandteil dieser Strahlen besteht im wesent-
lichen aus Gammastrahlen. Die Auswertung der Versuche ergab, daß der Inhalt der jungen Zysten wesentlich strahlenempfindlicher war als der der bisher vor-
wendeten einjährigen Zysten. Äußerlich waren an den Tieren, wie auf Grund der
bisherigen Erfahrungen nicht anders zu erwarten ist, keine Veränderungen fest-
zuhalten. Im Schlupfversuch jedoch, bei dem die Larven durch bestimmte, von
den Wurzeln abgegebene Stoffe aktiviert und zum Auswanden aus den Zysten
veranlaßt wurden, zeigte sich eine deutliche Reaktion (Tab. 1).

Tab. 1. Durchschnittliche Anzahl der aus jeweils 10 jungen Zysten (3 Monate alt) von
Beniflavonen auskotierten geschlüpften Larven.

<table>
<thead>
<tr>
<th>Strahlungsdosis</th>
<th>180ª</th>
<th>240ª</th>
<th>480ª</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestraht</td>
<td>447</td>
<td>96</td>
<td>21</td>
</tr>
<tr>
<td>Kontrollen</td>
<td>302</td>
<td>388</td>
<td>301</td>
</tr>
</tbody>
</table>

Bis zu Bestrahlungszeit von 90º wurden, ähnlich wie bei den früheren Ver-
suchen, die Larven durch die Bestrahlung zu einem stärkeren Schlupfen ange-
regt, doch war von vo an mit steigender Bestrahlungsdauer ein deutlicher Ab-
nehmen der Schlupfrate festzustellen. Aus älteren Zysten waren unter den glei-
chen Bedingungen noch Larven in großer Menge geschlüpft. Mit den bestrahlten
Tieren wurden in kürzester Zeit anorganische Kastenfaden infiziert, um den Verlauf
der Weiterversuche zu studieren. Zu diesem Zwecke mußten in bestimmten
zwölfmonatigen Abschnitten Wurzelproben entnommen und nach dem Anfärbn mit
Laetophenol-Säurelauge auf eingewanderte Larven untersucht werden. Es zeigte
sich, daß bei Bestrahlungen von mehr als 200º Dauer innerhalb von 120 Tagen
keine Infektion stattfand, während die unbehandelten Kontrolltiere bereits nach
wenigen Tagen in die Pflanzennwürfel eingedrungen waren. Bei einer Strahlen-
einwirkung von 180–200º wurden in der Vegetationsperiode vereinzelte Larven gefunden, bei den kürzeren Zeiten mehr. In den Monaten nach Versuchs-
beginn konnte die Erkundung des Infektionsversuches erfolgen. Die Rhizo-
pilzläufe der Versuchspflanzen wurde nach dem Stel-Schöhn-Verfahren (G o l f f e r t 1952) auf neuegebildete Zysten untersucht. Dabei ergab sich, daß
sich in den mit unbehandelten Nematoden infizierten Topfen im Durchschnitt
200–300 neue Zysten gebildet hatten. In den behandelten Serien waren nur bei
Bestrahlungszeiten bis zu rund 100º neue Zysten zu finden. Keines der Tiere,
die länger behandelten waren, hatte sich zur Geschlechtsreife entwickelt. Die
Larven aus den Versuchen mit 180–200º Bestrahlung, denen es energetisch ge-
lungen war, in Würfeln einzudringen, waren nicht über das 3. Larvenstadium
hinauszukommen. Die in früheren Versuchen behandelten älteren Tiere hatten auch
bei derartig hohen Strahlendosen noch zu einem hohen Prozentsatz normale oder
normal erscheinende Zysten gebildet. Das zeigt, daß der Inhalt der jüngsten Zysten
strahlenempfindlicher ist. Das ist insofern ungewöhnlich, als es sich in beiden
Fällen um Larven des 2. Stadiums handelt. Unterschiede bestehen lediglich im
absoluten Alter und in der Tiefe der Anbauplätze, in der sich die Tiere befinden.
Da sich aus den bisherigen Versuchen keine eindeutigen Erklärungen für die
unterschiedliche Reaktion der jüngeren Tiere ableiten ließen, wurde eine neue
Versuchsreihe begonnen. Unter Berücksichtigung der Biologie yatanohiländer
Nematoden konnte bei der Anlage von zwei theoretischen Erklärungs möglich-
keiten ausgegangen werden:

2. Die Strahlungsempfindlichkeit hängt vom physiologischen Zustand der bestrahlten Tiere ab. Je geringer die Stoffwechselaktivität, um so geringer ist auch die Empfindlichkeit.

 a) junge aktivierte Larven
 b) junge ruhende Larven
 c) alte aktivierte Larven
 d) alte ruhende Larven

Tab. 2: Durchschnittliche Anzahl der aus jeweils 10 Zysten geschlüpften Larven bei Bestrahlung der Eltern in aktiviertem und in ruhendem Zustand.

<table>
<thead>
<tr>
<th>Bestrahlungsduer</th>
<th>unbehandelte Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>24h</td>
<td>48h</td>
</tr>
<tr>
<td>A</td>
<td>880</td>
</tr>
<tr>
<td>B</td>
<td>1810</td>
</tr>
</tbody>
</table>

Die Versuche haben gezeigt, daß die Strahleinflusswirkungen bei Neumodenlarven gleichen Häutungsgeschichts im wesentlichen durch den Grad der Aktivität bestimmt wird. Larven im anabiotischen Zustand waren weniger geschädigt als durch äußere Reize stimuliert Tiere. Dabei wird die somatische Entwicklung
Abb. 1. Inhalt eines leeren Weibchens (Spalte), das als aktivierte Larve bestrahlt wurde. Die gehärteten Eier sind fast alle ohne lebenden Inhalt.

Abb. 2. Inhalt eines leeren Weibchens (Spalte), das als ruhende Larve bestrahlt wurde. Neben Eiern ohne lebenden Inhalt haben sich zahlreiche normal aussehende Larven entwickelt.

Der Deutschen Forschungsgemeinschaft sei auch an dieser Stelle für die Unterstützung der Arbeiten gedankt.

Zusammenfassung

Bei Versuchen zur Abtötung pflanzenparasitärer Nematoden durch ionisierende Strahlen wurde festgestellt, daß Larven aus drei Monate alten Zysten wesenentlich strahlenempfindlicher sind als Larven aus einjährigen Zysten, obwohl...
sich beide im gleichen Entwicklungs- bzw. Häutungstadium befinden. Sie unter-
scheiden sich hauptsächlich durch das Alter und durch die Tiefe der Anästhesie. Um
zur prüfen, welcher der beiden Faktoren für die Empfindlichkeitsunterschiede
verantwortlich ist, wurden vier Gruppen von Larven bestrahlt:
a) junge, durch Wurzelskrebs aktivierte Larven
b) junge Larven im Ruhezustand
c) alte, durch Wurzelskrebs aktivierte Larven
d) alte Larven im Ruhezustand

Mit den behandelten Tieren wurden dann Wirtspflanzen infiziert. Bei der Aus-
wertung zeigte sich, daß alle aktivierten Tiere (Gruppe a u. d) sehr stark ge-
schädigt waren und kaum Lebenschancen aufwiesen. Dagegen waren die als ruhende Larven bestrahlten Tiere beider Altersgruppen wesent-
lieh geringere Strahlenschäden auf. Daraus geht hervor, daß der Aktivitäts-
verband der entscheidende Faktor ist. Für die praktische Verwendung energie-
reicherer Strahlen zur Abtötung von Nematoden sowie für die allgemeine Strahlen-
bioökologie ergibt sich aus den Ver suchen der Schlüß, daß leichte Schäden in geringerem
Aktivitätsverband bei sehr viel geringeren Strahlenmengen auftreten als
im Ruhezustand.

Summary

In irradiation experiments using a radium source it was shown that larvae
of the potato root eelworm from one year old cysts were less sensitive than
larvae from 3 month old cysts, though both contain larvae in the same molting
stage. This phenomenon might be caused by the difference in age or by the
different degree of dormancy of the larvae. To study this question, four groups
of larvae were irradiated for 24 and 48 hours respectively:

a) young larvae activated by root diffusate
b) young larvae in anabiosis
c) older larvae activated by root diffusate
d) older larvae in anabiosis

The irradiated larvae were added to potatoes growing in sterilised soil.
Infection and visible development in the host roots seemed normal, but development
of the nematodes and their products showed different degrees of disturbance. The
gradated of the activated larvae (groups a and d) were much more sensitive than
those of the larvae irradiated in anabiosis.

The degree of sensitivity seems to depend mainly on the depth of dormancy.
Age alone had little influence.

Literatur

Fassuliotis, G., Effects of ionizing radiation on the golden nematode,

Goffart, L., Methoden zur Bodenuntersuchung auf nysteinhaltende Nematoden.

Simonis, W., Physikalisch-chemische Grundlagen der Lebensprozesse (Strahlenbio-

Weiβberg, B., Die Wirkung ionisierender Strahlen auf die Entwicklung von
Zum Einfluß von Blattzustand und Blattrosettat auf Wachstum und Stoffwechsel vergilbungskranker Rübenpflanzen

Aus diesen Überlegungen heraus werden in mehrjährigem Feldversuchen mit künstlicher Virusinfektion die Wirkung experimenteller Blattnahme und die dadurch ausgelöste Blattregeneration auf Wachstum, Stoffwechsel und Wurzigen- schaften vergilbungskranker Rüben untersucht.

1) Mit freundlicher Unterstützung der deutschen Forshungsprogramme.
2) Vgl. dort die früheren Literatur.
Methodik

Ergebnisse

1. Einfluß der Blattentnahme auf das Wurzelwachstum

Die Ergebnisse der verschiedenen Versuche stimmen trotz unterschiedlicher Wuchsbedingungen, Standorte, Entblätterungs- und Infektionsarten grundsätzlich überein (Abb. 1 u. 2). Die Wirkung der Blattentnahme auf die Entwicklung des Wurzelwachstums (Ruben) ist weitgehend vom Termin des Verlustes abhängig. In allen Fällen haben die frühen Entblätterungen das Wurzelwachstum stärker gehemmt als die späten. Blattentnahme um Mitte Juli senkt den Wurzelertrag der nicht infizierten Pflanzen um 40–50 % und hierzu zahlt der künstlichen Völligungsalienation um Mitte Juni. Entblätterungen gegen Anfang August verursachen Rubenverluste von 30–35 %, wobei gegen Mitte bis Ende August immer noch Verluste von etwa 20 %, der Vorgang der einzelnen Versuche zeigt, daß Wuchstums- und Sandöbergung die Wirkung der Extremlentnahme an den Rubenortort modifizieren können. So hat die Entblätterung

Abb. 1. Einfluß des Blattverlustes auf das Rübenwachstum nicht infizierter Pflanzen. Rübenwichte in g
Ebenso war die Hemmung auf dem tiefgründigen, gut mit Wasser versorg-
en Boden, auf dem die Versuche in der Umgebung von Worms standen, schwä-
cher als auf dem leichten sehr trockenen Sandboden des Versuchsfeldes Münster.
Die angegebenen Verlustwerte stellen daher keine Normen dar, deren Fest-
stellung auch keineswegs bei diesen Untersuchungen beabsichtigt war. Die größ-
en Gewichtsverluste wurden erst 6-3 Wochen nach der Blatteinnahme fest-
gestellt; sie verringerten sich bis zur Schlüssente nicht oder nur unerheblich,

Abb. 2. Einfäll der Blattverluste auf das Blätterwachstum viruzidisieter Pflanzen.
Blättergewichte in g
selbst wenn diese, wie im Verhältnis Münster 1937, absolut extrem verzögert wurde. Im zeitlichen Verlauf der Wachstumsverzögerung unterschieden sich somit die Wirkungen des Blattverlustes und der Verengungsinfektionen, da bei letzterer die Depression des Wurzelwachstums eher relativ früh, wenn das Virus sich über das ganze Blattsystem ausgebreitet hatte, ihren Höhepunkt erreichte und dann, je nach Wuchshemmungen mehr oder weniger weitgehend wieder zurückging, nach den Untersuchungen von Lüdecke und Nees (1938) würden sich züchter frühere Blattverläufe (Mitte Juni) nur wenig auf die Ertragsmenge an Rüben aus; demnach kann in solchen Fällen die Verzögerung des Wurzelwachstums im späteren Entwicklungsverlauf weitgehend kompensiert werden. Maximale Ertragsverluste durch Blattverzügerungen sind somit dann zu erwarten, wenn diese an einem Termin erfolgen, an dem die Rübenbildung noch gering ist, bei der jedoch eine Auswirkung der Blattregeneration auf das Massenwachstum der Rüben nicht mehr möglich ist.

Bei den infizierten Pflanzen hat die frühe Enblüterung die durch die Virusinfektion bereits gebremste Rübenentwicklung in allen Fällen noch zusätzlich erheblich verzögert; Gewichtsabnahme gegenüber dem Rübenwachstum der Kontrollpflanzen, die in den Versuchen Münster 1935, 1936 und 1935 bei den nicht enblüteten künstlich infizierten Pflanzen 50,8, 38,7 und 25,0 % betrug, standen bei den früh enblüteten reinen Rüben solche von 76,2, 53,4 und 46,9 % gegenüber. Die Blattentnahme Mitte Juli bis Anfang August hat den Wurzeleinschnitt durchweg erhöht. Auch später Blattverluste, die das Wurzelwachstum der virusfreien Pflanzen um 15,8, 13,4 und 10,2 % beeinträchtigten, verursachten bei den künstlich infizierten Pflanzen Depressionen von 62,5, 45,4 und 34,7 %, umgekehrt hat die schwere Viruswirkung, die im Verhältnis Worms 1937 nach künstlicher Infektion gegen Mitte Juli das Rübenwachstum der schon weit entwickelten und sehr blattreichen Pflanzen um rund 7 % senkte, bei den mit Mitte August enblüteten Pflanzen Gewichtsverluste um rund 40 % bewirkt. Typisch für das Verhalten der enblüteten infizierten Pflanzen ist weiterhin, daß die Unterschiede im Rübenwachstum zu den Kontrollen bei den zeitlich günstigen Ernten zum Herbst hin nicht wie bei den vollblüteten vergilbungsunkranken Rüben allmählich geringer wurden, sondern konstant blieben. Der Blattverlust hat demnach bei vergilbungskranken Pflanzen das typische und für ihre endgültige Ertragsleistung wichtige Erholungsvermögen nahezu völlig aufgehoben.

Ein ähnliches Verhalten des Wurzelwachstums konnte auch in anderen Fällen starker Blattverzügerung beobachtet werden. Vergilbungsunkranken Zuckerrüben wurden in Freilandversuchen 1936 nach künstlicher später Infektion von Cercosporella...
betica so stark befallen, daß kein Neuantrieb mehr erfolgte. Bei der Auswertung im Oktober breiteten sich Pflanzen höheren Niveau im als die nicht infizierten virtuellen Vergleichspflanzen.

2. Blattregeneration

5 Die Werte beziehen sich auf das Blattgewicht (Spitzend und Basis ohn „Rübenkopf“).
der Wurzel- und Rübensaumanzahl zur Zeit der Enthäutung, die bei späteren Enthäutungsmomenten und erneuten Bedingungen für das Blattschlagvolumen besonders wirksam wird und dann die entsprechende Korrelation zu überdecken vermoch. Dieser Umstand mag auch einer der Gründe für das verminderte Regenerationsvermögen der virusinfizierten Pflanzen sein.

3. Einfluß der Enthäutung auf den Zucker-Stoffwechsel in Blatt und Rübe

<table>
<thead>
<tr>
<th>Blattorgan</th>
<th>Virusinfektion</th>
<th>Enthäutung</th>
<th>1935</th>
<th>1936</th>
<th>1937</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreite</td>
<td>nichtinfiziert</td>
<td>nicht</td>
<td>33,69</td>
<td>33,35</td>
<td>33,40</td>
<td>33,58</td>
</tr>
<tr>
<td></td>
<td>früh</td>
<td>22,58</td>
<td>30,79</td>
<td>17,02</td>
<td>28,44</td>
<td>24,98</td>
</tr>
<tr>
<td></td>
<td>spät</td>
<td>33,03</td>
<td>18,03</td>
<td>41,76</td>
<td>15,54</td>
<td>28,35</td>
</tr>
<tr>
<td></td>
<td>infiziert</td>
<td>nicht</td>
<td>47,00</td>
<td>37,10</td>
<td>20,17</td>
<td>48,69</td>
</tr>
<tr>
<td></td>
<td>früh</td>
<td>28,00</td>
<td>30,38</td>
<td>15,40</td>
<td>46,36</td>
<td>24,66</td>
</tr>
<tr>
<td></td>
<td>spät</td>
<td>29,38</td>
<td>17,13</td>
<td>43,32</td>
<td>27,48</td>
<td>30,47</td>
</tr>
<tr>
<td>Stiel</td>
<td>nichtinfiziert</td>
<td>nicht</td>
<td>48,17</td>
<td>44,68</td>
<td>40,16</td>
<td>55,77</td>
</tr>
<tr>
<td></td>
<td>früh</td>
<td>33,42</td>
<td>35,78</td>
<td>25,06</td>
<td>41,64</td>
<td>30,64</td>
</tr>
<tr>
<td></td>
<td>spät</td>
<td>39,09</td>
<td>39,47</td>
<td>41,15</td>
<td>31,41</td>
<td>35,64</td>
</tr>
<tr>
<td></td>
<td>infiziert</td>
<td>nicht</td>
<td>32,71</td>
<td>40,49</td>
<td>29,20</td>
<td>42,31</td>
</tr>
<tr>
<td></td>
<td>früh</td>
<td>22,98</td>
<td>30,57</td>
<td>22,89</td>
<td>39,27</td>
<td>29,67</td>
</tr>
<tr>
<td></td>
<td>spät</td>
<td>32,09</td>
<td>27,90</td>
<td>37,09</td>
<td>30,92</td>
<td>32,57</td>
</tr>
</tbody>
</table>

Die Enthäutung wirkt auf den Zuckerrückgewachs des Blattes nach unseren Versuchen in doppelter Weise: Das regenerierte Blatt der infizierten und entblättern ten Pflanzen zeigte durchweg zunächst keine Auswirkung auf die Spreite; diese trat, wenn überhaupt, dann erst bei den späteren Ernten, mehr oder weniger stark in Erscheinung. Nur im Ver such Münster 1937 wiesen die Spreiten der regenerierten Blätter der frühentblättern ten infizierten Pflanzen be-
Für den praktischen Rübenbau ergeben sich aus den Untersuchungen einige wirtschaftlich wichtige Folgerungen:

1. Blattbeschädigungen in Vergilbungshägen erfordern eine andere Bewirtschaftung als bei gesunden Beständen.
2. Für die Gewinnung einer qualitativ möglichst guten Rübe aus vergilbungskranken Beständen ist, besonders bei ausreichenden Blattbedingungen, die Wahl des Erntetermins von entscheidender Bedeutung. Als optimal hat der Zustand zu gelten, in dem eine Neugewachsung anklingt, aber die Blätter noch voll ausreichend ausgebildet sind, um eine für die Verarbeitung geeignete Rübe zu liefern.

Zusammenfassung

2. Frühere Blattentnahmen hemmen das Rühenwachstum der Pflanzen nicht und führen nicht zu einer verzögerten Verflüchtigung der Pflanzenenergie.

3. Der Zuckeransatz der Rüben wurde durch die Entblätterung vermindert, so daß Zuckeransatzzunahme auch durch späte Entblätterungen entstehen lassen, die auf den Rübenansatz keines oder nur geringe Wirkung zeigen.

4. Die Blattregeneration nach Entblätterung war bei vergilbungskranken Pflanzen wesentlich intensiver und verlief langsamer als bei nicht vergilbten.

7. Der Gehalt der Rüben an löslichen Asche wurde durch die Entblätterung in allen Fällen gesteigert.

8. Das Epikotyl der Zuckerrübe enthält nicht nur weniger Zucker, sondern auch bedeutend mehr reduzierenden Zucker, löslichen und nichtlöslichen Stickstoff und lösliche Asche als die übrigen Rübenanteile (Hypokotyl und Wurzel). Entblätterung und Virusinfektion wirken sich auf das Epikotyl in gleicher Richtung, doch erheblich stärker aus als auf die Wurzel.
senden Bestäuben, die Ende Juli bis Ende August erfolgen, ist demnach nicht nur mit einer Vorwegnahme eines bestimmten Teiles des Blatterschadens, sondern mit einer unverhältnismäßig großen mengen- und wertmäßigen Minderung der Rübenanbau zu rechnen.

Diskussion

In schweren Vergilbungslagen können auch die durch eine vollwirksame Überträgebekämpfung bei stärkerem Sommerblatt der Vektoren nicht zu verhindern. Die Inaktivierung und die hierdurch bewirkten, unvermeidbaren (S = n = d = e) und Helling (1956), meint wirtschaftlich belanglosen Vergilbungsschäden bei stärkerem Blattverlust Bedeutung gewinnen und den ertragmäßigen Effekt der Überträgebekämpfung beeinträchtigen.
<table>
<thead>
<tr>
<th>Behandlung</th>
<th>Metasystox</th>
<th>Unbehandelt</th>
<th>Infiziert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entblätterung</td>
<td>nicht</td>
<td>früh</td>
<td>spät</td>
</tr>
<tr>
<td>Rüben d/ha</td>
<td>49,1</td>
<td>37,9%</td>
<td>18,4%</td>
</tr>
<tr>
<td>Rüben Trocken- substanza %</td>
<td>12,31</td>
<td>11,90</td>
<td>12,53</td>
</tr>
<tr>
<td>Rüben Trocken- substanza d/ha</td>
<td>65,6</td>
<td>44,2%</td>
<td>23,2%</td>
</tr>
<tr>
<td>Rüben Zucker %</td>
<td>7,01</td>
<td>6,87</td>
<td>6,81</td>
</tr>
<tr>
<td>Rüben</td>
<td>39,1</td>
<td>45,9%</td>
<td>29,7%</td>
</tr>
<tr>
<td>LSD Stickstoff</td>
<td>0,443</td>
<td>0,539</td>
<td>0,392</td>
</tr>
<tr>
<td>Nkttold Stickstoff mg/g</td>
<td>0,378</td>
<td>0,741</td>
<td>0,567</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rüben, dm/ha</td>
<td>Zuckeranfall, %</td>
<td>Zuckerwert, dm/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entblätterung</td>
<td>nicht</td>
<td>früh</td>
<td>spät</td>
<td>nicht</td>
<td>früh</td>
<td>spät</td>
<td>nicht</td>
</tr>
<tr>
<td>Behandlung: Metasystox 250 cc 4 ×</td>
<td>436</td>
<td>–26.4%</td>
<td>–15.4%</td>
<td>16.01</td>
<td>–1.01</td>
<td>–0.14</td>
<td>69.0</td>
</tr>
<tr>
<td>Hostatex</td>
<td>0.7 × 1 ×</td>
<td>–17.9%</td>
<td>–42.3%</td>
<td>–23.9%</td>
<td>–0.35</td>
<td>–1.00</td>
<td>–0.04</td>
</tr>
<tr>
<td>Unbehandelt</td>
<td>–31.8%</td>
<td>–44.3%</td>
<td>–29.4%</td>
<td>–0.35</td>
<td>–5.4</td>
<td>–21.09%</td>
<td>–44.3%</td>
</tr>
<tr>
<td>Behandlung: Künstlich-infiziert</td>
<td>25.7%</td>
<td>–50.5%</td>
<td>–34.9%</td>
<td>–1.31</td>
<td>–1.00</td>
<td>–0.04</td>
<td>32.8%</td>
</tr>
</tbody>
</table>

Die sehr frühesten Blattzerstörungen durch die Rübenfliegen haben demnach die Wirkung der Vergilbungsnarkose zwar erheblich verstärkt, die Empfindlichkeit der Rüben gegenüber den späteren schweren Blattverlusten jedoch nicht weiter gesteigert.

7. Das Verhalten von Futterrüben

baren Blattentnahme-Termine von Lüdecke und Neub (1959) angegeben
wird. In den eigenen Versuchen reagierten die Rüben bei Blattentnahme gegen
Ende Juli bis Mitte August stärker und regelmäßiger als nach Einblütemuren,
die Anfang September erfolgten. Die infizierten Pflanzen, die zwar meistens
höhere Elektroyt-Gehalte aufwiesen als die nicht infizierten, erlitten bei Blatt-
entnahme eines etwa gleich hohen Gehaltsanstiegs. Signifikante Unterschiede
wurden auch im Aschegehalt zwischen Wurzel und Epikotyl festgestellt. Nach
Den Untersuchungen von Carruthers u. a. (1959), die gleich gerichtete und
ziemlich gleich große Unterschiede im K- und Na-Gehalt ergaben, in der Mehr-
gelte an Aschereaktionen hauptsächlich in dem peripheren Epikotylgewebe
lokalisiert.

Tab. 5. Einfluß der Entblüterung auf den Gehalt von Rübe
und Epikotyl an löslicher Asche

<table>
<thead>
<tr>
<th>Virusinfektion</th>
<th>nicht infiziert</th>
<th>infiziert</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frühblüterung</td>
<td>nicht früh</td>
<td>früh</td>
<td>spät</td>
</tr>
<tr>
<td>Lüt. Asche 4% FS Rübe</td>
<td>0,566</td>
<td>0,596</td>
<td>0,552</td>
</tr>
<tr>
<td>Lüt. Asche 4% FS Epikotyl</td>
<td>0,822</td>
<td>0,902</td>
<td>0,821</td>
</tr>
<tr>
<td>Lüt. Asche/Sorcerose Rübe</td>
<td>3,43</td>
<td>4,23</td>
<td>3,95</td>
</tr>
<tr>
<td>Lüt. Asche/Sorcerose Epikotyl</td>
<td>6,65</td>
<td>8,67</td>
<td>8,08</td>
</tr>
</tbody>
</table>

6. Verhalten spontan befallener Pflanzen bei
Entblüterung

Der Versuch 1956 enthielt neben künstlich virusinfizierten und nicht
infizierten Toilen noch eine dritte Gruppe, die nicht mit Metasystox behandelt
wurde und dadurch dem standortbedingten ziemlich hohen spontanen Vergil-
bungsbefall und, unbeabsichtigt, einer starken Schädigung durch die Rüben-
fliege ausgesetzt war, während bei den beiden anderen Versuchsgruppen die
Metasystox-Behandlung einen Rübenfliegenbefall praktisch verhindert hatte.
Der durch natürlichen Vergilbungsbefall und Rübenfliegenbefall verursachte
Ertragsausfall an Rüben und Zuckerrüben besonders an Blatt war mit 39 %
des Normalertrages deutlich größer als die Verluste durch die künstliche Virus-
infektion, die 21,4 % betragen. Die frühe Entblüterung hat die Ertragsverluste
der normal und künstlich infizierten Pflanzen noch wesentlich, nämlich auf
55,0 bzw. auf 68,2 % gesenkt: die späte Entblüterung, die den Ertragsverlust
der behandelten Pflanzen nur schwach beeinträchtigte, senkte bei den unbehan-
delten und infizierten Pflanzen den Zuckerrübenertrag fast im gleichen Grade wie
die frühe Blattentnahme.

Dem Entblüterungsvorschlag 1957 in Münster wurde noch ein weiteres Ver-
suchsglied hinzugefügt. Durch eine einmalige Spritzung mit Hestaxox 0,2 %
konnten auf diesen Parzellen Schäden durch die Rübenfliege, die in dem Versuch
sehr früh und stark auftrat, praktisch ausgeschaltet werden (Tab. 6). Da die
Behandlung nach dem Ergebnissen der Blattanzahlinzahlen die Besiedlung der
Pflanzen mit Virus-Vektoren nicht beeinflußte hatte, war die spontane Vergil-
37

auch der technologisch bedeutsame schädliche Stickstoff in höherer Weise hervor-
metrisch nach Stanek und Paulus, 1934 (Stanzaherborde) bestimmt (Tab. 4). Bei stärkeren,
haupt sätzlich durch die Methodik begründeten Schwankungen der Einzelwerte ergab sich eine
rahmenlose Übereinstimmung mit den Werten für den L.N. Die entblätterten Pflanzen enthielten in Rübe und
Epikotyl weniger schädlichen Stickstoff als die nicht entblätterten. Bei den spä-
entblätterten und bei den infizierten Pflanzen der Versuche 1956 war diese
Beziehung nicht deutlich, bei Rübe und Epikotyl der infizierten, des Versuches 1957
haupt sätzlich infolge der zufällig niedrigen Gehaltszahlen der nicht ent-
blätterten virilen Kontrollen überhaupt nicht ausgeprägt. Die Divergenz, die

sich in diesen Versuchen zwischen den Werten für lösliche und unlöslichen Stick-
stoff zeigte, deutete darauf hin, daß der durch die Blauzahl erfaßte Anteil von
Stickstoffsubstanzen an der Gesamtmenge des unlöslichen Stickstoffes nicht konstant
war, wie dies auch bei den übrigen Einzelbestimmungen festzustellen war. Trotz
der beträchtlichen Variabilität der Relation: Schädlicher Stickstoff zu löslichem
Stickstoff, die im wesentlichen auf dem Verhältnis von Aminoästertofst zu Amid-
stickstoff beruht, ergab sich bei der Rekonstruktion des durchschnittlichen Quoten-
ten für beide Versuche eine gewisse Übereinstimmung: er betrug für den Versuch
1956 0,441, für den Versuch 1957 für die reine Rübe 0,380 und für die Epikotyl
0,472. Carlsruher und Mitarbeiter (1959) weisen auf ähnliche
Schwankungen im Verhältnis des kohlehydratischen Stick-
stoffes zum Aminostickstoff von Rübenmarkaschen, Rohkost und Sämen der
2. Saturation hin. Die Autoren gehen weiterhin an, daß durch die Kupferenzet-
reaktion „nicht die Summe der Aminostoffe“, sondern auch andere N-Ver-
bindungen erfaßt werden. Für das Epikotyl ergaben sich im übrigen ebenso wie
beim L.N. erheblich höhere Blauzahlen. Nach den Angaben von Car-
lsruher u.a. (1959), die ebenfalls im Epikotyl erheblich größere Mengen
„schädlichen Stickstoffs“ als in der Rübe festgestellt, weisen die zentralen
Tetra die höchsten, die peripheren Schichten und das angrenzende hypokotyle
Gewebe niedrigere, gegenüber der Rübe jedoch noch erhöhte Gehaltszahlen auf.

Die Benennung des Stickstoff-Stoffwechsels vergilbungsanfälliger Rüben durch
vorgeschlagene Blattdiagnose und intensive Blattregeneration lädt sich somit auf zwei
Hauptwirkungen zurückführen: 1. Portaltw. Verminderung der Ableitung
von löslichem Stickstoff aus dem Blattpool in Rübe und Rübe nach Ent-
faltung der Blattblätter bis zur stärkeren Wiedergewinnung des Neusyn-
thermes, 2. Mobilisierung von N-Substanzen in der Rübe und Abwanderung in
den Spreizwärter der Blattregeneration.

Der Widerspruch gegenüber den Tendenzen von Ludwig u. Neeb (1959),
ßeß die Blattbeeinträchtigung den schädlichen Stickstoff in der Rübe im Durch-
chnitt aller Versuche maximal um 4 mg/100 g Rübenmarksteigerte, beruht wohl
im wesentlichen auf Unterschieden in der Art der Blattdiagnose und der
Intensität der Blattregeneration.

5. Einfluß der Entblätterung auf den Gehalt der Rüben
an löslicher Asche

Die Rüben der entblätterten Pflanzen enthielten in der größten Zahl aller
Fälle mehr lösliche Asche als die der nicht entblätterten (Tab. 5). Der Gehalt
am Asche wurde im Vergleich zu den Kontrollen 'ag im Durchschnitt aller Einzelbestim-
mungen um etwa 0,05 % in der gleichen Größenordnung, wie sie für vergleich-
reits bei der 1. Untersuchung einen erhöhten Zuckergehalt auf, der jedoch noch unter dem Wert der nicht entblätterten infizierten Probe lag. In diesem Falle war die Vergiftung des neugebildeten Blattes sehr schnell eingetreten, wie dies auch die entsprechenden Werte der spät entblätterten virusinfizierten Pflanzen der gleichen Versuchsreihe zeigen.

Tab. 2. Einfluß der Entblätterung auf den Zuckergehalt der Röben in % des Frischgewichtes.

<table>
<thead>
<tr>
<th>Virusinfektion</th>
<th>nicht infiziert</th>
<th>infiziert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entblätterung</td>
<td>nicht</td>
<td>früh</td>
</tr>
<tr>
<td>1955 München 3. Okt.</td>
<td>16,00</td>
<td>14,38</td>
</tr>
<tr>
<td>1956 München 2. Nov.</td>
<td>13,11</td>
<td>14,11</td>
</tr>
<tr>
<td>Worms 12. Okt.</td>
<td>16,71</td>
<td>14,32</td>
</tr>
<tr>
<td>1957 München 8. Okt.</td>
<td>16,55</td>
<td>13,73</td>
</tr>
<tr>
<td>Worms 4. Nov.</td>
<td>15,13</td>
<td>17,01</td>
</tr>
<tr>
<td>Mittelwerte aller Versuche</td>
<td>16,02</td>
<td>15,11</td>
</tr>
</tbody>
</table>

Der prozentuale Zuckergehalt der Wurzeln (Tab. 2) ist in sämtlichen Versuchen durch die Entblätterung erheblich gesunken worden, und zwar meist stärker als durch die künstliche Virusinfektion und durch die späte Entblätterung mehr als durch die frühe. Die stärkste Zuckergehaltsdepression haben die infizierten und entblätterten, besonders die spät entblätterten, erfahren. Weiterhin war der Einfluß der Entblätterung geringer 1958 und 1959 im Worms größt als in München, wahrhaftig eine Folge der negativen Korrelation zwischen Wachstumshemmung und Zuckergehaltsenkung (Steudel und Heiling 1954).

Als Folge der intensiven Reaktion des Zuckerhaushaltes auf den Blattverlust übersteigen die Einbußen an Zuckerertrag die an Rübenmasse noch bedeutsam. Auch in den Fällen, wo die späte Entblätterung der nicht infizierten Pflanzen den Rübenverlust nicht vermindert hatte (Worms 1956), ergeben sich durch die besonders starke Einengung des Zuckerhaushaltes, Zuckerertragserhöhung von etwa 10 %. Aus dem gleichen Grunde hat die späte Entblätterung der infizierten Pflanzen im Versuch München 1956, obwohl als die Rübenentwicklung weniger hemmte als die frühe, doch zu etwa gleichem Zuckerverlusten geführt. Die maßläufige Senkung des durch den Virusverfall sehr erneigten Zuckerhaushaltes der infizierten Röben durch die Entblätterungen hat, besonders unter ungünstigen Wachstumsbedingungen, Zuckerertragserhöhung von der Größenordnung totaler Milliarden bewirkt. So betrug der Zuckerertrag je Rübe der frühe ent-
blätterten infizierten Pflanzen in den Versuchen Münster (Schlußseraten) 1955: 18,8 g, 1956: 20,8 g und 1957: 69,8 g gegenüber 84,0, 65,8 und 145,0 g bei den viruzfreien Kontrollen und 50,6, 44,2 und 141,2 g bei den nicht entblätterten infizierten Pflanzen. Die Zuckerkonzentration der spät entblätterten infizierten Pflanzen sind mit 22,9, 32,1 und 77,1 g nicht viel besser.

Selbst bei der späten und relativ schwachen Virusinfektion des Versuchs Worms 1937, die den Zuckerertrag nur geringfügig von 139,8 g je Rübe bei den Kontrollen auf 140,8 g senkte, vermehrte die früh Entblätterung den Wert auf 79,0 g, die spät noch auf 85,8 g. Eine gegen Juli/August einlaufende Blattbeschädigung hat dennoch bei vergilbungskranken Pflanzen für die Zuckerernte schwerwiegende Auswirkungen.

Tab. 3: Einfluß der Entblätterung auf den Zuckergehalt des Epikotyls.

<table>
<thead>
<tr>
<th>Virusinfektion</th>
<th>nicht infiziert</th>
<th>infiziert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entblätterung</td>
<td>nicht früh spät</td>
<td>nicht früh spät</td>
</tr>
<tr>
<td>Münster 1956</td>
<td>11,64 9,91 9,00</td>
<td>10,68 8,16 7,90</td>
</tr>
<tr>
<td>Worms</td>
<td>12,42 9,69 9,00</td>
<td>9,30 8,17 7,28</td>
</tr>
<tr>
<td>Münster 1957</td>
<td>13,04 11,31 9,18</td>
<td>9,92 10,69 8,55</td>
</tr>
<tr>
<td>Worms</td>
<td>15,23 13,08 12,79</td>
<td>13,99 12,75 12,24</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>13,18 11,32 10,17</td>
<td>11,39 10,00 9,21</td>
</tr>
</tbody>
</table>

Im Durchschnitt aller Versuche haben frühe und späte Entblätterung den Rüben-Zuckergehalt nicht infizierter Pflanzen um 1,75 und 1,87%, den infizierten um 2,42 und 2,84% gesenkt. Für das Epikotyl lauten die entsprechenden Werte 2,14, 2,38 bzw. 3,37 und 3,35%. Das Epikotyl unterscheidet sich, wie auch von Schneider und Hoffmann-Walbreck (1935), Carminthe 1959 angegeben wird, in der Frühe Rübe auch im Gehalt an den zukundetecnologisch unerwünschten reduzierenden Zuckern. Ihre Menge war im Durchschnitt aller Bestimmungen im Epikotyl mit 0,735% das Frischgewichtes nicht nur absolut größer als in der reinen Rübe mit 0,515%, sondern besonders bei Bezug auf den Sacharosegehalt beider Organe, auf 15% Teil Sacharaose bei der Rübe 3,59 Teile reduzierender Zucker, im Epikotyl jedoch mit 7,21% von die doppelte Menge. Das Epikotyl ist also nicht nur zuckerärmer, sondern gleichzeitig zuücktechnisch unrentier. Die Entblätterung hat den Gehalt von Rübe und Epikotyl an reduzierenden Zuckern nicht eindeutig beeinflußt. Ihre Mittelwerte aus allen Bestimmungen lagen allerdings sowohl für die Rübe als auch für
4. Beeinflussung des N-Stoffwechsels

Trotz weitgehender Schwankungen der Analysendaten aus den Rinderbestimmungen, bilden sich Wachstums- und Standortunterschiede und den Symptomenzustand der Pflanzen bei der jeweiligen Untersuchung, läßt sich eine deutliche Auswirkung der Enthärtung auf den Stickstoff-Stoffwechsel erkennen (Abb. 3).

![Diagramm]

Abb. 3. Einnahme der Enthärtung auf den Stickstoff-Stoffwechsel der Rübenpflanzen.

a) An dem nach Enthärtungen neugebildeten Blatt der infizierten Pflanzen war die für Vergilbungsfalle typische Verminderung des Gehalts der Blatt-
 spreiten an nichtinfiziertem Stickstoff (IN) nicht oder nur in sehr abgeschwächter Form und dann meist nur bei der späteren Proben festzustellen. Die Gehalts-

werte lagern im Durchschnitt nicht viel niedriger, in Einzelfällen sogar höher als die Vergleichswerte der nicht entblätterten unverfütterten Pflanzen und lag deut-
lích über den Werten der infizierten nicht entblätterten Pflanzen.

b) Der Gehalt der Blattstiele an löslichem Stickstoff (LN) war bei allen infi-
zierten und nicht infizierten entblätterten Pflanzen erheblich größer als bei den nicht entblätterten. Bei den spät entblätterten Pflanzen lag er wesentlich höher als bei den früh entblätterten. Die Zunahme des LN in den Blattstieilen, die im Wesentlichen durch einen verstärkten N-Wanderung im Leitgewebe herbeigeführt wurde, ist eine der Ursachen für die Blatteinwicklung bei intensivem Neeanseng am stärksten und nimmt dann wieder ab. Der ebenfalls erhöhte Gehalt der Blatt-
stiefe an IN hängt wenigstens teilweise mit dem Jugendlichem Zustande der regenerierenden Blätter zusammen.

c) Im Gegensatz zu den Blattstieilen wissen die Röhen aller entblätterten Pro-
ben einen deutlich geringeren Gehalt an LN und IN auf. Die Unterschiede im LN-Gehalt lagen bei den früh entblätterten darin, dass bei den spät entblätterten. Der Abfall gegenüber den Vergleichenpflanzen mit vollem Blatt war bei infizierten und nicht infizierten etwa gleich hoch. Der LN-Gehalt der früh entblätterten virulenten Röhen lag in den meisten Einzelfällen und auch im Mittelwert aller Untersuchungen unter dem Wert der nicht entblätterten infizierten Pflanzen und sogar noch unter dem der nicht entblätterten nicht infi-
zierten, dagegen war der IN-Gehalt der Röhe durch die Entblätterung fast so stark herabgesetzt wie der an sich schon weit variierbare LN. Diese Beziehungen zwischen Entblätterung und Blattregeneration einerseits und dem N-Gehalt der Röhe andererseits legen die Vermutung eines kausal zusammengangs das auch in anderen Fällen (Schulze, Steudel, Heling 1954, a.a.) festgestellt und als Annahme gewerteten Mindergehalts vergilbungsanfälliger Röhen an lölslichem bzw. schädlichem N mit dem Blattanschwellen nahe.

b) Beim Epikutyl, das sich von den übrigen Röthenmit durch erheblich höhere Gehalte an beiden N-Fraktionen unterschied, waren die Veränderungen, im N-Gehalt durch die Entblätterung grundsätzlich gleich Art wie bei der ver-
ner Röhe. Die späte Entblätterung hat jedoch den LN-Gehalt nur bei den infi-
zierten Pflanzen, den IN-Gehalt bei beiden Gruppen deutlich gesenkt.

Tabelle 4. Einfluss der Entblätterung auf den schädlichen Stickstoff in Röhe und Epikutyl.

<table>
<thead>
<tr>
<th>Virusinfektion</th>
<th>nicht infiziert</th>
<th>infiziert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nicht früh</td>
<td>spät</td>
</tr>
<tr>
<td>Verr.Worma 1956 Röhe</td>
<td>37.9</td>
<td>31.0</td>
</tr>
<tr>
<td>Verr.Worma 1957 Röhe</td>
<td>36.7</td>
<td>33.3</td>
</tr>
<tr>
<td>Verr.Worma 1957 Epikutyl</td>
<td>72.3</td>
<td>59.7</td>
</tr>
</tbody>
</table>

Neben dem lölslichen und nichtlöslichen Stickstoff, dessen Untersuchung bei der hauptsächlich physiologischen Prüfung dieser Arbeit in erster Linie erforderlich war, wurde in den beiden um Worms durchgeführten Versuchen
9. The cut (leaf and root) infected of potato tuber is to be stored in the presence of a microbe at a higher temperature. The tubers stored in the presence of microbe at a higher temperature are more likely to develop a disease called potato blight. The disease is caused by a microbe that thrives in warm temperatures. The disease can be prevented by storing the tubers in a cool, dry place.

10. The summary of the previous experiments suggests that the disease can be prevented by storing the tubers in a cool, dry place. The summary also highlights the importance of maintaining a healthy root system to prevent the disease from spreading. The root system plays a crucial role in the overall health of the plant and is essential for the proper functioning of the tuber. The root system is also responsible for the absorption of nutrients and water, which are necessary for the proper growth and development of the plant.

Summary

The effects of leaf loss and leaf regeneration on the growth, yield, and nitrogen assimilation of sugar beet infected with virus yellows was studied in defoliation experiments outdoors. Removal of leaves from mid-July to the end of August reduced noticeably the yield of roots and sugar in virus infected plants and caused severe injury in plants only slightly infected with virus. Defoliation increased the effect of virus infection and reduced power of recovery. Defoliation lowered the sugar content of the roots. The roots of defoliated plants infected with virus contained less insoluble, soluble and noninsoluble nitrogen, and more soluble ash during the phase of leaf regeneration than the roots of non-defoliated, infected and virus-free plants. After defoliation, the regenerated but symptom-free leaves of virus infected plants did not show accumulation of carbohydrate or proteic processes. The epicuticle differs from the root proper in having a lower xerohemarose content and in possessing more reducing sugar, soluble, insoluble and noninsoluble nitrogen and soluble ash. Fodder beet infected with virus yellows reacts similarly but more strongly than sugar beet.

Literature

F. BURCKHARDT, Dipl.-Gärtn.

Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Hackfruchtkrankheiten und Nematodenforschung, Münster (Westf.).

Untersuchungen über eine viricose Vergilbung der Stoppelrüben

Isolierungs- und Übertragungsversuche

Krankheitsbild

Die ersten sichtbaren Symptome an künstlich mit Mynodes poviensii infizierten Stoppelrüben sind nach etwa 12 Tagen zu beobachten; es sind Adernauflämmungen an den jüngsten Blättern, eine verzögerte Entwicklung der jungen Blätter, die meisten eine asymmetrische Entwicklung der unteren Blattgrundteile aufweisen (Abb 1). Die Ränder der Blätter mittleren Alters beginnen sich aufzuhellen.

Abb. 1. Junge Stoppelrübenblätter, linke asymmetrische Entwicklung der unteren Blattgrundteile durch St. V., rechts Kontrolle.
und dann weinrot zu verfärbten; sie werden dabei starr, spröde und brüchig und schließlich nerkrotisch. Abb. 2 zeigt eine grüne Stoppelrübe, Abb. 3 eine Pflanze mit allen Stadien der Vergilbung; am oberen linken Blatt sind bereits die ersten Nekrosen sichtbar, die sich bei Frosteinbruch sehr verstärken. Das Symptombild zeigt demnach eine weitgehende Übereinstimmung mit der Vergilbungskrankheit der Beta-Rüben, verursacht durch das Beta-Virus 4.

Da bei der an Stoppelrüben auftretenden Viruse die intensive Gelbfärbung der Blätter das auffallendste äußere Merkmal der Krankheit darstellt, wird...

Übertragungsart der Virusse

In mehreren Versuchen wurden parallele Infektionen durch Blattnas- übertragung und Blattnasübertragung unter Zusatz von Carbenur durchgeführt. Obgleich der Prüfstand von den gleichen Pflanzen gewonnen wurde, auf denen die zur Übertragung benützten Blätter gesogen hatten, konnte bei der Ab- reibungen in keinem Falle eine eindeutige systemische Infektion erzielt wer- den; schwere Adernauflösungen, die an einem Teil der Pflanzen nach etwa 18 Tagen entstanden waren, verlor sich wieder, und bei der Beübung mit virusfreien Myodes persicae konnte mit diesen Läusen auf gezogenen Stoppel- rüben keine Infektion verursacht werden.

Zur Bestätigung, daß das untersuchte Virus zu den persistenten Viren gehört, wurden Myodes persicae nach 24stündigem Sagen auf kranken Stoppelrüben für 16-24 Stunden auf Petriplatten auf feuchtem Papierschleifpapier gehalten und dann zur Infektion auf gesunde Stoppelrüben übertragen. Das Ergebnis zeigt Tab. 1.

| Infizierte Pflanzen / Pflanzen mit Symptomen d. St. V. |
|-----------------|-----------------|
| Frasnach in Stunden | 6/6 | 6/6 | 6/6 | 6/6 | 6/6 |

Da Myodes persicae noch 24 Stunden nach Virusaufnahme das Virus zu übertragen vermochte, gehört der Erreger der an Stoppelrüben beobachteten Vergilbungserkranckheit zu den persistenten Viren.

Überträger der Stoppelrübenvergilbung

Wirtpflanzenkreis

Eigene Untersuchungen über den Wirtpflanzenkreis ergaben, daß aus der Familie der Cruciferen nicht nur die Steppelrübe infiziert wird. Aus Feldbeobachtungen konnten folgende Arten mit Vergilbungssymptomen isoliert werden:

- Brassica napus
 - napobrassica L. Kühn:- der Steckrübe
 - Brassica napus oleifera Met. Raps
- Brassica napus arvensis Th. Liborius
- Raphanus sativus oleifera DC. Ölreisbl.

Da das Symptombild der Steppelrübenvergilbung dem der Vergilbung der Beta-Rüben sehr ähnlich ist, wurden Kreuzinfektionen durchgeführt, obgleich frühere Übertragungsversuche des Beta-Virus 4 auf die Kohlrübe, die 1947 von Staudel ausgeführt wurden, negativ verlaufen waren 1). In der Außenstelle Eldorf 2) und im Institut in München wurden Steppelrüben und Beta-Rüben mit dem Steppelrübenvirus und dem Vergilbungsvirus der Beta-Rüben (Beta-Virus 4) durch M. p. infiziert. Die Beta-Rüben, infiziert mit dem Steppelrüben- viren, blieben in beiden Versuchen symptomlos, ebenso die Steppelrüben, infi-

1) Mündliche Mitteilung.

2) Prof. Dr. Thielemann und Herrn Reg.-Lt. Dr. Staudel danken ich für die Durchführung der Versuche in Eldorf.
ziert mit dem Beta-Virus 4. Die in Eidselod infizierten Rüben wurden im Institut für Virusseroologie der BBA Braunschweig auf das Beta-Virus 4 serolo-
gisch untersucht. Die mit Stoppelrübenvergiftung infizierten Beta-Rüben ergeben jedoch keine Reaktion mit dem Beta-Virusserum: auch waren bei diesen Pflanzen keine Wachstumshemmnungen festzustellen. Somit dürfte es sich beim Beta-
Virus 4 und dem Virus, das die Stoppelrübenvergiftung verursacht, um zwei verschiedene Viren handeln, die auf ihren Wirtpflanzen sehr ähnliche Symptome verursachen.

Verbreitung der Stoppelrübenvergiftung

In der Literatur wird für die „jonnisse du nozet“, mit der die im nordwest deutschen Raum gefundenen Stoppelrübenvergiftung identisch sein dürfte, als Verbreitungssphäre nur Belgien angegeben (Köhler-Klinkowski 1956 und Klinkowski 1958). Eigene Beobachtungen ergeben, daß ähnliche Er-
secheinungen, wie die der hier beschriebenen Virose, im ganzen nordwestdeut-
schen Raum, wenn auch in wechselnder Stärke, seit 1947 in jedem Jahr aufge-
treten waren.

Im Jahr 1957 trat die Virose in den Stoppelrübenbeständen stärker auf, der Befall beschränkte sich aber auf die ausnahmsweise früh angesetzten Stoppelrüben. Die Sommer-Gradation der Überträger war zwar in diesem Jahr stark, sie brach aber auf der Kohlrübe am 16. Juli auf der Beta-Rübe schon Ende Juni zusammen, die Herbst-Gradation war nur mäßig stark. Das folgende Jahr hatte nur eine sehr schwache Verbreitung von Läusen (das Bestandssungs-
maximum an Beta-Rüben betrug Ende Juli 0.5 m m je Pl.). Es konnten nur vereinzelt schwache Infektionen festgestellt werden. Das weiterverbreitete Auftreten der Virose im Jahre 1959 gab Veranlassung zu eingehender Untersuchung über die Verbreitung, über die an anderer Stelle berichtet wurde (Burchardt 1960).

Wirkung der Infektion auf das Wachstum

Der Einfluß der 1957 von Stoppelrüben isolierten Virose wurde in Gewächshausversuchen an Stoppelrüben und Kohlrüben mit den bisher an Cruciferen bekannten Virosen verglichen. In allen Versuchen konnte eine deutliche Be-
einträchtigung des Wachstums der Stoppelrübe durch die Infektion festgestellt

werden (Tab. 2, 3). Das Maß der Wachstumshemmung ist abhängig vom Alter der Pflanzen im Infektionszeitpunkt und von der Dauer der Kultur der infi-
zierten Pflanzen. 4 Wochen alte Stoppelrüben, die mit M. p. infiziert worden, zeigten 8 Wochen nach der Infektion eine Hemmung des Rübenwuchses von 93 % und des Blattwuchses von 84 %, dementprechend eine Gesamtwachstum-
hemmung von 74.8 % (Tab. 4). Bei gleichem Infektsalter und Krankheitszeit nach 1 Monaten waren die Schädenungen dagegen nur 28 % (Tab. 5). Bei dem Versuch ist zu berücksichtigen, daß die Pflanzen während der Wintermonate fast symptomlos waren. Weder die Pflanzen erst im Alter von 6 Wochen infi-
ziert (Tab. 5), zeigte nach 4 Wochen nach der Infektion bei der Rübe eine Minderung von 43 %. Der entscheidende Einfluß des Infektionszeitpunktes auf die Schadenentwicklung ist deutlich abhängig in den bei Eidselod durchgeführten Infektionsversuchen; bei den älteren Pflanzen trat Wachstumshemmung von 32 %, bei den jüngeren von 62 % ein.
Tab. 2. Einfluß von Gewächshausinfektionen mit verschiedenen Cruica-viren auf das Wachstum von Stoppelrüben (SR) und Kohlrüben (KR).

<table>
<thead>
<tr>
<th>Virus Infektionsart</th>
<th>Kontrolle</th>
<th>Stl. V</th>
<th>KM</th>
<th>TYMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erntegewicht g/Pfl.</td>
<td>rel.</td>
<td>rel.</td>
<td>rel.</td>
<td>rel.</td>
</tr>
<tr>
<td>Blatt</td>
<td>29.2</td>
<td>30.8</td>
<td>103.7</td>
<td>119.9</td>
</tr>
<tr>
<td>Rübe</td>
<td>17.8</td>
<td>36.0</td>
<td>96.8</td>
<td>108.0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>104.1</td>
<td>36.0</td>
<td>103.5</td>
<td>117.6</td>
</tr>
<tr>
<td>Stl. V = Stopplrübenverdünnung</td>
<td>Ausseit 10.2.1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KM = Kohlrüben</td>
<td>Infektion 10.4.1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYMV = karmy yellow mosaic</td>
<td>Ernte 15.9.1958</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3. Vergleichende Infektion durch Myzodes persicae und Pseudoalsaabrüpfung.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g rel.</td>
<td>g rel.</td>
</tr>
<tr>
<td>Blatt/Pfl.</td>
<td>117.3</td>
<td>83.0</td>
</tr>
<tr>
<td>Rübe/Pfl.</td>
<td>99.0</td>
<td>74.2</td>
</tr>
<tr>
<td>Σ- Ernte</td>
<td>103.0</td>
<td>72.4</td>
</tr>
</tbody>
</table>

Im Freiland ist die Wachstumsbeschleunigung nicht geringer als im Gewächshaus. Spätestens bei allen Frühländpflanzen mit starken und mit erheblichen und Mündungen an Rübenmassen von 30,4 %. Dieselben Schäden sind wohl die Maximalwerte anzunehmen, die in normalen Földbeständen selten bei schwächerer Infektion kaum erreicht werden dürften. Die Zahlen zeigen aber, daß durch den Befall mit der Stopplrübenverdünnung erhebliche Ertragsausfälle erwartet werden können. Die Ausfälle liegen in der gleichen Größenordnung wie die, die durch das Kohlmosaik verursacht werden.

Tab. 4. Einfluß der Infektion auf den Ertrag der Stoppelrübe.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blatt g/Pfl.</td>
<td>10.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Rübe g/Pfl.</td>
<td>17.75</td>
<td>18.0</td>
</tr>
<tr>
<td>Σ g/Pfl.</td>
<td>60.0</td>
<td>17.3 %</td>
</tr>
</tbody>
</table>

Zur Klarung der Empfindlichkeit der anfälligen Brotro-Arten wurden im Gewächshaus Parallelbeobachtungen durchgeführt. Bei Infektion sehr junger Pflanzen zeigten Kohl- und Stoppelrübe unangefert gleich starke Schäden. Unter weniger schweren Befallsbedingungen, wie bei der Infektion kleiner Pflanzen vor-
3. Das Auftreten der beiden Blattlausarten *Dorais fabae* (Scop.) und *Myzodes perinae* (Smit.)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Paralle</th>
<th>Mittlere Gesamtzahl je Rinde von Dorais fabae</th>
<th>Myzodes perinae</th>
<th>gefunden am</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>Kontrolle</td>
<td>25,4</td>
<td>1,7</td>
<td>D. l.</td>
</tr>
<tr>
<td></td>
<td>Diystox 4%</td>
<td>66,4</td>
<td>0,6</td>
<td>18. VII</td>
</tr>
<tr>
<td></td>
<td>Diystox 6%</td>
<td>12,5</td>
<td>0,6</td>
<td>18. VII</td>
</tr>
<tr>
<td></td>
<td>Metasystox 1 X</td>
<td>12,7</td>
<td>0,6</td>
<td>18. VII</td>
</tr>
<tr>
<td>1959</td>
<td>Kontrolle</td>
<td>304</td>
<td>219</td>
<td>3. VII</td>
</tr>
<tr>
<td></td>
<td>Diystox 4%</td>
<td>725</td>
<td>1099</td>
<td>26. VI</td>
</tr>
<tr>
<td></td>
<td>Diystox 5%</td>
<td>720</td>
<td>1008</td>
<td>26. VI</td>
</tr>
<tr>
<td></td>
<td>Diystox 6%</td>
<td>384</td>
<td>200</td>
<td>26. VI</td>
</tr>
<tr>
<td></td>
<td>Metasystox 1 X</td>
<td>626</td>
<td>250</td>
<td>26. VI</td>
</tr>
<tr>
<td></td>
<td>Metasystox 2 X</td>
<td>333</td>
<td>126</td>
<td>26. VI</td>
</tr>
<tr>
<td></td>
<td>Metasystox 3 X</td>
<td>44</td>
<td>21</td>
<td>26. VI</td>
</tr>
</tbody>
</table>

Trotz der sehr niedrigen Maxima des Jahres 1958 war der Einfluss des Präparates — mit Ausnahme auf *D. f.* bei 4% *Diystox* — noch deutlich sichtbar, wenn auch die Stärke der Gabe nicht mehr zum Ausdruck kam und die Unterschiede nicht signifikant waren, was allerdings angestrebt der normalerweise sehr hohen Streuung des Befalls zu erwarten war. Dagegen wurde bei dem frühen
und sehr starkes Befall des Jahres 1939 für beide Arten die strengere Bestrahlung zweckmäßig und Menge des der Bau zugesagten Phosphates ebenso deutlich wie bei der Bilbenfliege. So hat z. B. die Gabe von 6 %a Division zur Säure die Maxima der Populationen beider Arten fast ebenso stark reduziert wie eine zweimalige Behandlung mit Metaoxyx 500 sail/ha. Selbstverständlich kann man auch dieses Ergebnis nicht ohne weiteres verallgemeinern, weil die früher genannte Relation der Vorsorgemaßstäbe, die zur Vermeidung der flüchtigen Arten in einigen Anlagen bewährt und anhand der vorliegenden Versuche als Grundlage für die Dauerbehandlung angesehen werden kann.
4. Das Auftreten der Vergiftungskrankheit

Entsprechend den günstigsten Wachstumsbedingungen und dem schwachen Auftreten der Vektoren wurde das Versuchsgebiet im Jahre 1936 nur wenig infiziert. Erst im Juli wurden vereinzelt kranke Pflanzen gefunden und ihre Zahl erhöhte sich bis zur Ernte des Versuchs nur ganz allmählich. Eine am 1.10. vorgenommene ausgedehnte Besichtung ergab für den durchschnittlichen Vergiftungsbefall folgende Werte:

<table>
<thead>
<tr>
<th>Kontrolle:</th>
<th>6,3 % = 100 (relativ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>einwe mit Metasystox</td>
<td>1,8 % = 24</td>
</tr>
<tr>
<td>4 % Disystox</td>
<td>4,9 % = 78</td>
</tr>
<tr>
<td>6 % Disystox</td>
<td>3,7 % = 56</td>
</tr>
</tbody>
</table>

D. Ergebnisse der Versuchsreihe

Die Ernte des Versuches erfolgte in üblicher Weise. Im Jahre 1938 wurden je Versuchsboden 5 (Kontrolle) je 100 Flaschen mit etwa 50 Röcken, im Jahre 1939 4 mit etwa 100 Röcken geerntet und untersucht. Die Röhgewichte und die zueinanderliegenden Daten wurden vom Laboratorium des Institutes für Zuckerrohrforschung, Leipzig, erhoben, wofür Herrn Prof. Dr. Lüdecke herzlich gedankt sei. Aus den mitgeteilten Ergebnissen (Tab. 3) lassen sich folgende Schlüsse ziehen: Unter den Bedingungen des Jahres 1938 (gute Wachstumsbefindungen, keine Verluste durch Schädlinge) sind Schäden durch das Präparat nicht aufgetreten; die geringen Unterschiede lagen im Rahmen der Fehlergrenzen. Im Jahre 1939 dagegen wurden bei allgemein viel niedrigeren Erträgen (Trockenheit) beachtliche Differenzen festgestellt. Divyston allein hat die Erträge etwas günstiger beeinflußt als die erste Metazinespritzung erreichte.

<table>
<thead>
<tr>
<th>Tab. 8. Diystonversuche Gerberhahn 1938/39</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>1938</td>
</tr>
<tr>
<td>Kontrolle</td>
</tr>
<tr>
<td>Diyston 4/4</td>
</tr>
<tr>
<td>Diyston 6/4</td>
</tr>
<tr>
<td>Metazines 1 X</td>
</tr>
<tr>
<td>1939</td>
</tr>
<tr>
<td>Kontrolle</td>
</tr>
<tr>
<td>Kontrolle + 2</td>
</tr>
<tr>
<td>Kontrolle + 3</td>
</tr>
<tr>
<td>Metazines 1 X</td>
</tr>
<tr>
<td>Metazines 2 X</td>
</tr>
<tr>
<td>Metazines 3 X</td>
</tr>
<tr>
<td>Divyston 4/4</td>
</tr>
<tr>
<td>Divyston 4/4 + 2</td>
</tr>
<tr>
<td>Divyston 4/4 + 3</td>
</tr>
<tr>
<td>Divyston 5/4</td>
</tr>
<tr>
<td>Divyston 5/4 + 2</td>
</tr>
<tr>
<td>Divyston 5/4 + 3</td>
</tr>
<tr>
<td>Divyston 6/4</td>
</tr>
<tr>
<td>Divyston 6/4 + 2</td>
</tr>
<tr>
<td>Divyston 6/4 + 3</td>
</tr>
</tbody>
</table>

Erklärung der Symbole:
+ 2/3 = Saatgutbehandlung mit folgender 2. bzw. 2. und 3. Metazinespritzung.
liegen, traten an der Kohlrübe, trotzdem es zu deutlicher Ausprägung der Symptome kam, nur geringe Schäden ein, die Stoppelrübe hingegen zeigte Schäden um 23 %, die geringere Empfindlichkeit der Kohlrübe konnte auch in anderen Versuchen beobachtet werden.

Wirkung der Infektion auf den Stoffwechsel

Tab. 5. Analysewerte gesunder und infizierter Freiland-Stoppelrüben.

<table>
<thead>
<tr>
<th>% Trocken-</th>
<th>Spielte</th>
<th>Stiel</th>
<th>Rübe</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>inf.</td>
<td>normal</td>
<td>inf.</td>
</tr>
<tr>
<td>% Trocken-</td>
<td>17,26</td>
<td>16,13</td>
<td>8,04</td>
</tr>
<tr>
<td>substanz</td>
<td>7,61</td>
<td>7,02</td>
<td>Z mg/g F</td>
</tr>
<tr>
<td>30,34</td>
<td>23,86</td>
<td>EN mg/g F</td>
<td>1,54</td>
</tr>
<tr>
<td>1,151</td>
<td>1,350</td>
<td>EN mg/g F</td>
<td>0,49</td>
</tr>
<tr>
<td>1,003</td>
<td>1,350</td>
<td>Protein mg/g F</td>
<td>35,775</td>
</tr>
<tr>
<td>3,355</td>
<td>7,725</td>
<td>Z mg/g F = Zuckern mg/g Frischgewicht F.</td>
<td>EN mg/g F = Eiweiß-Stickstoff mg/g Frischgewicht</td>
</tr>
</tbody>
</table>

Tab. 6. Analysewerte gesunder und infizierter Gewächshaus-Stoppelrüben.

<table>
<thead>
<tr>
<th>% Trocken-</th>
<th>Spielte</th>
<th>Stiel</th>
<th>Rübe</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>inf.</td>
<td>normal</td>
<td>inf.</td>
</tr>
<tr>
<td>% Trocken-</td>
<td>12,07</td>
<td>12,73</td>
<td>7,49</td>
</tr>
<tr>
<td>substanz</td>
<td>10,76</td>
<td>11,70</td>
<td>Z mg/g F</td>
</tr>
<tr>
<td>59,62</td>
<td>49,37</td>
<td>EN mg/g F</td>
<td>0,594</td>
</tr>
<tr>
<td>0,231</td>
<td>0,518</td>
<td>EN mg/g F</td>
<td>2,421</td>
</tr>
<tr>
<td>0,730</td>
<td>1,652</td>
<td>Anmerkung: Infektion 28.8.57</td>
<td>Ernte 21.10.57</td>
</tr>
</tbody>
</table>

Tab. 7. Einfluß der Stepprübenvergiftung auf den osmotischen Wert des Blattspendels.

<table>
<thead>
<tr>
<th>Entnahme am 2.9.38</th>
<th>Blatt alt</th>
<th>Blatt mittel</th>
<th>Blatt jung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entnahme 10 Uhr</td>
<td>11,90</td>
<td>16,60</td>
<td>9,635</td>
</tr>
<tr>
<td>Entnahme 16 Uhr</td>
<td>15,28</td>
<td>16,96</td>
<td>11,32</td>
</tr>
<tr>
<td>Stepprüben Teubner Ausaat 1.7.1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letzter Niederschlag am 26.8. (6,9 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatur Minimum am Nachmittag 24°C (2.9.58)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperaturstand 8 Uhr 12,3°C 16 Uhr 23°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 8. Einfluß der Stoppelrübenvergiftung auf einige Wuchswesenschaften der Gesamturin (Blut und Rübe)

<table>
<thead>
<tr>
<th></th>
<th>normal</th>
<th>infiziert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreite in % der Σ-Ernte</td>
<td>12,3</td>
<td>16,8</td>
</tr>
<tr>
<td>Stiel in % der Σ-Ernte</td>
<td>24,3</td>
<td>20,8</td>
</tr>
<tr>
<td>Rübe in % der Σ-Ernte</td>
<td>63,5</td>
<td>56,8</td>
</tr>
<tr>
<td>Stielanteil der Blattreste</td>
<td>60,8</td>
<td>64,8</td>
</tr>
<tr>
<td>Stiel : Spreite</td>
<td>1,99</td>
<td>1,01</td>
</tr>
<tr>
<td>Trockenbestand %</td>
<td>6,58</td>
<td>7,33</td>
</tr>
<tr>
<td>Σ-Zucker mg/g Frischgewicht</td>
<td>27,80</td>
<td>33,33</td>
</tr>
<tr>
<td>E-Stickstoff mg/g Frischgewicht</td>
<td>1,622</td>
<td>1,948</td>
</tr>
<tr>
<td>Σ-Stickstoff mg/g Frischgewicht</td>
<td>2,728</td>
<td>3,589</td>
</tr>
<tr>
<td>Protein %</td>
<td>1,029</td>
<td>1,117</td>
</tr>
<tr>
<td>Rohprotein %</td>
<td>1,705</td>
<td>2,190</td>
</tr>
</tbody>
</table>

Diskussion der Ergebnisse

Akhriptionen vertreßchten in meinen Verenhen und in den belgischen Unter-
suchungen (R o l a n d 1955), keine systemischen Infektionen. Das Infektions-
bild ist bei dem TYZV und der Stoppehöververgilbung ganz verschieden, wie
Abb. 4 zeigt.

![Abb. 4. Stoppehöverhöhen von künstlich
infizierten Gewächshauspflanzen,
links ein Blatt mit TYZV, rechts zwei mit
Stoppehöververgilbung.]

Das TYZV verursacht langsam vergilbende Flecken mit verschwommenen
Konturen, die Verfärbungen haben niemals das leuchtende Gelb der mit StV
infizierten Pflanzen, es fehlt auch der zote Rand an den Blättern mittleren Alters

![Abb. 5. Stoppehöte mit Kramboxalk und Stoppehöververgilbung.]

Das TYZV verursacht langsam vergilbende Flecken mit verschwommenen
Konturen, die Verfärbungen haben niemals das leuchtende Gelb der mit StV
infizierten Pflanzen, es fehlt auch der zote Rand an den Blättern mittleren Alters

Zusammenfassung

1. Im Jahre 1957 konnte von kranken Stoppelrüben ein Vergilben der Blätter durch Mycosis peronora auf grünene Pflanzen übertragen werden. Da die Virus-Infektion die Bezeichnung „Vergilbungskrankheit der Stoppelrübe“ vorgeschlagen.
2. Das Virus verhältnisäßig in den Vektoren wie ein persistierendes Virus.
3. Als Vektoren konnten bisher bestimmt werden Mycosis peronora Solt. und Brevicoryne brassicae L.
4. Durch Perdausinfektionen wurden keine systemischen Infektionen erzielt.
5. Infektionsversuche verliehen positiv bei Stoppelrübe, Kohlrübe, Raps, Liliar, Ölstig, Marktansammlungs- und Bienenkohlm.

1) Das Institut des TYMV, das ich in meinen Gewächshauseinsendungen benutze, stammt aus Rothfaden. Ich erhielt es 1957 aus dem Institut für Pflanzenkrankheiten der Universität Bonn durch Herrn Dr. Murtz.

Summary

Turnips grown on a trial around in Münster showed symptoms of leaf yellowing due to a virus disease which was successfully transmitted by Myodes persicus Sout in healthy plants in 1957. The virus disease is the same as that described by Vanderwalle and Roland in Belgium as “jamine du navet”. The recommended German name is “Vergilbungskrankheit der Steppelrübe”. The virus is persistent. It does not cause systemic infections. Some attempts are made to transmit it by sap inoculation. Known vectors are Myodes persicus and Brevicoryne brassicae. Plants infected are: turnip, swede, colorean, oilradish, marrow stem kale and cauliflower. In glasshouse experiments the degree of injury caused to turnips was similar to that caused by crucifer mosaic. Turnip proved considerably more susceptible than swede. Infection causes reduction in root carbohydrate and accumulation of carbohydrate in the leaf together with proteolytic changes there.

Literatur

B e r c h h a r d t, F., Untersuchungen über das Kreuzostmosalk an Kohlrübe, Steppelrübe und Markantensmakohl. Phytopath. Z. 33, 1958, 203–221.

H e i l i n g, A., S t e n d e l, W., u. C h i e l o m a n n, K., Zur Frage der gegen seitigen Beziehungen zweier epidemisch auftreder Krankheiten in der Raab-Rübe. Phytopath. Z. 24, 1959, 461–468.

K l i n k o w s k i, M., Pfanzliche Virologie Bd. II. Akademie-Verlag, Berlin 1958.

R o l a n d, G., Résultats d'une enquête sur la jaunisse du navet (Brassicae virus 5). Parasitica, Gembloux, 9, 1953, 34–58.

V a n d e r w a l l e, R., La jaunisse des navets. Parasitica, Gembloux, 4, 1950, 111–112.

V a n d e r w a l l e, R. u. R o l a n d, G., Contribution à l'étude de la jaunisse du navet. Parasitica, Gembloux, 7, 1953, 14–15.

W a l t e r, H., Die Hydratation der Pflanze. Jena 1931.
Fortgesetzte Feldversuche zur inneren Therapie der Beta-Rüben mittels systemischer Saatschutzpräparate

A. Einleitung

in dieser klaren Weise in den anderen Gebieten nicht beobachtet werden konnten.

B. Anlage und Vorgeschichte der Versuche

Versuchsansteller: J. Fei ter, Gorderbahn über Erfurter/Rhd.\(^1\).

<table>
<thead>
<tr>
<th>Vorbehandlung</th>
<th>1958</th>
<th>1959</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pläne Rücksichtnahme</td>
<td>Frühjahr</td>
<td>Frühjahr</td>
</tr>
<tr>
<td>Mineralstoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/ha</td>
<td>188 kg</td>
<td>188 kg</td>
</tr>
<tr>
<td>P(2)O(5)/ha</td>
<td>169 kg</td>
<td>169 kg</td>
</tr>
<tr>
<td>K(2)O/ha</td>
<td>320 kg</td>
<td>229 kg</td>
</tr>
<tr>
<td>Stellung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausstattung</td>
<td>11. 4.</td>
<td></td>
</tr>
<tr>
<td>Sorten</td>
<td>Dünner „N“</td>
<td></td>
</tr>
<tr>
<td>Spätzeitpunkt</td>
<td>30. 6.</td>
<td></td>
</tr>
<tr>
<td>Maturations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versuchsbericht 17. 10.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Im Jahre 1958 wurden folgende Versuchsglieder miteinander verglichen:

1. unbehandelte Kontrolle,
2. Diyanon 4 % des Saatgutgewichts,
3. Diyanon 6 % des Saatgutgewichts,

Mutaaxon wurde so spät angebracht, weil in diesem Jahr erst Ende Juni der Dünndünstentropfen auf Pflanzen sich der Zahl von 1 M./p. (Mycodes persicae) näherte. Unter Berücksichtigung praktischer Belange wäre die Behandlung nicht nötig gewesen; sie erfolgte lediglich aus grundsätzlichen Erwägungen.

\(^1\) Herr J. Feiter sei für sein Interesse und seine stetsfreie Hilfe bei den Versuchen herzlich gedankt.
Im Jahre 1959 war infolge des sehr frühen und starken Schädlingsbefalls die Zahl der Vorschaubegleiter erheblich größer:

1. unbehandelte Kontrolle
2. Metyxoton 800 cm/ha gespritzt am 1. 6.
3. Metyxoton 800 cm/ha gespritzt am 1. 6. und 16. 6.
4. Metyxoton 800 cm/ha gespritzt am 13. 6.
5. Metyxoton 800 cm/ha gespritzt am 15. 6. und 1. 7.
6. Metyxoton 800 cm/ha gespritzt am 15. 6., 1. 7. und 16. 6.
7. Dysylon 4\%/.
8. Dysylon 4\%/ + Metasystox 800 cm/ha gespritzt am 1. 6.
10. Dysylon 5\%.
11. Dysylon 5\% + Metasystox 800 cm/ha gespritzt am 1. 6.
12. Dysylon 5\% + Metasystox 800 cm/ha gespritzt am 1. 6. und 16. 6.
13. Dysylon 6\%.
14. Dysylon 6\% + Metasystox 800 cm/ha gespritzt am 1. 6.
15. Dysylon 6\% + Metasystox 800 cm/ha gespritzt am 1. 6. und 16. 6.

C. Beobachtungen während der Vegetationsperiode

1. Aufbau und Frühenwicklung der Pflanzen in Abhängigkeit von der Saatgutbehandlung

Wie schon im Jahre 1957 beobachtet, liefern die Parzellen mit behandeltem Saatgut langsam auf als die Kontrollen und konnten dementsprechend auch erst etwas später versehentlich. Um die Differenzen genauer zu erfassen, wurde vor dem Vereinzeln mehrfach die Zahl der gekeimten Pflanzen ausglichen und das mittlere Plangewicht bestimmt (Tab. 1 u. 2).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Kontrolle abs. rel.</th>
<th>Dysylon 4% abs. rel.</th>
<th>Dysylon 5% abs. rel.</th>
<th>Dysylon 6% abs. rel.</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. V.</td>
<td>91</td>
<td>100</td>
<td>67</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>13. V.</td>
<td>89</td>
<td>100</td>
<td>74</td>
<td>83</td>
<td>73</td>
</tr>
<tr>
<td>17. X.</td>
<td>82</td>
<td>100</td>
<td>83</td>
<td>103</td>
<td>73</td>
</tr>
</tbody>
</table>

| 1959 |
29. IV	67,4	100	23,6	38	38,1	91	16,4	26	Zahl der Pflanzen im Mittel je Probeerogung
12. V.	39,8	100	22,7	57	27,3	69	19,3	48	
23. X.	110,0	100	108,0	96	100,0	96	102,0	93	
Im Jahre 1958 war der Rückstand der Diystontarzellen absolut und auch relativ von Anfang an nur gering, und die beiden Versuchsgrößen, 4 % und 8 %, unterschieden sich kaum voneinander. Im Jahre 1959 waren die Differenzen erheblich größer: besonders langsam lief das Versuchsdiät 6 % rel., dessen schützender Einfluß zeitweise zu einer Überhitzung des gesamten Pflanzensystems führende Mengen von 9 % rel. und 12 % rel. ab. Diese Ergebnisse sind jedoch für den praktischen Betrieb von Bedeutung, da sie zeigen, daß die Pflanzen mit 8 % rel. ein günstigeres Verhältnis von 10 Röhren bei der Ernte in g haben.

Tabelle 2. Diyston-Versuche Göttingen 1958/59.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Kontrolle</th>
<th>Diyston 0%</th>
<th>Diyston 4%</th>
<th>Diyston 8%</th>
<th>Diyston 12%</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abs.</td>
<td>rel.</td>
<td>abs.</td>
<td>rel.</td>
<td>abs.</td>
<td>rel.</td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. V.</td>
<td>2,3</td>
<td>100</td>
<td>2,3</td>
<td>91</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15. V.</td>
<td>2,6</td>
<td>100</td>
<td>18,3</td>
<td>74</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. VI.</td>
<td>90,6</td>
<td>100</td>
<td>80,1</td>
<td>90</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17. X.</td>
<td>7,600,0</td>
<td>100</td>
<td>7,700,0</td>
<td>101</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. IV.</td>
<td>0,53</td>
<td>100</td>
<td>0,30</td>
<td>58</td>
<td>0,43</td>
<td>83</td>
</tr>
<tr>
<td>12. V.</td>
<td>3,60</td>
<td>100</td>
<td>6,10</td>
<td>109</td>
<td>2,20</td>
<td>42</td>
</tr>
<tr>
<td>23. X.</td>
<td>4,220,00</td>
<td>100</td>
<td>4,400,00</td>
<td>116</td>
<td>4,870,00</td>
<td>116</td>
</tr>
</tbody>
</table>

raum der Einzelpflanzen, andererseits mit der Ausschaltung eines großen Teils der Schädlinge zu erklären.

2. Das Auftreten der Rübenfliege (Psylliodes hyoscyami)

![Graphik]

Die Schäden wurden daher nach einem einfachen Schema ermittelt, dem Zahl und Größe der Pflanzen zugrunde gelegt worden war:

0 = kein Befall,
1 = einzelne bis zahlreiche fadenförmige Ganglien unterschiedlicher Länge,
2 = Ganglien mit schon größerem Durchmesser,
3 = Befall deutlich sichtbar; einzelnes Blatt bereits in großen Teilen ausgefressen,
4 = mehrere Blätter stark oder ganz ausgefressen und zum Teil vertrocknet,
5 = die meisten größeren Blätter ausgefressen oder vertrocknet.

Die Werte zahlreicher Einzelpflanzen wurden gemittelt. Die Ergebnisse lassen den Einfluß der Dyatove auf den Früß der Maisen klar erkennen (Tab. 5).
Tab. 3. Dicyostel-Versuche Gerdrube 1956/59

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Tag der Kontrolle</th>
<th>Jellene Pflanzen in % der kontrollierten Pflanze</th>
<th>Dicystelette Symptome der befallenen Pflanzen</th>
<th>Pflanze alle untersuchten Pflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kon-</td>
<td>4%</td>
<td>8%</td>
<td>16%</td>
</tr>
<tr>
<td>1958</td>
<td>16. VI</td>
<td>86</td>
<td>62</td>
<td>16</td>
</tr>
<tr>
<td>1959</td>
<td>21. VI</td>
<td>100</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>29. VI</td>
<td>100</td>
<td>73</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>4. VI</td>
<td>89</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>12. VI</td>
<td>91</td>
<td>83</td>
<td>64</td>
</tr>
</tbody>
</table>

Im Jahre 1958 wurden derartige Untersuchungen nirgendwo - zur Zeit des stärksten Frisches - durchgeführt und brauchten damals nicht wiederholt zu wer-
den, weil sich später die Verhältnisse infolge der etwaigen Einbahn bis zum Auftreten der 2. Fliegengeneration nicht mehr ändern und die Schäden unerheblich blieben. Der wesentlich früher einsetzende Befall des Jahres 1959 führte dagegen zu empfindlichen Blattverlusten bei voller Verwendung des Be-
standes, die sich niedrig auf das Wachstum der Pflanzen auswirken haben. Die Stoffwechsel der dem Stamm beigefügten Präparate nur ließ sich in beiden Jahren an der Dauer des Bekämpfungserfolges sowohl nach dem primären Befall als auch an der Fruchtarbeit nachweisen. Alle Parzellen mit Dicyostel waren nämlich zu keiner Zeit 100%ig befallen; in der langsamen Zunahme wirkten sich die höheren Gaben deutlich verzögernd aus. Die Hauptstämme entstanden in der dritten Hälfte, als die Pflanzen noch wenig entwickelt waren; der allmähliche Rückgang der Symptome spiegelt zwar auch das Überwachsen des Schadens durch die Neuanlagen junger Blätter wieder, da wird dem den Tatsachen insofern gerecht, als die Empfindlichkeit der Pflanzen mit fortlaufender Entwicklung entsprechend abnimmt. In allen behandelten Parzellen nahm dagegen die Symptome für die Pflanzen im Laufe der Tiefallsperre zeitig zu, woraus hervorgeht, daß auch in diesen Pflanzen infolge Abnahme der Wirt-
stoffkonzentration in den Blättern ein ständig größter werdender Teil der Larven nicht mehr unmittelbar nach dem Einleben auf das Blatt zugrunde ging, son-
dern einen mehr oder weniger großen Teil der Entwicklung vollenden konnte. Die Ergebnisse des Jahres 1957 konnten somit bestätigt werden. Sehr deutlich zeigt die Werte für die Symptome an allen untersuchten Pflanzen ein-
schließlich der befallenen, daß die tatsächlich trotz der Behandlung entstan-
denen Schäden in der Praxis wohl vernachlässigt werden können, da sie - ent-
sprechend stetigem Aufwandsrückgang abnehmend - im Mai die Durchschnittszahl von 1,0 praktisch nicht erreichten und auch im Juni immer unter 2,0 blieben.

Die Frage, ob unter den klimatischen Bedingungen des Rheinlandes die Rinden von Populus Nigrae als insofern systemische Schadensentwicklung in praktisch ansteigender Form bekämpft werden kann, ist demnach eine Sauber der Relation zwischen Saubere und Entwicklungsgeschwindigkeit der Pflanzen.
jedoch nicht das Ergebnis der zweimaligen Behandlung. Alle Versuchspflanzen wurden durch die zweite und auch die dritte Spritzung noch sehr günstig beeinflußt; geänderte Unterzüchtung zwischen den einzelnen Dissytoarten konnten jedoch nicht ermittelt werden, obwohl sich eine gewisse Tendenz abzeichnete. Sehr deutlich wird auch der Wert der ersten Behandlung am 16. 5. Unter den Versuchsbedingungen hat demnach das Dissyton die erste Behandlung mehr als ersetzt, doch waren weitere Maßnahmen unbedingt erforderlich, um die möglichen Schäden zu mindern. Da ein Ergebnis, welches durchaus den Erfahrungen früher Belaßjahre entspricht, selbstverständlich kommende Diese Befunde nicht ohne weiteres verallgemeinert werden, weil die Verhältnisse (sehr hohe Zuckergehalte, hohe Schadböden, starker Übertrag der Schädlinge) nicht überall in gleicher Weise vorhanden waren und die Annahme verhältnismäßig spät erfolgte, was die allgemeine Empfindlichkeit der Pflanzen entsprechend erhöhte. Das günstige Ergebnis wäre ganz überwiegend eine Folge höherer Befallsziffern, während Zundergehalt und Blatttrümmere sich gegenüber der Kontrolle nur unwesentlich änderten. Im allgemeinen konnten demnach die bereits verlagerten Erwartungen bestätigt werden.

Ein großer Teil der bei den Rübenheringen gefundenen Differenzen zwischen den einzelnen Versuchspflanzen wurde bereits statistisch verzeichnet und mit Signifikanz überprüft. Den Zahlen ist zu entnehmen, daß die von vier verschiedenen Wiederholungen die Gesamtheit der Ergebnisse wenig zu wünschen übrig läßt. Die Sicherungswerte wurden, wie bereits früher bemerkt (Bla r en und Th i e r m a n n 1938), angeführt. Da wir nach Abblüte des Versuchsjahres 1939 über drohende Erfahrungen mit 6% Dissyton zur Saat ohne weitere Schutzmaßnahmen im gleichen Betrieb verfügen, haben absichtlich mehr die rechnerischen Mittelwerte der Jahre 1937 bis 1939 für dieses Versuchsgeld mitgeteilt:

<table>
<thead>
<tr>
<th>Different</th>
<th>Kontrolle</th>
<th>6% Dissyton</th>
<th>absolut</th>
<th>relativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rüben d/ha</td>
<td>391,4</td>
<td>416,4</td>
<td>25,0</td>
<td>107</td>
</tr>
<tr>
<td>Zucker geh.</td>
<td>15,8</td>
<td>15,9</td>
<td>+ 0,1</td>
<td>101</td>
</tr>
<tr>
<td>Zucker d/ha</td>
<td>61,9</td>
<td>60,4</td>
<td>- 1,5</td>
<td>107</td>
</tr>
<tr>
<td>Brot d/ha</td>
<td>577,0</td>
<td>542,0</td>
<td>- 35,0</td>
<td>94</td>
</tr>
<tr>
<td>Schadl. N</td>
<td>41,3</td>
<td>42,8</td>
<td>+ 1,5</td>
<td>102</td>
</tr>
<tr>
<td>Asche %</td>
<td>0,62</td>
<td>0,66</td>
<td>- 0,2</td>
<td>97</td>
</tr>
</tbody>
</table>

Im Durchschnitt erzielen wir somit bei den zwischen dem 3. 4. und 15. 4. gedelbmten Beständen unter praktischen Bedingungen fast das gleiche Ergebnis wie bei den früheren Kleinversuchen auf dem Elendbolz Versuchsland (St e u d e l 1959). Aufgabe weiterer Untersuchungen muß es sein, das neuntage und unter bestimmten Bedingungen auch in der Praxis offenbar recht erfolgreiche Verfahren unter den sehr variablen Bedingungen des Rübenbaus weiter zu erproben; dabei ist vor allem darauf zu achten, die Frühjahrsboden mit Möglichkeit auszuschalten und die Dauerwirkung noch zu erhöhen.

6) Die Originaluntersuchungen sind im Institut für Landjahrzubauwissenschaften und Normalvererbung herausgegeben und stehen zur Verfügung.
Zusammenfassung

7. Die Ergebnisse werden diskutiert. Da die Wirkung des Diasylon bis zu 7 Wochen auch unter praktischen Verhältnissen anhaltend scheint, müssen weitere Versuche klären, ob die erzielten Erfolge auch auf die äußerst variablen Bedingungen des Rübenbaus in verschiedenen Anbauzonen übertragenerbleiben.

Summary

1. In the years 1938-1939 field experiments with the systemic seed dressing "Diesylon" were made. The material was drilled with the seed in measured doses of 4-6 ng of the seed rate by weight.

2. Observations over the years which differed greatly climatically conform and extend earlier results. Germination and early development of the seedlings were somewhat retarded according the dosage and especially by lack of soil moisture. In 1938, differences in plant weight had practically disappeared soon after singling.

3. The numbers of pests (Pegomyia hyoscyami, Dorsis fabae, Myzodes persicae) which appeared during the experiments, were reduced according to the strength of the preparation. Injury due to feeding by larvae of the best fly was reduced and leaf infestation by aphids was reduced by 70-80% in 1939 without further treatment. The effect of the first application of Metasystox was equalled or surpassed. Following exceptionally heavy summer migrations of aphids, further treatment was necessary in all trials.

4. The spread of virus yellows could be retarded by a single application of Diesylon to the same extent as the first spraying with Metasystox. Additional applications in years when the attack was late and negligible were not so good as spraying on June 30th.

5. In 1938, Diesylon did not appear to reduce yield. Under the very heavy attack then prevailing the treated plots suffered more than the controls. No correlation could be shown between the concentration of the Diesylon applied but there was a correlation with the time of the first spraying with Metasystox.

6. In average over experiments during 3 years on similar farm, seed treatment with 6% Diesylon alone gave an increase in sugar yield of about 7% without additional protective measures although there was a decrease in plant population. (Sowing time: first half of April.) Two of these years were notable for best fly and aphid attacks.

Literatur

DR. R. THIELEMANN
Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Hochofenschäden und Nematodenforschung, Außenstelle Elsdorf/Bbl.

Über den Verlauf der Blattdauergradation und das Auftreten der Vergilbungserscheinungen bei Zuckerrohr in einem Versuch mit Feldberegnung im Trockenjahr 1959

Das Jahr 1959 mit seinen überdurchschnittlich warmen und trockenen Sommermonaten (Tab. 1) eignet sich besonders für die Durchführung eines Beregnungsversuches mit Zuckerrohr, nachdem im Jahr zuvor zwar alle Vorbereitungen für einen solchen Getreifeguss hingen, aber bei mangelnder Bodenfeuchtigkeit festgestellt wurde, dass die Überschneider der viren Vergilbungserkrankung — Myzodes persicina (M. p.) und Doryus sabaeus (D. f.) — auf den Pflanzen zu vermeiden waren.

Tab. 1. Klimabedingungen Elsdorf/Bbl.

<table>
<thead>
<tr>
<th>Monat</th>
<th>Mittlere Lufttemperatur °C</th>
<th>Niederschlag mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2,9</td>
<td>1,0 + 0,4</td>
</tr>
<tr>
<td>II</td>
<td>7,4</td>
<td>1,6 + 0,3</td>
</tr>
<tr>
<td>III</td>
<td>12,8</td>
<td>1,0 + 0,0</td>
</tr>
<tr>
<td>IV</td>
<td>17,8</td>
<td>1,0 + 0,0</td>
</tr>
<tr>
<td>V</td>
<td>20,8</td>
<td>1,0 + 0,0</td>
</tr>
</tbody>
</table>

1) Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.
lieber, sie sind jedoch in ihrem Charakter eher zu ausgegliedert als zu extrem für den Witterungsverlauf am Niederrhein anzusprechen.

Außerdem der nur die Blattlausrodung wechselnden Faktoren kann aber auch die Möglichkeit bestehen, daß die Infektion der Pflanzen zwar in ähnlichen Stärke erfolgt, die Symptome jedoch nicht so schnell sichtbar werden, da eine größere Blattfläche zu durchschnitten ist und ständig neues Blatt infolge auseinander- begleiten mache.

Zur Überprüfung dieser Fragen wurde auf Vorschlag der Landwasserärzelle Niederrhein*) ein Zuckerrebenbestand in einem Betrieb des Hauses Krefeld auf leichten Boden ausgewählt, der die notwendigen Vorbedingungen für einen Beregnungsversuch bot. Seine erdbau- und landwirtschaftlichen Daten sind im folgenden aufgeführt:

*) Dem Leiter der Landwasserärzelle Niederrhein, Herrn O. Tüllmann, sei an dieser Stelle für die Auswahl des Versuchsortes sowie für die schnelle Unterstützung bei der Feld- beregnung gedankt.
Die Versuchsanlage im lateinischen Quadrat umfaßte 40 m × 40 m und lag innerhalb eines großen Bödenfeldes. Vier Versuchskörper standen in 4-facher Wiederholung:

1 = unbehandelte Kontrolle
2 = 0,2 %ige Metasystoxapplikation am 20. 9. und 11. 4. 50
3 = künstlich begraben am 20. 9. und 27. 3. mit 56 mm
 am 19.; 22. 6.; 11. 7. mit je 20 mm
4 = Kombination von Metasystoxapplikation und Begräbnis
 (s. Nr. 2 und 3)

Die Begräbnis erfolgte durch je einen Schwacks-Turborogner in den dafür vorgesehenen Versuchsstücken nach Maßgabe der Landesbaudienstleute, die mit

els des Erdbohrers die Fruchtungsverhältnisse im Bestand bis zu 60 cm Bodentiefe überprüften. Die Schwacks-Turborogner gehören zur Gruppe der Schwacksregner und gelten deshalb als besonders bodenhärtend. Bereits Stühle
kamen an infolge der Gleichmäßig ihrer Wasserzufluss dem Natur-
regen sehr nahe (Witt 1805). Die Beobachtungen auf Schätzungskarten,
Schurzprüfung und ihre Ausführung, Ernte und Ausarbeitung der Röhr-
proben zeichnete die Außenstelle Elsloo der Zoologischen Bundesanstalt für Lend- und Forstwirtschaft vorzüglich.

Es muß betont werden, daß es sich bei den nachstehenden Versuchsergebnissen nur um eine einjährige Überprüfung handelt, die keineswegs für andere Standorte oder Jahre repräsentativ zu sein braucht. Da die gewonnenen Werte jedoch auf Grund der extremen Witterungsverhältnisse kaum erreicht in dieser Form zu beobachten sein werden, soll in Anbetracht der Aktualität des Problems schon jetzt die Diskussion der Befunde erfolgen, ohne damit die biologischen Beobachtun-
gen grundsätzlich auf die Verhältnisse der Beregnungspraxis übertragen zu wollen.

Das Versuchsgebiet zeichnet sich durch ein zeitiges Frühjahr aus; ganz allge-
mein konnten die Böden ab Anfang März bestellt werden. Jede Versorgung
der Ansäaten in den Monat April, hinsichtlich insbesondere auf leichten
Rüden — zum Stagnieren der Pflanzen im Keimlipastadium, da ab Anfang Mai
der Wuchstumsfaktor Wasser vielerorts in ein Minimum geriet. Dies wirkte
sich in dieser Zeit bereits spürbar auf den Pflanzenzustand aus, da infolge unter-
durchschnittlicher Witterungshinweise die Fruchtungsreserven des Bodens
recht gering waren.
einen geringeren, sondern einen um das Doppelte erhöhten Blattlaubbesatz zu Sei-
ten maximaler Beweidung. Dabei traten beide Blattlaubarten in gleicher
Weise auf das Verhältnis von tief genügenden Pflanzen. Während 3,4 Tage nach
dem ersten Verrohdrahtabpressen (28. und 27. 3.) in den Parallel- 'Erdnner'
und 'Frosts' nach gleich starker Blattlaubbesatz herrschte (Abb. 1), wurde

(Mittlere Gesamtzahl je Pflanze).
Berechnungsverfahren Fichtelstein 1909.
-- = unbehandelte Kontrollen
--- = 6,2 % Metasfrne-genappt
----- = 6,2 % Metasfrne genappt und behandelt
-------- = Metasfrne genappt u. bewogen
12 Tage nach Beregnung in den fruchtbaren Parzellen nun doppelt soviel Individuen ansatzweise auf den trocken gebliebenen Pflaumen. Eine variations-
statistische Nachprüfung der Besiedlungsdepression zu diesem Termin ergab
sowohl für D. f. als auch für M. p. einen gesicherthöheren Befall für die Pfla-
men aus den Beregnungsparzellen. Diese Feststellung gilt nicht allgemein für
„beregnete Zuckerrißbestände", hängt doch die Populationsenentwicklung weit-
gend vom Zusammenspiel mehrerer Faktoren ab: dem Pflanzenschutz, der
Zeit und Stärke des Blattlaufs, dem Beginn der Trockenheit usw., deren
zeitliches Aufeinandertreffen in den einzelnen Jahren recht zufällig ist und im
Jahre 1959 wahrscheinlich eine günstige Konstellation hatte.
Es brachte beispielsweise nach einem normalen Frühjahr die Trockenheit nur
später einsetzend, sich damit eine frühe Beregnung erübrigen, so wären diese
Unterschiede in der Höhe des Blattlaufs bereits kaum zutage gekommen. Unter
den Verhältnissen des Jahres 1959 aber waren die Lebensbedingungen an den
frühzeitig unter Wassermangel leidenden, mittelweit auch wolkenden Rinden für
Blattläuse eben soartung ungunstig, daß ihre Besiedlung weit geringer als die be-
regneten Rinden ausfiel, welche den Umständen entsprechend gesünder blieben
und weiterwuchsen. Die Verhältnisse der Tiere stimmten mit Beobachtun-
gen von Kennedy (1955) überein, der in Gewächshausversuchen ermittelte,
dafür M. p. für die Nahrungsaufnahme bei freier Entscheidung stets die reichlich
mit Wasser versetzten Pflanzen bevorzugt, sich hier stärker ansiedelt und eine
lebhaftere Verbreitung zeigt. Auch aus den Untersuchungen von Pfeiflidenplan-
dern läßt sich häufig der Beobachtungen, daß innerhalb bestimmter Verbre-
gruppen eine erhöhte Vermehrung vorliegt. Zu dem Zweck stellt man den
vermehrungsfähigen Tiere (Nymphen und Larven) für diese Versuchs lie-
sich der Index nicht ermitteln, da in Anbetracht der etwas rascheren Verbreitung
nur geschätzte -- nicht genau gezählte -- Werte für die Anzahl der einzelnen Ent-
bwicklungsstadien gelangen.
An Hand von Relativzahlen sei noch einmal der unterschiedliche Besiedlungs-
verlauf dargestellt, indem die Blattläusensumme aus allen Zählterminen geordnet
ermittelt und der Wert der unbehandelten Kontrolle gleich 100 gesetzt wird
(Blasse und Thielemann 1958):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbehandelte Kontrolle</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Beregnet</td>
<td>137</td>
<td>214</td>
</tr>
<tr>
<td>Metasysten-gesp. u. beregnet</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Als Folge des lebhaften Blattlaufs im Juni ließ sich die 100 %ige Virus-
infektion sämtlicher Versuchsblätter nicht vermeiden, allerdings mit der Ein-
schrankung, daß durch den Faktor „Wasser“ diese zu verschiedenen Zeiten
erkennbar und dementsprechend der Krankheitsbeginn zeitlich gestaffelt
überschrieben wurde.

1. Ende Juni zeigten die unbehandelt gebliebenen Kontrollen Trockenheiten
und welkendes Blatt als Folge minierender Rübenfliegenlarven. Um jede
Pflanze lag späterhin ein Kranz abgestoßerer Blätter, wodurch der Boden
der Schutz vor Sonneneinstrahlung und damit die Schadenszene verhorm

Durch die noch intakten Rückenblätter zeigten starke Deformationen durch die Saugtätigkeit der Lösung. Dieser Wachstumsstock konnte von den Pflanzen bis zur Ernte nicht mehr ausgelebt werden.

2. Die durch Metasystox blattläuferfreie gespritzten Pflanzengruppen Nr. 2 und 4 unterschieden sich zu dieser Zeit von dem zuvor beschriebenen Versuchsstand durch das Fehlen der Saugsymptome sowie durch geringere Rückenblattdeformationen. Ende Juli prägte die Trockenheit aber auch der Pflanzengruppe Nr. 2 die eingeschränkte Wuchsrate auf, wodurch sie sich von nun an kaum mehr von "Unbehandelten" abhob.

3. Hingegen trat für die Kombinationsparzellen Nr. 4 jetzt der Einfluß der Beregnung hervor, wodurch ihr Wuchs bis zur Ernte allen anderen Gruppen überlegen blieb. Auch die ausschließlich beregneten Pflanzen der Parzellen Nr. 3 hatten inzwischen ihr durch Läuse verursacht Blatt regeneriert und sich Ende Juli damit im Wuchs, wie später auch im Vergleichsverlauf (Abb. 2), dem besten aussehenden Versuchsstand Nr. 4 angeglichen.

![Diagramm](image)

Abb. 2. Durchschnittswerte der Pflanzensituation im Beregnungsversuch Fehenshain 1958.

Symbole s. **Abb. 1.**

Da die Trockenschäden am Laub von den durch das Virus verursachten unter den Versuchsbedingungen nicht immer sicher zu unterscheiden waren, darf es nicht verwundern, wenn in Abb. 2 die Vergleichskurven von "Unbehandelt" und "Metasystox-gesprüht" in gleicher Höhe verlaufen (die Klassifizierung erfolgte in den Stufen "a" bis "d", wobei 0 = die beste, 5 = die schlechteste Bewertung wiedergeben). Anfang August erreichten diese Versuchsbedingungen — bei einem nur mittelstarken Symptomentz - ihren Höhepunkt. Das ständige Ablösen des Erntaus bedingte eine deutlichere Ausprägung der Blattvergильung, so daß die Pflanzen Ende August, sogar grüner aussehen als die nur etwa sechsmal vergleichbare Vergübung zeigenden Pflanzen der beregneten Parzellen. Bei diesen kamen die Symptome infolge des Blattwachstums wesentlich langsamer durch. Da ihnen
außerdem genügende Bodenfeuchte zur Verfügung stand, blieb das vergilbte Blattwerk fast vollständig bis zur Ernte erhalten, wodurch ab Ende August für den Läuten der Eindruck entstand, als seien beregnete Zuckerrißtaben stärker von der Krankheit betroffen als Rüben auf Trockenstandorten.

Die Zusammenstellung der Werte (Tab. 2) zeigt, daß der Zunahmeergebnis einen um 50 % höheren Rübenvertrag und für den Vielbiß 1/2 mehr an Blatt breite, was in frostlagen Jahren nicht hoch genau bewertet werden kann.

<table>
<thead>
<tr>
<th>Schadefaktor</th>
<th>Minderertrag (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbehandelt</td>
<td>20.78 %</td>
</tr>
<tr>
<td>Beregnung</td>
<td>25.51 %</td>
</tr>
<tr>
<td>KS</td>
<td>15.18 %</td>
</tr>
<tr>
<td>Metasystox u. beregn.</td>
<td>11.14 %</td>
</tr>
<tr>
<td>Metasystox</td>
<td>15.31 %</td>
</tr>
<tr>
<td>Metasystox u. beregn.</td>
<td>16.02 %</td>
</tr>
<tr>
<td>komb.</td>
<td>10.17 %</td>
</tr>
</tbody>
</table>

Tab. 4. Sicherungswerte für Röhren- und Zuckerertrag dt/ha.

<table>
<thead>
<tr>
<th>Säulen dt/ha</th>
<th>Kon- trollle</th>
<th>Berg- net</th>
<th>Meta- sytox</th>
<th>Meta- sytox u. beregnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zucker</td>
<td>–</td>
<td>– 0,75</td>
<td>0</td>
<td>– 1</td>
</tr>
<tr>
<td>Metasystox</td>
<td>–</td>
<td>– 0,35</td>
<td>0,50</td>
<td>– 1</td>
</tr>
<tr>
<td>Metasystox u. beregn.</td>
<td>–</td>
<td>– 1</td>
<td>– 1</td>
<td>– 1</td>
</tr>
</tbody>
</table>
Zu Zwecken einer variationsstatistischen Überprüfung wurden die Ergebnisse der Einzelparzellen gemittelt. Dabei fiel auf, daß innerhalb der unbehandelten Kontrollparzellen ein Ertragswert stark überhöht seinen (40,7 kg pro Erntehöhe, 41,3 kg, 45,2 kg und 36,2 kg). Da von einer willkürlichen Veränderung unerwünscht stark Abstand genommen wird, bleibt zu erwarten, daß auf Grund der dadurch entstehenden Streuung die Erträge der unbehandelten Flächen nicht gegen die durch Metasytaxen beeinflußten zu sichern sind. Lediglich bei Versuchung auf diesen Kontrollwert kommt eine gewisse Ertragssteigerung durch die Schutzspritzung zustande (Tab. 4).

Die Signifikanz der Differenzen stellen wir in der bekannten Weise ein (Bläsen und Pfeileman 1958).

Zusammenfassung
1. Im Trockenjahr 1959 wurde am Niederheian ein Kombinationsversuch mit „Künstlicher Beregnung“ und „Metasytaxenprüfung“ an Zuckerrüben durchgeführt, um den Einfluß der einen oder anderen bzw. kombinierten Behandlungsweise auf die Entwicklung der Blattlauspopulation und das Auftreten des Vergilbungsvirus verfolgen zu können.

Frieda Gisela Lorenz dankens für ihre Mitwirkung bei der Versuchsbeobachtung.

Summary
1. In the dry year of 1959, experiments with "artificial rain" and "metasyte spray" were made on sugar beet in the Lower Rhine valley to follow the influence of one or other of the combined methods of treatment.
on the development of the aphid population and the appearance of virus yellows.

2. The populations of both types of aphids under observation developed better on the sugar beets receiving "rain" only and not sprayed, and reached double the maximum of those observed on the controls. On plots treated with metasystox, no differences could be established.

3. Following the active summer flights, a 100% infection of virus yellows developed. Afterwards, unirrigated beets became more strongly yellowed while the irrigated beets became yellow much later in the summer, which led to a characteristic difference in the appearance of the different experimental plots. Since, in the dry plots especially, many leaves wilted, the condition of the plots was not entirely due to the severity of virus disease.

4. The extent of the loss of production caused through drought and insect attack was estimated. Watering above increased the production of roots around 50% and of leaves about 34%. The overall effect of insect attack and virus (lesser fly, aphid, virus yellows) in causing loss of production did not reach that caused by drought.

Literatur

