Response of electron transport rate of water stress-affected grapevines:
Influence of leaf age

F. Tacconi\(^{1}\) and K. J. Sommer\(^{2}\)

\(^{1}\) Istituto Agrario di S. Michele all’Adige, Dipartimento di Produzione Agricola, Trento, Italia
\(^{2}\) CSIRO Plant Industry, Horticulture Unit, Victoria, Australia

Summary

The present study examined the electron transport rate of photosynthesis in response to light for leaves of different age following the imposition of water stress in Vitis vinifera during the growth period when leaf carbon gain is largely used for sugar accumulation into the berries. Vines grown in pots were gradually dehydrated to soil moisture levels of 100, 60, 40 and 25 % of field capacity and at each soil moisture level the photosynthetic light response of selected leaves was recorded using chlorophyll fluorescence analysis. Light response curves (LRC) were established by fitting a model of the form of a non-rectangular hyperbola to the data. Changes in quantum yield (\(\phi\)), the convexity of LRC (\(\beta\)) and the maximum electron transport rate (\(J_{\text{max}}\)), following adjustment to water stress and as a result of leaf age, were analysed and their contribution towards the formation of LRCs was assessed. \(F\) varied little due to leaf age and as a result of falling soil moisture content, whereas \(J_{\text{max}}\) declined strongly following soil dehydration and the decline was exacerbated by leaf aging. Such behaviour suggests that biochemical/stomatal limitations played a more important role in determining the physiological behaviour within the genus has been reported (Düring 1986). For example, Zamboni et al. (1986) found that V. riparia closes its stomata as soon as water becomes limiting while V. berlandieri adjusts the leaf osmotic potential in order to maintain cell turgor. Recently, Tacconi et al. (1998) showed that the choice of rootstock for a given scion strongly influence net photosynthesis in response to a drying soil and under high light intensities. They concluded that the observed reduction in net photosynthesis resulted from biochemical/stomatal limitations and photochemical changes in the photosynthetic apparatus.

Photosynthesis in C\(_3\) plants is known to be very sensitive to drought stress and this is largely ascribed to rapid stomatal closure and a parallel reduction in the uptake and availability of CO\(_2\). Hanaux and Lannoïe (1985) proposed PSTT functioning, estimated by chlorophyll fluorescence, as a measure of water stress and drought resistance in crop species. Hanaux (1992) suggested that water stress has little effect on the functioning of PSTT. Krench et al. (1994) and He et al. (1995) reported that PSTT quantum efficiency of mildly stressed wheat was unchanged. Similar results were obtained by Maury et al. (1996) on sunflower and by Juříček (1994) on field-grown potato. A loss in the PSTT quantum efficiency was noticed only under severe water stress or under mild water stress in combination with high irradiance. When lupin leaf water content fell from 85 to 60 % Meyer and De Kouchkovsky (1995) reported an inactivation of PSTT that was probably due to protein alterations. The same occurred in olive trees when leaf water potential declined to -6 MPa (Ageleopoulos et al. 1996). Fluorescence analysis using the saturation pulse method indicates that during rapid wilting of detached leaves of Hedera canariensis to about 50 % RWC, energization of the photosystems and the thylakoid membrane remain unimpaired at low photon flux densities, i.e. below about 1000 J mol m\(^{-2}\)s\(^{-1}\) (Bilger and Björkman 1990). However, once photon flux densities were above 1000 J mol m\(^{-2}\)s\(^{-1}\) water deficits in leaves rapidly led to lowered rates of open-chain electron transport and photophosphorylation (Björkman and Powell 1984). During (1998) reported that in grapevine water stress associated with high irradiance caused a reduction in quantum efficiency of PSTT resulting in photo-inhibition, but that the damage to PSTT was reversed during the night.

A number of internal and external factors can influence vine response to water stress. Leaf age is one such factor. There are a number of studies that investigated the influence of leaf age on photosynthetic performance in grapevines (Kriedemann 1968, Kriedemann et al. 1970, Trntr\(_{\text{e}}\)r

Key words and abbreviations: photosynthetic electron transport rate (\(J\)), PSII quantum efficiency (\(\text{F}_{\text{v}}/\text{F}_{\text{m}}\)), reduction status of Q electron acceptor (1-sp), quantum yield (\(\phi\)), convexity (\(\beta\)) and maximum electron transport rate (\(J_{\text{max}}\)) of light response curves (LRC), leaf plastochron index (LPI).

Introduction

Plant responses to water stress in the genus Vitis have been extensively studied by many authors (Smart and Coombe 1983, Schultz 1996 a). Generally, a wide variability

Correspondence to: Dr. K. J. Sommer, CSIRO Plant Industry, Horticulture Unit, Private Mail Bag, Victoria, 3505, Australia. Fax: +61-3-5051 3111. E-mail: karl.sommer@pl.csiro.au
et al. 1992, SCHULTZ 1995). However, little is known on how age impacts on photosynthesis of water stressed leaves and how age and water stress interact with regard to the response of photosynthesis to light. Quantification of these factors is important in determining their limitation to CO₂ assimilation and provides valuable information for the development of simulation models of vine carbon gain.

The mathematical description of the response of photosynthesis to light is often described as a non-rectangular hyperbola (THORNLEY 1976) of the form below (foot-note).

The maximum quantum yield of photosynthesis is similar across a wide range of C₃ species (ÖGREN and EVANS 1993) and the maximum photosynthetic rate in the presence of saturating CO₂ partial pressures can be related to the electron-transport capacity of the leaf (EVANS 1987). The convexity or rate of bending (8) describes a transition between those limitations to photosynthesis that are mainly related to quantum yield and those determined by the maximum Rubisco activity. ÖGREN and EVANS (1993) found that this transition, and therefore 8, is strongly dependent on CQ partial pressure. The quantitative meaning of the parameters and their significance for modelling photosynthetic light response as applied to maize has been discussed by STIRLING et al. (1994).

A non-rectangular hyperbola can be employed to model the response of electron transport of photosynthesis to light in a similar way as that of net photosynthesis to light. To that end P and Pₚ must be substituted with Jₑ and Jₑₑₑ, where Jₑ is the total light-driven electron flow of photosynthesis and Jₑₑₑ represents the light saturated value. Total electron transport through photosystem TT (PSTT) can be readily assessed by in vivo chlorophyll fluorescence measurements of intact leaves (GENTRY et al. 1989). Data reported by TACONO and SOMMER (1996, 1999), VALENTINI et al. (1995) respectively for V. vinifera and Quercus cerasifera, showed that Jₑ is a reliable estimator of the photosynthetic capacity of leaves. They also demonstrated that changes in photosynthesis, which constitutes an alternative sink for light-induced electron flow, did not modify the relationship between total electron transport rate (Jₑ) and net photosynthesis.

The present study examined the electron flow of photosynthesis in response to light for leaves of different age following the imposition of water stress. The aim was to quantify effects due to leaf age and water stress on electron transport of photosynthesis during the late vegetative growth period of V. vinifera when leaf carbon gain is largely used for sugar accumulation into the berries. At this relatively late stage water stress in the field can easily occur and leaf age may be an important determinant in the efficient use of water and accumulation of sugar into the berry. The parameters that define the shape of the non-rectangular hyperbola in relation to water deficits and leaf age were quantified under different light regimes and their role in relation to leaf photosynthesis is discussed.

Material and Methods

Experiment layout: One-year-old rootings of cv. Cabernet Sauvignon were planted in 91 high-density polyethylene pots using a standard potting mix (40 % sand, 20 % silt, 20 % peat moss, 20 % perlite v/v). After planting, pots were maintained in the glasshouse under natural light conditions and a day/night temperature regime of approximately 30/15 °C. Plants were always well-watered at 26 % soil moisture content (SMC) and were fertilised to ensure good growth. The mean mid-day irradiance in the glasshouse was around 650 W m⁻² and the mean daily photon flux during the growth period was approximately 33 mol m⁻² d⁻¹. Plants were pruned to 1 shoot per vine and lateral leaves were removed immediately after they appeared. When primary shoot growth ceased, as indicated by a loss in the curvilinear shape of the vegetative apex, leaves were 23-24 nodes long. Leaf plastochron index (LPT) was estimated according to the method described by SCHULTZ (1993) to ensure that only leaves of defined developmental stages were measured. On three plants, 3 leaves per plant with an LPT of 17, 7 and 2 respectively were selected. The selected leaves were positioned on approximately the 4th, 14th, and 20th node from the base of the shoot and their chronological age was respectively, 85, 70 and 30 d from the time of unfolding. The range in age should be representative of that found in the field shortly before veraison.

After the first measurement, soils were gradually dehydrated to moisture levels of 100, 60, 40 and 25 % of field capacity, corresponding to 26, 17, 10 and 7 % respectively of volumetric SMC. A period of about 10 d was required to dehydrate the potted vines from near field capacity (26 % SMC) to near wilting (7 % SMC). At each soil moisture level, light response curves (LRC) of chlorophyll fluorescence were determined for selected leaves, using a PAM-2000 fluorometer (Walz, Effeltrich, Germany). Plants had been maintained in the shade before a series of measurements was induced. Soil moisture was monitored using a TDR instrument (TRASE, Soilmoisture Equipment Corp. Santa Barbara, CA, USA). The instrument is equipped with a 20 cm long ‘buriable’ waveguide that was inserted into the soil in a vertical direction. Plants similar to those whose light response was regularly measured were maintained in the glasshouse under the same environmental conditions. They were used to determine the relative water (RWC) content of leaves of a similar age (LPT) as those used for monitoring light response. Leaf discs were punched from selected leaves at dawn and their RWC was determined according to the method of BARRS AND WEATHERLEY (1962).

Generation of light response curves (LRC): Plants were taken from the glasshouse and were maintained under dark conditions for at least 2 h before a measuring cycle was initiated. At the beginning of each measurement, maximal (Pₘₜ), minimal (Pₗₜ) and variable

\[
P = (cD^*PFD + P_{\text{min}} - ((cD^*PFD + P_{\text{min}})^2 - 4 + 8.0 + \text{cD}^*P_{\text{min}}^* \text{PFD}^2)/2*8)
\]

where P is the photosynthetic rate, cD is the maximum quantum yield, PFD is the incident irradiance, Pₗₜ is the light-saturated photosynthetic rate and 8 is a parameter which characterizes the convexity of the curve.
fluorescence ($F = F - F$) were determined on dark-adapted leaves using a PAM-2000 fluorometer. Leaves were then exposed to a pre-programmed sequence of photon flux densities (PFD) ranging from 10 to 1600 \text{umol m}^{-2} s^{-1} (10, 15, 20, 30, 50, 70, 100, 150, 250, 350, 500, 1200 and 1600). Leaves were exposed for a period of five minutes at each flux density, long enough to reach steady state of F. Prior to the end of each measurement a single saturating pulse (0.8s) was applied to determine F and F. The saturation light pulse was followed by a far red light pulse in order to determine F, which was used to calculate the quenching coefficient for chlorophyll fluorescence according to Bilger and Bjorkman (1990). The reduction status of the PSTT electron acceptor (1-4) was calculated as 1-$(F - F)/F$ and non-photochemical quenching (NPQ) as $(F/F) - F$. These coefficients were chosen because they are less sensitive to variations in F. The value of F, recorded after turning off the actinic light, was used to calculate F' from F of which the latter was obtained by applying a saturating pulse in the preceding light period. Analysis of PSTT quantum yield also provided an estimate of the total electron transport rate (J) according to Genty et al. (1989) and Valentini et al. (1995). J, in turn, was used to quantify photosynthetic light response of vine leaves under the imposed experimental treatments.

Estimation of photosynthetic electron transport rate (J): Photosynthetic electron transport rate (J) is normally estimated as the product of

\[J = \frac{F/F}{F/F} \times 0.5 * \text{PFD} \]

where F/F is PSTT quantum efficiency measured through the fluorescence assay, 0.5 denotes that the transport of one electron requires absorption of two quanta as two photosystems are involved, a is the leaf absorption coefficient (normally 0.87) and PFD the photon flux density. The relationship between fluorescence yield (F/F) and quantum yield of carbon fixation (FCO) was determined for well-watered vines comprising leaves representative of the spread in age. Under photosynthetic conditions the latter was estimated as

\[F/F = \frac{P + PH + RD}{PFD} \]

where P, PH and RD are net CO$_2$ assimilation rate, photosynthetic and day respiration rates, respectively. Photosynthetic and day respiration rates were estimated as reported in Tacono and Sommer (1996). The aim was to test if leaf age had an influence on the relationship between the two variables. Net assimilation rate using gas exchange (LT-COR 6200 system, Lincoln, NE, U.S.A.) was measured on the same leaves that were used to determine light response curves of J. Light response curves were generated by exposing plants for 30-60 min to each level of a sequence of PFDs, approximately 0, 0.5, 25, 50, 100, 200, 400, 800, and 1600 \text{umol m}^{-2} s^{-1}. Placing plants under shade cloth of increasing density generated the range in light levels. The period of 30-60 min was chosen in order to achieve gas exchange steady state but to avoid photo-inhibition that occurs when grapevine leaves are exposed to high irradiance for a prolonged period of time (Tacono and Sommer 1996).

An estimate of the parameters of the relationship between J and F, as described by Valentini et al. (1995) for Quercus cerri L., was derived as follows:

\[J = PFD * cDe; \]

where

\[\text{cDe} = \frac{4(F/F_{-} - b) / k}{k}; \]

4 denotes the number of electrons needed per CO$_2$ fixed, k and b respectively are the slope and y-intercept of the regression line that fits the relationship of F/F_{+} and cDICO. A combination of equations (4) and (5) yields the following expression:

\[J = PFD * \frac{4(F/F_{+} - b) / k}{k}; \]

Tt's combination with equation (2) provides the following solution for k, assuming an ideal relationship between F/F_{+} and cDICO, where b equals 0 and a equals 0.87:

\[k = 4(0.5/\sigma); \]

\[k = 9.2. \]

Data analysis: A non-linear procedure based on a Marquardt algorithm (Wilkinson 1990) was used to find the least-squares solution and thus obtain the values of the parameters cD, d and J of the light response curves. The curves were fitted for each set of measurements and the parameters averaged in order to obtain the mean values for different leaf age and water stress treatments. Estimates of the parameters of linear and non-linear models fitted to the LRC and ANOVA procedures were performed in SYSTAT (Wilkinson 1990).

Results

Plant water status, leaf age and light response curves: Basal leaves, positioned on node 4, had an mean LPT of 16.6 and were around 85 d from unfolding. Medium leaves, positioned on node 9, were around 70 d from unfolding with an LPT of 6.9. Apical leaves, positioned on node 20 had an LPT of 2.3 and were 30 d from unfolding. The pre-dawn relative water content (RWC) in respect to leaf age was similar within the imposed watering regimes. Therefore, age did not appear to influence the hydration status of leaves, neither for well-watered nor for water-stressed leaves (Tab. 1). There was a strong positive relationship between RWC and volumetric soil moisture (RWC = 91.747 + 0.1781 * SMC; $r^2 = 0.87$ *** - data not shown). During the imposition of water stress, soil moisture declined steadily from 26.6, 16.8, 10.5 to 6.7%, respectively corresponding to 100, 65, 40 and 25% of field capacity and to 96.3, 94.7, 93.6 and 92.8 % pre-dawn RWC.

The relationship between quantum yield of PSTT (F/F) and quantum yield of carbon fixation (FCO) was unaffected by leaf age (LPT) when plants were well-watered (Fig. 1). A single line fitted the trend and the resulting relationship was used for the computation of photosynthetic electron transport rate (J) of all leaves irrespective of age:

\[J = \frac{PFD * Fe}{1.644}; \]

where $Fe = 4(F/F_{+} + 0.0089) / 1.644$, since

\[DF/F_{+} = 0.0089 + 1.644 * FCO_{0}; \]

\[r^2 = 0.98; * * * \]

The non-rectangular hyperbola provided a good fit to the relationship of total electron transport rate (J) vs PFD irrespective of watering regimes and leaf age, with coefficients of determination (r^2) ranging from 0.881 to 0.925. In concert with a decline of soil moisture from 26 to 7 %, J declined irrespective of LPT, but more so in older, basal leaves
Reduction status of Q acceptor (1-qa) and non-photochemical quenching (NPQ) as influenced by soil moisture content (SMC), pre-dawn relative water content (RWC), leaf age (LPI) and photon flux density (PFD). Values for Q and NPQ are means of 3 plants. Values for ± standard deviation of the mean are given in brackets, where n = 33, 3 and 3 for PFD < 500, 500-1500 and > 1550, respectively.

<table>
<thead>
<tr>
<th>SMC</th>
<th>RWC</th>
<th>LPI</th>
<th>PFD (\text{\text{\text{\mu}mol Q m^{-2}s^{-1}}})</th>
<th>1-q_a</th>
<th><500</th>
<th>500-1500</th>
<th>>1550</th>
<th><500</th>
<th>500-1500</th>
<th>>1550</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1(0.1)</td>
<td>0.4(0.1)</td>
<td>0.6(0.02)</td>
<td>0.5(0.7)</td>
<td>1.6(0.9)</td>
<td>2.1(1.0)</td>
</tr>
<tr>
<td>96.2(0.1)</td>
<td>2.3(0.2)</td>
<td>0.1(0.1)</td>
<td>0.4(0.1)</td>
<td>0.6(0.02)</td>
<td>0.5(0.7)</td>
<td>1.6(0.9)</td>
<td>2.1(1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.1(0.1)</td>
<td>6.9(0.2)</td>
<td>0.1(0.1)</td>
<td>0.5(0.1)</td>
<td>0.7(0.02)</td>
<td>0.2(0.2)</td>
<td>1.3(0.3)</td>
<td>1.8(0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.6(0.2)</td>
<td>16.6(1.3)</td>
<td>0.1(0.1)</td>
<td>0.5(0.2)</td>
<td>0.7(0.04)</td>
<td>0.4(0.3)</td>
<td>1.7(0.4)</td>
<td>2.1(0.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean 26.6(0.8)</td>
<td>8.6(6.0)</td>
<td>0.1(0.1)</td>
<td>0.5(0.1)</td>
<td>0.7(0.04)</td>
<td>0.4(0.3)</td>
<td>1.6(0.6)</td>
<td>2.0(0.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.9(0.5)</td>
<td>2.3(0.2)</td>
<td>0.1(0.1)</td>
<td>0.5(0.1)</td>
<td>0.7(0.02)</td>
<td>0.3(0.2)</td>
<td>1.4(0.5)</td>
<td>2.0(0.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.2(0.9)</td>
<td>6.9(0.6)</td>
<td>0.1(0.1)</td>
<td>0.5(0.1)</td>
<td>0.7(0.04)</td>
<td>0.4(0.3)</td>
<td>1.7(0.3)</td>
<td>2.0(0.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.4(0.7)</td>
<td>16.6(1.3)</td>
<td>0.1(0.1)</td>
<td>0.6(0.2)</td>
<td>0.7(0.05)</td>
<td>0.5(0.5)</td>
<td>2.1(0.2)</td>
<td>2.4(0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean 6.7(0.3)</td>
<td>8.6(6.0)</td>
<td>0.1(0.1)</td>
<td>0.5(0.1)</td>
<td>0.7(0.05)</td>
<td>0.4(0.4)</td>
<td>1.7(0.4)</td>
<td>2.1(0.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: Relationship between Quantum Yield of Photosystem II \(\frac{\Delta F}{F'_{\text{E}}} \) and quantum yield of carbon fixation \(\phi CO_2 \) measured under photorespiratory conditions for well-watered plants.

Fig. 2: Light response curves (LRC) of photosynthetic electron transport rate \(i_L \) determined for leaves of different age (LPI=leaf plastochron index) and soil moisture levels (SMC=soil moisture content). Vertical bars represent standard errors of the population mean (n= 468).

\(\text{ Influence of leaf age and soil moisture content on } CD, \delta \text{ and } J_x : \) There was a positive linear relationship between the maximum quantum yield of LRC \((\delta) \) and SMC, even though the changes in \(\delta \text{D} \) were limited to a relatively small range, extending from values of 0.196 to 0.181 (Fig. 3 A). The slope and intercept of the linear regression for \(\delta \text{D} \) were similar for leaves of different
Electron transport rate of photosynthesis

![Graph](image)

Fig. 3: Relationship between the parameters of the photosynthetic light response curves (ϕ = quantum yield, J_{tr} = maximum electron transport rate, B = rate of bending) and soil moisture content, estimated for leaves of different age (LPI = leaf plastochron index). Vertical and horizontal bars represent standard error of the mean ($n = 12$).

Maximum electron transport rate (J_{tr}) was linearly and positively related to soil moisture content but the slopes of the regression lines differed with regard to leaf age (Tab. 2; Fig. 3 B). Maximum electron transport rate was always highest for apical leaves (LPT 2.3), regardless of soil moisture content, followed by leaves of a medium LPT (6.9) and by basal leaves (LPT 16.6) whose rate was substantially lower.

In addition, J_{tr} of basal and of medium leaves declined more steeply with a decline in soil moisture relative to apical leaves. The convexity parameter (φ), irrespective of leaf age (LPT), followed an exponential relationship reaching a maximum at around 16% soil moisture (Fig. 3C). Convexity of basal leaves changes very little across the observed range of soil moisture contents. Convexity of well-hydrated leaves was higher for basal than for either medium or apical leaves. Under less well-hydrated conditions, 8 of basal leaves was higher relative to medium but lower relative to apical leaves. For medium and apical leaves, 8 was optimal at soil moisture levels around 16% but declined towards either side and, regardless of soil moisture content, 8 of apical leaves was always higher than that of medium leaves.

Discussion and Conclusion

Plants have developed protective mechanisms that enable dissipation of excess radiation from the photosynthetic system. Excess energy can be dissipated either within the photosystem by photochemical quenching, e.g., through photorespiration, or by non-photochemical quenching (HAVUX 1992). This process is often associated with a reduction in the efficiency of maximum quantum yield of PSTTT and therefore is termed photoinhibition. Grapevine leaves in the field may be affected by photoinhibition and young, immature leaves, less than 10-15 d from emergence, are often found to be more susceptible than mature leaves that are older than 15 d (TACONO and SOMMER 1996). The process is often exacerbated by environmental stresses such as high temperature and drought (POWLES 1984, DURING 1998).

It might be argued that the interpretation of the light response curves in the present study was compromised by

Table 2

Estimated parameters (a, b, c) and coefficients of determination (r^2) of equations describing the relationship between the parameters of the light-response curve (ϕ, J_{tr}, and B, as Y in the equation) and percent soil moisture (X in the equation). Parameters were estimated for leaves of different age as indicated by the leaf plastochron index (LPI; n = 12; ***, ** indicates significance at P < 0.01 and 0.001, respectively).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
<th>Leaf age (LPI)</th>
<th>Equation parameters</th>
<th>r^2</th>
<th>P>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>$Y = a + bX$</td>
<td>2.3</td>
<td>0.180</td>
<td>0.00049</td>
<td>0.652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.9</td>
<td>0.180</td>
<td>0.00034</td>
<td>0.420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.6</td>
<td>0.183</td>
<td>0.00050</td>
<td>0.666</td>
</tr>
<tr>
<td>J_{tr}</td>
<td>$Y = a + bX$</td>
<td>2.3</td>
<td>0.6096</td>
<td>0.215</td>
<td>0.519</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.9</td>
<td>0.5213</td>
<td>0.444</td>
<td>0.592</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.6</td>
<td>0.3524</td>
<td>0.541</td>
<td>0.620</td>
</tr>
<tr>
<td>B</td>
<td>$Y = a + bX,e^{cX}$</td>
<td>2.3</td>
<td>0.488</td>
<td>0.076</td>
<td>-0.078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.9</td>
<td>0.409</td>
<td>0.070</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.6</td>
<td>0.670</td>
<td>0.016</td>
<td>-0.058</td>
</tr>
</tbody>
</table>
photo inhibition. Our results suggest that this was not the case. The experimental protocol consisted of a pre-programmed sequence of light exposures to determine photosynthetic light response (LRC) of single leaves. The PSTT electron acceptor never attained a reduction status (1-\(q_e\)) that is believed to predispose PSTT to photoinhibitory damage due to water deficits or leaf age (Tab. 1). Similarly, the behaviour of non-photochemical quenching (NPQ) also suggested an absence of photoprotective processes due to water deficits or leaf age (Tab. 1). Therefore, the observed differences in the behaviour of the parameters of the LRC relationships, i.e. a shift in quantum yield (cD), saturated levels of photosynthetic electron transport (\(J_{sat}\)) or rate of bending of photosynthetic light response curves (B), were directly attributable to the imposed water regimes or leaf age.

Several authors have shown the existence of a linear relationship between \(\Phi/F_{m}^{\prime}\) and the quantum yield of carbon fixation (cDCCO) established under non-photorespiratory conditions (Cornic et al. 1989, Genty et al. 1989, Cornic and Briantais 1991). In the present experiment parallel measurements of gas exchange and fluorescence emission were made under photoperiodic conditions and pre-defined light regimes of increasing PFD, using well-watered plants. Results showed a linear fit with a slope of around 14.6 which was different to the 'ideal relationship', with a slope of around 9.2 (see Materials and Methods). Working under non-photoperiodic conditions Genty et al. (1989) for Zea mays and Oquist and Chow (1992) for Hordeum vulgare determined values of around 9. The discrepancy in the slopes is probably attributable to additional sinks for light-driven electrons or to uncertainties regarding the estimation of day respiration. However, the relationship between \(\Phi/F_{m}^{\prime}\) and cDCCO was found to be independent of leaf age suggesting that leaf absorbance did not change as a result of aging. This is in contrast to results obtained by Schultz (1996) who showed that in Vitis vinifera absorbance is low (60-70 \%) for young apical and old basal leaves on the shoot and high for fully matured but not yet senescent leaves (85-95 \%). Presumably, in the present experiment, basal leaves did not receive any reciprocal shade and the younger, apical leaves had already attained full maturity at the time the experimental treatments were imposed.

Leaf age affected the parameters that define the photosynthetic light-response curve when plants were undergoing adjustment to water deficits (Fig. 3). Results from previous studies using other plant species suggest that light saturated photosynthesis follows a tri-phasic response with respect to leaf age (Dwyer and Stewart 1986, Sterling et al. 1994). This course is characterised by a rapid increase to a maximum rate, then reaches a plateau that is followed by a non-linear decrease (Marshall and Bischo 1980, Miranda et al. 1981). Unlike the typical tri-phasic response, our data would suggest maximum electron transport (\(J_{sat}\)) in relatively young, apical leaves was similar to that of leaves in a medium position on the shoot (Fig. 3B). It is likely that the apical leaves in the present experiment (30 d from unfolding), in spite of their low LPT, were physiologically mature. According to Schultz (1993) apical leaves with an LPT of 2 should have displayed very low rates of \(J_{sat}\) but instead behaved like fully expanded adult leaves. The results confirm that LPT alone is not always a suitable indicator of the physiological leaf age but should always be considered in relation to the chronological age particularly after leaf appearance has ceased.

Unlike \(J_{sat}\), quantum yield (cD) varied little during leaf development and this behaviour is consistent with observations made by Sterling et al. (1994). Also, cD remained relatively constant with a fall in the level of soil hydration, whereas \(J_{sat}\) declined strongly and even more so in basal leaves. This indicates that biochemical/stomatal limitations played a more important role than biophysical processes of energy transfer and electron transport in determining the water-stress related decline of photosynthesis.

The changes in the LRC convexity parameter (B) were less uniform (Fig 3C). Under well-watered conditions, B was highest for basal leaves and only small changes were obvious during adjustment to water stress. Large gradients of light within the leaf, associated with a high chlorophyll content, could result in a gradual transition between the initial slope and upper asymptote (Sterling et al. 1994) but this only explains the higher values of B in older leaves. In contrast, the sudden rise of B in young leaves, following a slight decline in soil moisture, is more likely due to a superior elasticity of their palisade and mesophyll tissues and an associated rapid change in mesophyll conductance relative to older leaves (Loreto et al. 1994). Furthermore, young leaves are thinner than adult leaves and Laub et al. (1997) have shown that leaf thickening decreases CO₂ diffusion in the mesophyll. Tissue differences in leaf thickness between basal and medium compared to apical leaves may have led to a lowering of the CO₂ concentration and an associated decline of Rubisco activity (Rienou et al. 1990) under conditions of water stress. This would explain the differential response of B in relation to leaf age when plants experience water stress. It also may explain the initial sharp rise of B followed by a steady decay due to a further decline in soil moisture. At high soil moisture, B of medium leaves was similar to that of apical leaves but as soil moisture declined their capacity to adjust B was much lower than in young apical leaves. This was probably because of a less elastic photosynthetic leaf tissue in medium and basal as compared to apical leaves. This also confirms that in our experience chronologically young leaves of about 20 d from appearance were physiologically mature. They behaved unlike newly emerged leaves, whose photosynthetic capacity is often limited by intrinsic regulatory and metabolic factors that are reflected in low values of B (Baker and Oer 1992).

There are examples in the literature that illustrate limitations to the physiological significance of possible changes in B, cD and \(J_{sat}\). For example, it has been pointed out that these parameters are not completely independent and B may interact with cD during the fitting procedure. In some cases this may lead to unrealistic results (Leverenz 1988) such that, when \(J_{sat}\) declines and cD would remain constant, 8 will likely increase. One should be aware of such limitations and take them into account when trying to interpret physiological behaviour.

Additionally, since cD is related to incident radiation, rather than absorbed radiation, it may be quite different from the actual quantum yield if substantial absorption changes
Electron transport rate of photosynthesis

143

occur. We did not attempt to verify potential changes in leaf absorption due to water stress. However, we did not observe any leaf wilting or yellowing due to water stress treatments. In addition, measurements of leaf relative water content indicated that stress was not severe and therefore was unlikely to strongly influence leaf absorption.

Our results demonstrate that vines are able to adapt their photosynthetic processes to a reduction in water availability. Young, mature leaves this was expressed in a higher photosynthetic capacity and a higher tolerance to water stress. Young, fully expanded leaves accounted for about 10% of the total shoot leaf area at veraison and represented an important source of carbohydrate assimilation during berry ripening. Under conditions of water stress and high levels of PFD they probably accounted for around 15% of the shoot photosynthetic electron transport rate. From a practical point of view it is therefore desirable to make management decisions that ensure the continued functioning of young leaves late in the season. For example, care should be taken during summer hedging in order to avoid or minimise damage to young leaves. Alternatively, training and/or management systems should be adopted that avoid excessive vegetative growth and therefore require minimal summer hedging.

References

- <i>1995: Grape canopy structure, light microclimate and photosynthesis. I. A two-dimensional model of the spatial distribution of
surface area densities and leaf ages in two canopy systems. Vitis 34, 211-215.

Received March 20, 2000