Discrimination of wild grapes native to China by RAPD markers

S. LUO1) and P. He2)

1) Department of Agronomy, Hainan University, Haikou, Hainan, People's Republic of China
2) Department of Horticulture, Northwestern Agricultural University, Yangling, Shaanxi, People's Republic of China

Summary

A set of 73 types of 18 wild grape species native to China, one interspecific hybrid, 7 Vitis vinifera cultivars, the rootstock cultivar SO 4 and one V. riparia accession were investigated using the RAPD technique. The screening of 280 decamer oligonucleotides allowed the selection of 20 primers used for the analysis. RAPD fingerprints of 83 grape samples were obtained. 191 bands, intense and easy to score, were chosen as markers. On average 5.7 bands per primer were amplified with an average of 68.7 % polymorphism. The size of amplified bands ranged from 100 to 3000 bp. Discrimination of 83 samples was obtained with one of two primers (OPQ04, OPJ07) combined with one of 5 primers (OPJ01, OPJ19, OPP02, OPA15, OPU16). The average number of bands for each sample per primer was 5.7. This revealed a high level of polymorphism among the wild grapes native to China. RAPD markers proved to be useful for identification as they are quick and easy to use.

Keywords: wild grape accessions, China, RAPD, discrimination.

Introduction

Out of 70 known Vitis species more than 27 have their origin in China (LI SHENCHEN 1985; NU LIXIN 1996). A large number of wild grapes of different Vitis species native to China have been collected at the Northwestern Agricultural University. Their morphological traits have been described in detail. Accurate identification of wild grapes native to China is essential for research and viticulture. It is difficult to differentiate between similar phenotypic species especially clones or accessions of one species with different disease resistance genes (WANG GUOQIN 1986; CHAI JIHUA 1997; WANG YUEJIN 1998).

RAPD (randomly amplified polymorphic DNA) technique is fast and easy, since it does not require any prior knowledge of the sequences of the markers and can be resolved using agarose gels. This technique has already proven its usefulness for the identification of cultivars in numerous plants (KOLLER 1993; GOGORENCA 1994; ARUNA 1995). It has also been applied to genetically analyse grapevine cultivars and Vitis species (BUSCHER 1993; JEAN-JAQUES 1993; GRANDO 1996) and rootstocks (XU 1995; TIBS 1997). Considering previous experience, some bands in RAPD profiles are more stable than others (PEINER 1993; XIANPING O1996). Thus a selection of primers and bands appeared to be a necessary step in order to generate stable markers with this technique. The objectives of the present study were to establish RAPD analysis for Chinese wild grapes, to analyze the usefulness of the RAPD markers for discrimination of Chinese wild grapes and to develop a database for the identification of native, wild grapes of China.

Material and Methods

Plant material: All plant material was obtained from the vineyard of the Northwestern Agricultural University: 73 native clones or accessions of 18 wild grape species and varieties, one interspecific hybrid (Kyoho), 7 Vitis vinifera cultivars, one rootstock cultivar (SO 4) and one V. riparia accession (No. 2) (Tab. 1).

DNA extraction: Total genomic DNA was isolated from 0.2-0.5 g of frozen young leaf and bud samples on the basis of a CTAB protocol (SULAN LUO 2000). Young leaves and buds (0.2-0.3 g) were ground to a fine powder under liquid nitrogen. The powder was transferred into 500 μl of extraction buffer (2 % CTAB, 1.4 M NaCl, 100 mM Tris-HCl pH 8.0, 20 mM EDTA, 20 mM Na2S2O3, 3 % β-mercaptoethanol), and then 100 μl of 20 % PVPP (polyvinylpyrrolidone) was added. After homogenization, an equal volume of chloroform/octanol (24:1) was added to the tube, then the homogenate was incubated for 30 min at 65 °C and cooled to room temperature. After centrifugation at 12,000 rpm for 10 min, the supernatant was transferred into another tube and nucleic acids were precipitated using 0.6 volumes of isopropanol. The tube was gently agitated for 15 min, and then picked out a threadlike DNA pellet with tips and washed with 70 % ethanol. The dried pellet was dissolved in 500 μl TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA). 5 μl of RNase (10 mg/ml) were added to the solution and incubated for 60 min at 37 °C. Nucleic acids were precipitated using two volumes of cold ethanol and resuspended in 50 μl TE buffer. The DNA was quantified on a 0.8 % agarose gel stained with ethidium bromide by visual comparison with known quantities of lambda DNA.

Primer screening: 280 oligonucleotides from the kit A, B, C, G, H, J, O, P, Q, R, S, U, V, W (Operon Company) were first screened for their ability to amplify using DNA from 10 clones belonging to the initial 10 species in Tab. 1. Polymorphic primers were selected for further analysis.

RAPD analysis: The RAPD reaction mixture contained 10 to 20 ng template DNA in a 25 μl reaction vol-
<table>
<thead>
<tr>
<th>Species</th>
<th>No.</th>
<th>Clone</th>
<th>No.</th>
<th>Clone</th>
<th>No.</th>
<th>Clone</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. vinifera L.</td>
<td>1</td>
<td>Chenin blanc</td>
<td>5</td>
<td>Riesling</td>
<td>8</td>
<td>Ugni blanc</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Merlot</td>
<td>6</td>
<td>Cabernet franc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Cabernet Sauvignon</td>
<td>7</td>
<td>Muscat rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interspecific hybrid</td>
<td>2</td>
<td>Kyoho</td>
<td>9</td>
<td>SO-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. pseudoretica lata W. T. Wang</td>
<td>10</td>
<td>Guangxi-1</td>
<td>12</td>
<td>Bai-35-1</td>
<td>14</td>
<td>Guangxi-2 ?</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Bai-13-1</td>
<td>13</td>
<td>Bai-35-1 ?</td>
<td>15</td>
<td>Shangnan-1 ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>Shangnan-1 ?</td>
</tr>
<tr>
<td>V. quinquangularis Rehd.</td>
<td>17</td>
<td>83-4-67</td>
<td>22</td>
<td>83-4-94 ?</td>
<td>27</td>
<td>83-4-1</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Wei-3</td>
<td>23</td>
<td>83-4-96</td>
<td>28</td>
<td>Shang-24</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Wei-3</td>
<td>24</td>
<td>83-4-96 ?</td>
<td>29</td>
<td>Dan-2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>83-4-49</td>
<td>25</td>
<td>Tai shan-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>83-4-49 ?</td>
<td>26</td>
<td>Nanzheng-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. romanetii Rom.</td>
<td>30</td>
<td>Baihe-22</td>
<td>34</td>
<td>Jiangxi-2 ?</td>
<td>38</td>
<td>Liuba-1</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Jiangxi-1</td>
<td>35</td>
<td>Pingli-2</td>
<td>39</td>
<td>Liuba-1 ?</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Jiangxi-1 ?</td>
<td>36</td>
<td>Pingli-7</td>
<td>40</td>
<td>Pingli-2 ?</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Jiangxi-2</td>
<td>37</td>
<td>Liuba-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. baihensis L. X. Niu</td>
<td>41</td>
<td>Baihe-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. bashanica P.C. He</td>
<td>42</td>
<td>Baihe-41</td>
<td>43</td>
<td>Xunyang-8</td>
<td>44</td>
<td>Baihe-42</td>
</tr>
<tr>
<td>V. davidii Foex</td>
<td>45</td>
<td>Jinan-1</td>
<td>47</td>
<td>Fujian-4</td>
<td>49</td>
<td>Xue feng (/?)</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Jinan-2 ?</td>
<td>48</td>
<td>Lueyang-4</td>
<td>50</td>
<td>Tangwei (/?)</td>
</tr>
<tr>
<td>V. davidii (Roman) Foex</td>
<td>51</td>
<td>Ningqiang-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. davidii var. ninqiangensis L. X. Niu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. piasekii Maxim</td>
<td>52</td>
<td>Baishui-40</td>
<td>54</td>
<td>Gansu-91</td>
<td>56</td>
<td>Liu-9</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>Huaxian-1</td>
<td>55</td>
<td>Liu-8</td>
<td>57</td>
<td>Liu-6</td>
</tr>
<tr>
<td>V. liubaensis L. X. Niu</td>
<td>58</td>
<td>Langao-2</td>
<td>59</td>
<td>Liu-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. spp. (Qufavie)</td>
<td>60</td>
<td>Meixian-6</td>
<td>61</td>
<td>Liu-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. davidii var. cyanocarpa* (Gang) Sarg</td>
<td>62</td>
<td>Langao-5</td>
<td>63</td>
<td>Zhenan-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. adstricta Hance</td>
<td>64</td>
<td>Taishan-1</td>
<td>66</td>
<td>Anlin-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>Taishan-1 ?</td>
<td>67</td>
<td>Anili-2 ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. amurensis Rupr.</td>
<td>68</td>
<td>Zuo Shan-1</td>
<td>71</td>
<td>Zuo Shan-2 74003</td>
<td>73</td>
<td>Tonghua-3</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>Taishan-11</td>
<td>72</td>
<td>Zuo Shan-76097</td>
<td>74</td>
<td>Heilongiang ?</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>Shuangyou (/?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. qinlingensis P. C. He</td>
<td>75</td>
<td>Pingli-5</td>
<td>76</td>
<td>Lueyang-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. hancockii Hance</td>
<td>77</td>
<td>Jiangxi-3</td>
<td>78</td>
<td>Jiangxi-3 ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. yeshanensis J. X. Chen</td>
<td>79</td>
<td>Yanshan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. vinifera x V. davidii</td>
<td>80</td>
<td>Bayan Shirei x Jinan-2 No. 1</td>
<td>81</td>
<td>Muscat Ottonel x Jinan-2 No. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. vinifera x V. wilsonae</td>
<td>82</td>
<td>Blue French x Yangxian-1 No.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. riparia Michx</td>
<td>83</td>
<td>V. riparia No. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ? = male; / = female, not annotated; / ? = perfect flower type; No. 1-9 are perfect flower cultivars.
ume with 2.5 μl 10 x reaction buffer, 1.5 mM MgCl₂, 150 μM each dNTPs and 1 unit Taq DNA polymerase (Sino-American Company of Biotechnology, SACB) and 4 pM primer covered with a drop of mineral oil. Amplification was performed in a Perkin Elmer-480 thermal cycler programmed for 45 cycles (94 °C for 1 min; 36 °C for 1 min; 72 °C for 2 min) followed by an extension at 72 °C for 10 min. Amplification products were resolved by electrophoresis on 1.5% agarose gels in 1 x TAE buffer at 5 V·cm⁻¹ for 2 h. Gels were stained with ethidium bromide and visualized under UV light. In all cases a PCR marker (SACB) and λ DNA/HindIII were used as size marker.

Data analysis: Intense and reproducible bands on the gel were visually scored: 1 (for presence) or 0 (for absence), and reported in a binary matrix.

Polymorphic percentage (%) =
(Number of polymorphic bands/Total bands) x 100.

Results and Discussion

185 out of the 280 primers produced amplified products, especially kits G, H, J, P, Q, U, V and W revealed a high level of polymorphism. 20 oligonucleotides (Tab. 2) were selected to analyze the 83 samples; they yielded profiles with intense and well-separated bands, 191 polymorphic bands of total 278 bands, intense and easy to score, were chosen as markers. The size of the amplified fragments ranged from 100 to 3,000 bp, most bands having 300 to 2,200 bp. 87 bands (31.3%) were monomorphic among all samples. The proportion of polymorphic bands was 68.7%. Amplification of each primer is presented in Tab. 2.

Fig. 1 illustrates the results of 83 samples obtained with primer OPJ07. The high number of polymorphic bands (i.e. present in at least one sample and/or absent in at least one sample) of wild, native grapes was very different from that of V. vinifera, V. riparia, Kyoho and SO 4. RAPD markers displayed high polymorphism in wild, native grapes. The lowest number of total bands was 6 which were only produced by primer OPV10, including one polymorphic band. The highest number of total bands was 27 produced by primer OPQ04, including 20 polymorphic bands. OPJ07 was the second with 16 polymorphic bands out of a total of 18 scored bands. The average of amplified bands per primer/template was 5.7 (Tab. 2).

According to each template combination banding patterns, OPJ07 could distinguish all accessions excluding Pingli-2 and Pingli-7, Jiangxi-2 and Liuba-11 of V. romanetii Rom. (Figs 1 and 2). OPQ04 could not differentiate between Pingli-2 and Pingli-7 of V. romanetii as well as Zhuoshan-2 (74003) and Zhuoshan76097 of V. amurensis, the remaining samples could be identified by OPQ04. OPJ01 could not dif-

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequences (5'-3')</th>
<th>Total amplified bands</th>
<th>Polymorphic bands</th>
<th>Average amplified bands per template</th>
<th>Polymorphic percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPH19</td>
<td>CTGACCCAGCC</td>
<td>14</td>
<td>12</td>
<td>7.0</td>
<td>85.7</td>
</tr>
<tr>
<td>OPV10</td>
<td>GGACTGCTGCTG</td>
<td>6</td>
<td>1</td>
<td>6.0</td>
<td>16.7</td>
</tr>
<tr>
<td>OPV18</td>
<td>TGTTGGGCTT</td>
<td>17</td>
<td>15</td>
<td>7.0</td>
<td>88.2</td>
</tr>
<tr>
<td>OPP02</td>
<td>TCGGCAACCC</td>
<td>17</td>
<td>14</td>
<td>6.5</td>
<td>82.3</td>
</tr>
<tr>
<td>OPV02</td>
<td>AGTCACCTCC</td>
<td>13</td>
<td>8</td>
<td>4.5</td>
<td>61.5</td>
</tr>
<tr>
<td>OPA15</td>
<td>TTCCGAACCC</td>
<td>16</td>
<td>12</td>
<td>5.0</td>
<td>75.0</td>
</tr>
<tr>
<td>OPV07</td>
<td>GAAACCAGCC</td>
<td>13</td>
<td>8</td>
<td>5.0</td>
<td>61.5</td>
</tr>
<tr>
<td>OPG14</td>
<td>GGATGAGACC</td>
<td>14</td>
<td>11</td>
<td>6.5</td>
<td>78.6</td>
</tr>
<tr>
<td>OPW02</td>
<td>ACCCGCCCAA</td>
<td>11</td>
<td>10</td>
<td>5.5</td>
<td>90.9</td>
</tr>
<tr>
<td>OPW20</td>
<td>ACAGCCCCCA</td>
<td>8</td>
<td>3</td>
<td>5.5</td>
<td>37.5</td>
</tr>
<tr>
<td>OPO05</td>
<td>CCCAGTCACT</td>
<td>12</td>
<td>2</td>
<td>8.0</td>
<td>16.7</td>
</tr>
<tr>
<td>OPU16</td>
<td>CTTGCGCTGA</td>
<td>13</td>
<td>9</td>
<td>6.5</td>
<td>69.2</td>
</tr>
<tr>
<td>OPO10</td>
<td>TCAGAGCCGCC</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
<td>66.7</td>
</tr>
<tr>
<td>OPU13</td>
<td>GCTGCGTCCC</td>
<td>9</td>
<td>6</td>
<td>7.0</td>
<td>66.7</td>
</tr>
<tr>
<td>OPQ04</td>
<td>AGTGCGCTGA</td>
<td>27</td>
<td>20</td>
<td>7.5</td>
<td>74.1</td>
</tr>
<tr>
<td>OPQ07</td>
<td>CCTTCTGACA</td>
<td>18</td>
<td>16</td>
<td>4.0</td>
<td>66.7</td>
</tr>
<tr>
<td>OPQ06</td>
<td>CCACCGGGAGG</td>
<td>17</td>
<td>12</td>
<td>6.0</td>
<td>70.6</td>
</tr>
<tr>
<td>OPQ01</td>
<td>CCCGGCATTA</td>
<td>14</td>
<td>11</td>
<td>6.0</td>
<td>50.0</td>
</tr>
<tr>
<td>OPH08</td>
<td>GAAACACCC</td>
<td>12</td>
<td>9</td>
<td>5.0</td>
<td>75.0</td>
</tr>
<tr>
<td>OPV08</td>
<td>GACTGCGCTCT</td>
<td>12</td>
<td>9</td>
<td>6.0</td>
<td>75.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>278</td>
<td>191</td>
<td>5.7</td>
<td>68.7</td>
</tr>
</tbody>
</table>
ferentiate between Fujian-4 and Lueyang-4 of *V. davidii* Foex, Jiangxi-2 ? and Pingli-2 ? of *V. romanetti* and clones of *V. pseudoreticulata* W. T. Wang. OPH19 could not identify clones of *V. adstricta* Hance and *V. bashanica*. OPP02 could not distinguish between Bai-35-1 ?, Guangxi-1-3 ? and Shangnan-1 ? of *V. pseudoreticulata*, Pingli-2 and Pingli-7 of *V. romanetti*. OPA15 could not differentiate between most clones of *V. quinquangularis* and Liu-9 and Liu-6 of *V. piaekii* Maxim. OPU16 could not identify Nanzheng-1 and 83-4-1 and Shang-24 of *V. quinquangularis*, Fujian-4 and Jinan-1 and Lueyang-4 of *V. davidii*, Zhuoshan-2 (74003) and Zhuoshan76097 and Tonghua-3 of *V. amurensis*.

Based on combined banding patterns, all 73 wild, native grapes were identified by using only one of OPQ04 and OPJ07 together with one of OPJ01, OPH19, OPP02, OPA15 and OPU16. RAPD fingerprints of each wild grape sample were different from the remaining clones. They were converted into polymorphic band data arranged in the form of a 73 x 191 matrix (data not shown); which is part of the Chinese Wild Grape Germplasm Databank. RAPD analysis could identify clones belonging to the same species with similar morphological traits. Bands suitable to distinguish different accessions are summarized in Tab.3, with used primer molecular length of the amplified band. The frequency of these polymorphic bands was less than 10%.

Polymorphism among the wild grapes of China is very large, since a high number of polymorphic bands have been detected using a few random 10-mer primers. The amount of polymorphism we encountered (191 markers obtained with 20 primers) is much higher than the polymorphism previ-

Fig. 1: RAPD fingerprints amplified by primer OPJ07 in some grape germplasms. Number of the clones see Tab. 1.

Fig. 2: Polymorphic bands of the 83 clones amplified by primer OPJ07. A dark box represents the presence, a white box the absence of the marker. Number of the clones see Tab. 1.
<table>
<thead>
<tr>
<th>No.</th>
<th>Specific bands*</th>
<th>No.</th>
<th>Specific bands*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H19-400 P02-600 G14-800 O10-1400 J01-1200</td>
<td>42</td>
<td>P02-350 U16-250 O06-2000 006-1400 W08-1200</td>
</tr>
<tr>
<td></td>
<td>O10-300 W08-600</td>
<td>44</td>
<td>W08-1200 J07-2400</td>
</tr>
<tr>
<td>3</td>
<td>P02-600 G14-800 U13-700 Q04-750 W08-600</td>
<td>45</td>
<td>V18-400 P02-350 G14-1400 O06-2000 W08-1200</td>
</tr>
<tr>
<td>4</td>
<td>G14-800 W02-500 O10-300</td>
<td>46</td>
<td>V18-400 V18-200 J01-700 W08-600</td>
</tr>
<tr>
<td>5</td>
<td>G14-800 O10-300 O10-1400</td>
<td>47</td>
<td>P02-1100 A15-850 Q04-1100 J01-700</td>
</tr>
<tr>
<td>6</td>
<td>H19-1500 H19-400 G14-800 W02-500 O10-300</td>
<td>48</td>
<td>P02-1800 A15-500 W08-500</td>
</tr>
<tr>
<td>7</td>
<td>O10-300 J01-1200</td>
<td>49</td>
<td>P02-1100 A15-850 A15-500 U16-250,</td>
</tr>
<tr>
<td>8</td>
<td>H19-1500 H19-400 J01-1200</td>
<td>50</td>
<td>V01-1600 W02-500 J07-1200</td>
</tr>
<tr>
<td>9</td>
<td>P02-600 V07-1600 W02-500 J07-1200</td>
<td>51</td>
<td>P02-1800 A15-850 O06-1400 W08-500</td>
</tr>
<tr>
<td>10</td>
<td>A15-2000 W02-500 Q04-250</td>
<td>52</td>
<td>A15-850 Q04-750 J01-1200 O06-1800</td>
</tr>
<tr>
<td>11</td>
<td>V18-350 P02-600 A15-800 Q04-250 J07-1200</td>
<td>53</td>
<td>H19-1100 W08-500</td>
</tr>
<tr>
<td>12</td>
<td>G14-800 J01-600</td>
<td>54</td>
<td>V18-1500 W02-1300</td>
</tr>
<tr>
<td>13</td>
<td>G14-1400 O10-1100 O10-350</td>
<td>55</td>
<td>H19-1100 W08-500</td>
</tr>
<tr>
<td>14</td>
<td>V18-400 Q04-250 J01-900</td>
<td>56</td>
<td>P02-1100 A15-850 Q04-750 J07-250</td>
</tr>
<tr>
<td>15</td>
<td>A15-800 P02-500 O10-1400 O10-1100 J01-900</td>
<td>57</td>
<td>V18-1300 V18-1000 O06-1400</td>
</tr>
<tr>
<td>16</td>
<td>V18-400 W02-500 J01-900 J07-1200</td>
<td>58</td>
<td>P02-1100 A15-850 Q04-750 W08-1800</td>
</tr>
<tr>
<td>17</td>
<td>P02-600 A15-2000 A15-800 O10-1000 O10-350</td>
<td>59</td>
<td>U16-250 H08-1500 W08-600</td>
</tr>
<tr>
<td>18</td>
<td>H19-1500 P02-1100 A15-800 O10-1000 O10-350</td>
<td>60</td>
<td>V18-1000 Q04-550</td>
</tr>
<tr>
<td>19</td>
<td>A15-800 O06-600</td>
<td>61</td>
<td>V18-600 Q04-1100</td>
</tr>
<tr>
<td>21</td>
<td>V18-350 P02-800 A15-2000 A15-800</td>
<td>63</td>
<td>V18-1300 U16-250 O06-1400 J07-2200</td>
</tr>
<tr>
<td>22</td>
<td>V18-350 Q04-550</td>
<td>64</td>
<td>U16-250 U13-900 Q04-600</td>
</tr>
<tr>
<td>23</td>
<td>V18-350 Q04-550</td>
<td>65</td>
<td>V18-1300 U13-900 Q04-750 O06-1400</td>
</tr>
<tr>
<td>24</td>
<td>P02-800 O10-1000</td>
<td>66</td>
<td>V18-1300 Q04-600</td>
</tr>
<tr>
<td>26</td>
<td>Q04-250 J01-700</td>
<td>68</td>
<td>Q04-600 Q04-250</td>
</tr>
<tr>
<td>27</td>
<td>P02-800 Q04-600</td>
<td>69</td>
<td>V18-600 U16-250 Q04-250</td>
</tr>
<tr>
<td>28</td>
<td>V18-200 A15-500 G14-400</td>
<td>70</td>
<td>Q04-250 O06-700</td>
</tr>
<tr>
<td>29</td>
<td>P02-1100 A15-500 G14-500 G14-400</td>
<td>71</td>
<td>A15-1200 G14-500 O06-700 H08-1200</td>
</tr>
<tr>
<td>30</td>
<td>V18-1200 G14-800 H08-1400</td>
<td>72</td>
<td>P02-1800 V02-1200 A15-1200 U16-250</td>
</tr>
<tr>
<td>31</td>
<td>G14-800 J01-2300</td>
<td>73</td>
<td>Q04-1700 O06-700</td>
</tr>
<tr>
<td>32</td>
<td>P02-400 Q04-250 O06-2000 J07-1200</td>
<td>74</td>
<td>H19-300 P02-1700 U20-1300 H08-1200 J07-2200</td>
</tr>
<tr>
<td>33</td>
<td>V18-200 P02-800 G14-500 G14-500</td>
<td>75</td>
<td>V02-1200 O10-1100 Q04-1100 J01-1200 H08-1200</td>
</tr>
<tr>
<td>34</td>
<td>G14-800 G14-800 G14-400</td>
<td>76</td>
<td>V18-1300 V18-1100 V02-1200 O10-1100</td>
</tr>
<tr>
<td>35</td>
<td>H19-300 G14-500 G14-400 O06-1800</td>
<td>77</td>
<td>Q04-750 O06-1800</td>
</tr>
<tr>
<td>36</td>
<td>H19-1500 V18-1100 G14-500 G14-400</td>
<td>78</td>
<td>J01-1200 H08-1200</td>
</tr>
<tr>
<td>37</td>
<td>Q04-750 O06-1800</td>
<td>79</td>
<td>O10-350 Q04-1100</td>
</tr>
<tr>
<td>38</td>
<td>H19-1500 P02-800 G14-500 G14-400</td>
<td>80</td>
<td>A15-850 J01-1200</td>
</tr>
<tr>
<td>39</td>
<td>O06-1800 O06-1400</td>
<td>81</td>
<td>Q04-1100 H08-1200 J07-1200</td>
</tr>
<tr>
<td>40</td>
<td>H19-1500 P02-1800 V07-1600 Q04-250 O06-1400</td>
<td>82</td>
<td>P02-1800 V02-1200 A15-850 O10-1100 Q04-1100</td>
</tr>
<tr>
<td>41</td>
<td>V07-1600 G14-800 J01-700</td>
<td>83</td>
<td>P02-1800 V02-1200 A15-850 O10-1100 Q04-1100</td>
</tr>
<tr>
<td></td>
<td>W08-1200 J07-250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Marker notation: last 3 positions of the primer name in Tab. 2 refers to the kit (first letter) and the primer (number) purchased from Operon Technologies followed by the size (base pairs) of amplified DNA fragment.

*"No." is the same as clone No. in Tab. 1.
ously reported for other *Vitis* species (Buscher 1993; Xu 1995; Grando 1996; This 1997). One reason is that RAPD analysis is primer- and sample-dependent, another reason might be that wild, native grapes have different geographical origins and have various flower types. Many species originate from different ecological environments, like *V. amurensis* originating from the cold north-east of China, or *V. quinquangularis* growing in the warm and humid tropics and subtropics.

Intraspecific clones have similar phenotypes but differ in their disease resistance genes, for example, clones of *V. amurensis*, *V. quinquangularis*, *V. pseudoreticulata*, *V. romanitii* and *V. piasecki* differ largely in their resistance to *Plasmopara viticola* (Wang Guoyin 1986), *Agrobacterium tumefaciens* (Chai 1997) or *Elsinoë ampelina* (de Bary) Shear (Wang 1998). Intraspecific variation of RAPD profiles was considerably large although some markers were also present for most of the clones of one species. Within clones of *V. quinquangularis*, three markers (O10-350, O10-1000, U13-900) were present on 5 clones respectively, but all accessions’ profiles differed from each other. Of the 5 specific bands which appeared in 83-4-67(17) and Wei-3(18), three were the same (A15-800, O10-1000 and O10-350) and two were different bands (A15-2000 and P02-600 presented in 83-4-67, P02-1100 and H19-1500 presented in Wei-3). Only two primers, OPA15 and OPP02 or OP191, were needed to differentiate between 83-4-67(17) and Wei-3(18) with similar morphological traits. Nine primers (OPP02, OPP04, OPA15, OPU13, OPO6, OPW02, OPPO10, OPV18 and OPJ01) displayed useful polymorphic banding patterns (Tab. 3) to discriminate 13 clones of *V. quinquangularis*. Only one out of two primers (OPP02 and OPP04) and one out of the other 7 primers were needed for any single individual to determine its identity. Accessions of other wild species also displayed high variation in RAPD profiles. RAPD marker technology potentially provides many polymorphic markers that can be used to survey the plant genome quickly. With this class of markers, the existence of intraspecific variation in wild, native grapes can be examined. We were able to distinguish between accessions. Further studies should be conducted on clone and sequence specific RAPD markers in order to discriminate clones by SCAR (sequence characterized amplified region) markers exactly.

Identifying wild, native grapes in China by RAPD is becoming a practical necessity. The relatively narrow range of morphological traits and the limited number of polymorphic isozyme systems are not adequate to discriminate all the clones of any given species. RAPD analysis could discriminate all wild clones of any given native species, especially similar intraspecific clones with different disease resistance genes. With prudent selection of primers and strictly controlled reaction conditions, it offers a reliable method for the identification of wild grapes and has advantages over many morphologic and chemotaxonomic methods used for plant identification, which are susceptible to environmental variation. Genetic diversity among Chinese wild grapes has been investigated based on RAPD analysis before long (Luo et al. 2001). Our results show that RAPD markers are useful for identifying Chinese wild grapes and analyzing their relationships. In the future these markers may be used to tag disease resistance genes, which would be important to use the high resources of wild *Vitis* native to China.

Acknowledgement

This research was financed by National Key Biotechnology for Tropical Crops.

References

Received April 3, 2001