First ampelometric study of autochthonous grapevines in Algeria: Germlasm collection of Mascara

Z. LAIADI1), 2), 3), S. BENCARIF1), Z. LAKRIF1), M. M. BENTCHIKOU1) and R. MOHAND-LARBI4)

1) Département des Sciences de la Nature et de la Vie, Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université de Biskra, Algérie
2) Laboratoire Aménagement Hydraulique et Environnement, Bloc des Laboratoires, Seid Behlali, Université de Biskra, Algérie
3) Département de Biologie Végétale, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Développement et Valorisation des Ressources Phytophénétique, Université de Constantine, Algérie
4) Institut Technique de l’Arboriculture Fruttière et de la Vigne (ITAFV), Tessala-El-Merdja, Birouta, Alger. Algérie

Summary

Ampelometric studies on 26 varieties of Vitis vinifera L. belonging to the germplasm existing in the collection of Tighenniff (Mascara), the most important conservatory of local grapevine varieties existing in Algeria were carried out to characterize this gene pool, the phyllometric measurement method proposed by Martínez and GRENAN was applied to establish a cultivar specific adult leaf.

Statistical analysis was performed to identify the most discriminating parameters, namely, size of angles and depth of the lateral sinuses in comparison to the lengths of the veins, especially those on the left side of the leaf. Thus, cultivars with common features such as 'Bezoul el Khadem' and 'Ahmar de Mechtras III', 'Toutrissine' and 'Aberkane' and 'Amellal' and 'Torki' were clustered together. For seven varieties the average leaf has been reconstructed.

Keywords: phyllometry, Vitis vinifera L., autochthonous grapevine, similarity, adult leaf.

Introduction

In Algeria, viticulture has experienced profound changes associated with political constraints, economic and social, of the country while the grapevines existed since the earliest antiquity (LARNAUDE 1948). The archaeological documents of viticulture according to ISNARD 1951 are quite numerous to show the development of viticulture in Algeria since the 1st century of the Christian era with an estimated 2,000 hectares of vineyards with table grapes. The grape area has grown considerably during the French colonization to 400,000 ha in 1935 (ISNARD 1951 et ALDEBERT 1959).

After independence the area decreased to 350,000 ha, including 4000 to 5000 ha of table grapes (BOUDELAL AOUI, 1972). Currently, the vineyard area in Alegria is 94,025 ha (ITAF, 2003).

According to ISNARD (1951), Algerian grapevines have been poorly studied until the nineteenth century. Salm-
We based our studies on reports by Martínez et al. (1997, 2006) and Santiago et al. (2005a, 2005b), to determine the following reports: Rel.1 = L1d/L; Rel.2 = L1g/L; Rel.3 = A+B+G; Rel.4 = A'+B'+G'; Rel.5 = a+b+g; Rel.6 = a'+b'+g'; Rel.7 = (S1d+S2d)/(L1d+L2d); Rel.8 = (S1g+S2g)/(L1g+L2g); Rel.9 = S1d/L1d; Rel.10 = S1g/L1g; Rel.11 = S2d/L2d; Rel.12 = S2g/L2g.

To compare statistical results with the synthetic leaf, we performed the reconstruction of the average leaf of only the most representative varieties using quantitative and qualitative data proposed by Martínez and Greñan (1999). Quantitative variables were submitted to a principal component analysis (PCA) using SAS statistical software, version 9.2 (SAS Institute, Cary, NC) (Mission Biologica de Galicia), this model has been used for studies by several ampelographic authors such as Sotes et al. (1996); Martínez de Toda et Sancha (1997); Martínez et al. (2006); XL STAT (trial version) was applied for the construction of the dendrogram based on the degree of similarity and the program TANAGRA 04/01/37 (http://eric.univ-lyon2.fr/~ricco/tanagra/index.html) to calculate \(\cos^2 \).

Results and Discussion

We based on studies by Martínez et al. (1997, 2006) and Santiago et al. (2005a), to determine the following reports: Rel.1 = L1d/L; Rel.2 = L1g/L; Rel.3 = A+B+G; Rel.4 = A'+B'+G'; Rel.5 = a+b+g; Rel.6 = a'+b'+g'; Rel.7 = (S1d+S2d)/(L1d+L2d); Rel.8 = (S1g+S2g)/(L1g+L2g); Rel.9 = S1d/L1d; Rel.10 = S1g/L1g; Rel.11 = S2d/L2d; Rel.12 = S2g/L2g.

To compare statistic results with the synthetic leaf, we performed the reconstruction of the average leaf of only the most representative varieties using quantitative and qualitative data proposed by Martínez and Greñan (1999).

Quantitative variables were submitted to a principal component analysis (PCA) using SAS statistical software, version 9.2 (SAS Institute, Cary, NC) (Mission Biologica de Galicia), this model has been used for studies by several ampelographic authors such as Sotes et al. (1996); Martínez de Toda et Sancha (1997); Martínez et al. (2006); XL STAT (trial version) was applied for the construction of the dendrogram based on the degree of similarity and the program TANAGRA 04/01/37 (http://eric.univ-lyon2.fr/~ricco/tanagra/index.html) to calculate \(\cos^2 \).

Results and Discussion

The first three components indicated by PC1, PC2 and PC3 allowed grouping 73.27 % of the total variability observed by phyllometric characteristics.

The first axis (36.07 %) refers to the sum of angles and, therefore the leaf shape. It is defined by the variables A, A’, B, B’, G, G’, Rel3, Rel4, Rel5 and Rel6. Our results corroborate those obtained by Santiago et al. (2005a et 2005b), and the strong correlation existing between the shape and angles mentioned by Tomazic et Korosec-Koruza (2003).

The second axis (22.82 %) is expressing the lengths of the veins, therefore the size or dimension of the leaf. It is de-

Table 1

<table>
<thead>
<tr>
<th>Accessions name</th>
<th>Origin</th>
<th>Berry colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberkane</td>
<td>Kabylie</td>
<td>Black</td>
</tr>
<tr>
<td>Adadi des Bibans</td>
<td>unknown</td>
<td>White</td>
</tr>
<tr>
<td>Ahechchene</td>
<td>Kabylie</td>
<td>White</td>
</tr>
<tr>
<td>Ahmer de Mascara</td>
<td>Mascara</td>
<td>Red</td>
</tr>
<tr>
<td>Ahmar Mechtras II</td>
<td>unknown</td>
<td>Pink</td>
</tr>
<tr>
<td>Ahmar Mechtras III</td>
<td>unknown</td>
<td>Pink</td>
</tr>
<tr>
<td>Ain el Couma</td>
<td>Tlemcen</td>
<td>White</td>
</tr>
<tr>
<td>Ain el Kelb</td>
<td>unknown</td>
<td>White</td>
</tr>
<tr>
<td>Amellal</td>
<td>Kabylie</td>
<td>White</td>
</tr>
<tr>
<td>Aneb el Cadi</td>
<td>Kabylie</td>
<td>Black</td>
</tr>
<tr>
<td>Bouaber des Aures</td>
<td>unknown</td>
<td>Black</td>
</tr>
<tr>
<td>Bezoul el Khadem</td>
<td>Kabylie</td>
<td>Black</td>
</tr>
<tr>
<td>Bouni</td>
<td>Kabylie</td>
<td>White</td>
</tr>
<tr>
<td>El Wali</td>
<td>unknown</td>
<td>White</td>
</tr>
<tr>
<td>Farana</td>
<td>unknown</td>
<td>White</td>
</tr>
<tr>
<td>Farana Noir</td>
<td>unknown</td>
<td>Black</td>
</tr>
<tr>
<td>Ghanez</td>
<td>Kabylie</td>
<td>White</td>
</tr>
<tr>
<td>Muscat Adaa</td>
<td>unknown</td>
<td>Black</td>
</tr>
<tr>
<td>Muscat Noir</td>
<td>unknown</td>
<td>Black</td>
</tr>
<tr>
<td>Sbaa Tolba</td>
<td>unknown</td>
<td>White</td>
</tr>
<tr>
<td>Sidi Ahmed Draa el Mizen</td>
<td>unknown</td>
<td>White</td>
</tr>
<tr>
<td>Tadelith</td>
<td>unknown</td>
<td>Black</td>
</tr>
<tr>
<td>Tizi Ounine</td>
<td>Kabylie</td>
<td>White</td>
</tr>
<tr>
<td>Torki</td>
<td>//</td>
<td>Black</td>
</tr>
<tr>
<td>Toutrissine</td>
<td>inconnue</td>
<td>White</td>
</tr>
<tr>
<td>Valensi</td>
<td>//</td>
<td>White</td>
</tr>
</tbody>
</table>

Fig. 1: The quantitative parameters measured at each leaf (Martínez and Greñan 1999).

Fig. 2: Tooth numbering by sector (Martínez and Greñan 1999).
fined by the variables L, L1d, L1g, L2d, L2g, L3d, L3g, L5d, L5g and S2g. These results are also consistent with those of Sotes et al. (1996) et Santiago et al. (2005 b). The third axis accounts for 14.5% of the variance and is defined by the variables Rel7, Rel8, Rel9, Rel10, Rel11, Rel12, S1d, S1g, S2g, S2d, D and g. It mainly explains the depth of upper and lower lateral sinuses combined with length of veins. On axis 1 and 3, on the left of Fig. 3, cultivars are grouped that have small angles and lateral sinuses in average depth such as: 'Ahmar de Mechtras III', 'Bouni' and 'Bouaber des Aures'. On the right, there are cultivars that have open angles as 'Aberkane', 'Aïn el Kelb', 'Toutrisine', 'Farana' and 'Muscat Adda'. The latter has the shallowest lateral sinus of all varieties studied.

On axis 2, cultivars with the largest leaves such as 'Bouaber des Aures' are situated in the background, whereas 'Amellal' and 'Torki' who seem to have the smallest blades are located in the front of the figure. On axis 3, at the bottom of the figure the cultivars are grouped that have rather acute angle D with lateral sinuses shallow as 'Muscat Adda' and 'Adadi des Bibans'.

Phyllometric data were used for hierarchical clustering. Three main clusters (A, B and C) are shown in Fig. 4 which reveal similarities between the cultivars studied:

The first includes eight cultivars. High similarity (0.9) between 'Bouni' and 'Bouaber des Aures', was stated, due to the shape and depth of the lateral sinuses: 'Ahmar de Mechtras III' and 'Bezoul el Khadem' display a degree of similarity of 0.7. Both are characterized by a leaf of medium size with sharp angles. According to Laiadi et al. (2009) the variety 'Bezoul el Khadem' grown in the collection of Skikda is related to 'Kabyle Aldebert', which is a synonym of 'Bouaber des Aures' (Laiadi et al. 2009).

'El Wali' and 'Aneb el Cadi' have an average degree of similarity of 0.5. It is likely that 'El Wali' is 'Louali'. According to Laiadi et al. (2009), 'Amokrane' is synonymous to 'Louali' that appears close to 'Aneb el Cadi'.

The second cluster is divided into two groups: The first includes 'Torki' and 'Valensi', which by their names, are introduced varieties, characterized by the highest similarity (0.75). 'Ahmar de Mechtras II' and 'Amellal' have a lower degree of similarity (0.6). These varieties are characterized by a smaller leaf and moderately open angles and average depth of the lateral sinuses.

The second group includes cultivars that are similar with respect to the shape and size of blade; this is the case of 'Aberkane' and 'Toutrisine' showing a degree of similarities of 0.65, and of 'Muscat Noir' and 'Sbaa Tolba' (degree of similarity 0.55). The latter variety is characterized by the least deeply indented sinuses. The 'Ahmar Mascara' stands out from the cultivars of the two clusters. Molecular characterization performed by Laiadi et al. (2009) showed that this variety takes several synonyms in the Mediterranean region such as: 'Teta de Vaca', 'Royal Gordo' or 'Ahmeur bou Ahmeur' as 'Flame Tokay' it is grown in America (Akkak et al. 2009).

The third cluster gathers the cultivars into three groups: The first consists of 'Aïn el Kelb' and 'Farana' with a rather

Fig. 3: The ACP projection of mature leaves of 26 cultivars in the first three axes. 'Aberkane': ABER, 'Adadi des Bibans': ADBI, 'Ahchichene': AHC, 'Sidi Ahmed Draa el Mizene': AMIZ, 'Ahmar de Mascara': AMAS, 'Ahmar de Mechtras II': AM2, 'Ahmar de Mechtras III': AM3, 'Aïn el Couma': ACOUM, 'Aïn el Kelb': AKLB, 'Amellal': AM, 'Aneb el Cadi': AKHA, 'Bezoul el Khadem': BK, 'Bouni': BN, 'Bouaber des Aures': BAUR, 'Farana': FR, 'Farana Noir': FRN, 'Ghanez': GHA, 'Muscat Adda': MUSA, 'Muscat Noir': MUSN, 'Sbaa el Tolba': STOL, 'Tadelith': TAD, 'Tizi Ounine': TIZI, 'Torki': TOR, 'Toutrisine': TTRS, 'Valensi': VAL.
high degree of similarity (0.85). 'Ghanez' which is included in this subgroup is fairly close to 'Aïn el Kelb'. LAIADI (2009 unpubl.) found that the same variety grown in germplasm of Skikda, has a genetic relationship with the latter.

The second subcluster includes 'Sidi Ahmed Draa el Mizen' and 'Tizi Ounine' with a similarity coefficient of 0.69. The third subcluster encompasses: 'Aïn el Couma', 'Adadi des Bibans and Ahchichene' with a similarity coefficient of 0.52 and 0.68 respectively.

In order to reconstruct the average leaf of cultivars according to the method of MARTÍNEZ and GRENNAN (1999), we first examined the value of the squared cosines of the angle formed by a point and its projection onto the plane. It appears from the PCA for 53.84 % of the cultivars, the sum of the squared cosines of the first three axes is greater than 0.45 (although a few have recorded amounts of less than 0.1).

'Aberkane', 'Ahmar Mechsras III', 'Aïn el Kelb', 'Bezoul el Khadem', 'Bouni' and 'Touriussine', appear well represented at the first axis that explained the angles and their sums; 'Adadi des Bibans', 'Ahmar Mechsras II', 'Amellal', 'Bouaber des Aures' and 'Torki' cultivars are well represented at the second axis expressing the size of leaf, and finally, 'Aïn el Couma', 'Sbaa Tolba' and 'Tizi Ounine' are well represented at the third axis set mainly the depth of the sinuses and especially relative to leaf size.

The reconstructed average leaf shapes for 7 varieties is shown in Fig. 5. Mean values of quantitative (Tab. 2) and qualitative (Tab. 3) parameters and the number of teeth have been taken into account. Cultivars that contribute most to the variances and the formation of the axes are those whose coordinates are farthest from their averages, that is to say, those with the highest coordinates, in absolute value.

Conclusion

According to the ampelometric discriminated parameters, greater differences were observed between cultivars: Leaves of 'Torki', 'Ahmar Mechsras II' and 'Valensi' had a very small blade while blades of 'Bouaber des Aures' and 'Bouni' were very large. The same was true for 'Touriussine' and 'Aberkane' showing a blade with very open angles compared with those of varieties like 'Ahmar Mechsras III' and 'Bezoul el Khadem' that display highly acute angles. Finally, it is also the case regarding the shape of blade. This is perforated with deeper lateral sinuses in 'Muscat Adda' and 'Tizi Ounine' whereas the opposite was shown by 'Sbaa Tolba' which blades are slightly divided and with shallow lateral sinuses.

Considering the degree of similarity, the dendrogram revealed the convergence of varieties presenting the same
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
<th>Measurement</th>
<th>Value</th>
<th>Measurement</th>
<th>Value</th>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (cm)</td>
<td>10.24</td>
<td>Length (cm)</td>
<td>12.82</td>
<td>Length (cm)</td>
<td>11.09</td>
<td>Length (cm)</td>
<td>11.94</td>
</tr>
<tr>
<td>Angle (°)</td>
<td>7.71</td>
<td>Angle (°)</td>
<td>9.53</td>
<td>Angle (°)</td>
<td>9.02</td>
<td>Angle (°)</td>
<td>6.54</td>
</tr>
<tr>
<td>Autochthonous</td>
<td>Yes</td>
<td>Autochthonous</td>
<td>Yes</td>
<td>Autochthonous</td>
<td>Yes</td>
<td>Autochthonous</td>
<td>Yes</td>
</tr>
<tr>
<td>Grapevines</td>
<td>Yes</td>
<td>Grapevines</td>
<td>Yes</td>
<td>Grapevines</td>
<td>Yes</td>
<td>Grapevines</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Values for the length (cm) and angle parameters measured for the reconstruction of the average leaf according to the Martínez and Grasso (1999) method.
Table 3

Qualitative parameters studied in the adult leaf for the representing seven cultivars

<table>
<thead>
<tr>
<th>No. code – OIV-</th>
<th>076</th>
<th>079</th>
<th>080</th>
<th>082</th>
<th>083-1</th>
<th>CSLI</th>
<th>FBSLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberkane</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ahmar de Mechtras III</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Amellal</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bezoul el Khadem</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Sbaa Tolba</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Torki</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Toutrissine</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 5: Average leaf of 7 Algerian varieties.
leaf characteristics (cited above): 'Bouaber des Aures' and 'Bouni', 'Ahmar Mechtras III' and 'Bezoul el Khadem', 'Torki' and 'Valensi'.

On the other hand only 'Ahmar Mechtras III', 'Bezoul el Khadem', 'Shaa Tolba', 'Torki', 'Valensi', 'Toutrissine', 'Aberkane' represented the more significant measures in PCA, Cos². Therefore, they are reconstructed by the method of MARTINEZ and GRENA. Finally it is important to emphasize the need for studying all other qualitative and quantitative parameters that are used by the standardized descriptor.

Acknowledgements

I want to thank the group of Viticulture at the center of Mission Biologica de Galicia in Pontevedra (Spain), represented by Dra. M. C. MARTINEZ for their invaluable help and contribution to achieving this work by bioinformatic materials and methods needed. This work was supported by a research project approved in 2011, CNEPRU: Code F01420100050, Algerian Ministry of Higher Education and Scientific Research to Z. LAIADI.

References

Levadoux, L.; Benabderbou, A.; Douaoul, B.; 1971: Ampélographie Algérienne: Cépages de Cuve et de Table Cultivés en Algérie. SNED.

Received March 8, 2012