Isolation and characterization of cryotolerant *Saccharomyces* strains

by

CATHERINE MASSOUTIER, H. ALENANDRE, M. FEUILLAT and CLAUDINE CHARPENTIER

Institut Universitaire de la Vigne et du Vin, Laboratoire d’Œnologie, Dijon, France

Summary: Cryotolerant *Saccharomyces* strains were isolated from grape must (Pinot noir) using the enrichment method (CASTELLARI et al. 1992). Eleven cryotolerant strains were collected which all belonged to the *S. uvarum* species (Melibiose test and karyotype). Fermentations were carried out at 10 and 25 °C, the level of fermentation products was compared with those produced by mesophilic yeasts. Regardless of temperature, cryotolerant yeasts (SY055 and 12233) produced twice as many isobutyl and isoamyl alcohols as mesophilic yeast (FB) and 2-phenethyl alcohol was produced by cryotolerant yeasts at levels 4 times as high as by mesophilic yeasts. The potential of these yeasts for oenological application is discussed.

Key words: Saccharomyces, cryotolerance, low temperature, wine composition, isobutyl alcohol, isoamyl alcohol, 2-phenethyl alcohol.

Introduction

Among wine and beer yeasts, only some *Saccharomyces cerevisiae* strains are able to ferment well at low temperatures. Cryotolerant or cold-resistant strains ferment well between 6 and 30 °C (rather than between 12 and 36 °C for mesophilic) with an optimum < 30 °C. WALSH and MARTIN (1977) reported that these cryotolerant *S. cerevisiae* strains belong more frequently to the p.r. (rather than between 12 and 36 °C) with an optimum < 30 °C. WALSH and MARTIN (1977) reported that these cryotolerant *S. cerevisiae* strains belong more frequently to the p.r. (rather than between 12 and 36 °C) with an optimum < 30 °C.

The purpose of this study was to isolate and collect cryotolerant yeasts which could be interesting from an oenological point of view. After identification the cryotolerant strains were checked by fermentation and growth tests in synthetic must. Then juice from two different temperatures (25 and 1 °C).

Those wines were produced with a mesophilic strain at 25 °C and with a cryotolerant strain at 1 °C. Thus, it has been reported that cryotolerant yeasts ferment well at low temperatures. However, there is no report on the produced metabolites of these yeasts at 10 °C. Thus, mesophilic and cryotolerant strains were compared in a biometric study analysing their action on the amount of glycerol, ethanol, higher alcohols, medium chain fatty acids and esters.

The study was also carried out at low temperature (10 °C) to compare the production of these compounds with those produced at an intermediate temperature (25 °C).

Materials and methods

Yeast strains

Sample collection: This study was carried out in 1996 with yeasts isolated from Pinot noir grapes in Burgundy vineyards. The cryotolerant yeasts were isolated by enrichment from grape must according to CASTELLARI et al. (1992). Several samples consisting of 500 g of grapes were collected aseptically, placed in sterile plastic bags, stored at +2 °C for 1-2 d and then pressed. Fifty-four samples of must were collected and kept in sterile jars and incubated at +4 °C. Strain N°12233, cryotolerant yeast of the Diproval collection, and Esave and Fermol Bouquet (*S. cerevisiae*, LSA Pascal Biotech) were also used as references for cryotolerant and mesophilic strains, respectively.

Strain isolation: Isolation from must was performed as soon as the first signs of fermentation became visible, i.e. after 20-45 d. Eighteen jars out of 54 showed a positive fermentation and were examined. Two samples of 1 ml were withdrawn from each positive fermentation, diluted and then plated on Wickerham medium (10 g·l⁻¹ glucose, 5 g·l⁻¹ bactopeptone Difco, 3 g·l⁻¹ yeast extract Difco, 3 g·l⁻¹ malt extract, 20 g·l⁻¹ agar agar) for single colony isolation. The plates were then incubated at 4 °C. Only cultures with clearly different cell morphology and colony traits were isolated from each plate. Nineteen colonies were isolated and stored on Wickerham agar for further investigations.

Strain identification: To identify strains, physiological tests were carried out according to KREGER VAN RUT (1984) and BARNETT et al. (1990). The API 20C identification system (BioMérieux), the melibiose fermentation test, the *NO₃⁻* assimilation and the sporulation test were used. The melibiose test was carried out in a chemically defined broth (Yeast Nitrogen Base, Difco 6.7 g·l⁻¹) with melibiose as sole carbon source, Bromothymol blue (0.01 g·l⁻¹) and a Durham tube for gas detection.

The nitrate assimilation test was carried out in liquid medium (Yeast Carbon Base, Difco 11.7 g·l⁻¹) containing 0.78 g·l⁻¹ of potassium nitrate. Pulsed-field electrophoresis: The TAFE system (Transverse Alternating Field Electrophoresis) was employed to separate the chromosomal DNA. Samples of chromosomal DNA were prepared by the method of VEZINHET et al. (1990) from yeast cells grown in 10 ml of
were able to identify two yeast species, *Saccharomyces* (*S. cerevisiae*) and *Kloeckera* (apiculate yeast) in one culture. The 18 *Saccharomyces cerevisiae* cultures were identified as *uvarum* 11 (Mel+), *cerevisiae* 4 (Mel-) and *bayanus* 3 (Mel-).

In order to confirm the identification of yeast strains performed with a biochemical test, karyotypes of the 18 isolated *Saccharomyces* were determined. Compared to those of *S. cerevisiae* (Mel-), the electrophoretic karyotypes of *S. uvarum* (Mel+) showed some differences in the number and mobility of the chromosomal bands. Thus we could distinguish between *S. cerevisiae* and *S. uvarum* by two specific chromosomal bands, a and b, indicated by arrows (Figure). Both bands are present only in *S. uvarum* (KISHIMOTO and GOTO 1995). An additional band c is characteristic for *S. cerevisiae* but this could not be found in *S. uvarum* (Figure).

Results and Discussion

Strain isolation and identification: We were able to identify two yeast species, *Saccharomyces* (*S. cerevisiae*) in 18 cultures and *Kloeckera* (apiculate yeast) in one culture. The 18 *Saccharomyces cerevisiae* cultures were identified as *uvarum* 11 (Mel+), *cerevisiae* 4 (Mel-) and *bayanus* 3 (Mel-).

Fermentation and growth tests: To confirm the cryotolerant characteristic of isolated yeast the growth and fermentation tests of the 12 strains of *S. uvarum* were compared with 4 strains of *S. cerevisiae* (Tab. 1). To compare the behaviour of cryotolerant strains with mesophilic strains, fermentations were conducted at 10 °C (low temperature) and at 25 °C (intermediate temperature). 10 °C was chosen instead of 4 °C since at this temperature fermentation with *S. cerevisiae* mesophilic strain species stuck (data not shown).

Extraction, **analysis by gas chromatography** and **identification of major volatile compounds**: Extraction and analysis by gas chromatography and identification of major volatile compounds of the fermenting juice were carried out according to the method of BERTRAND (1988), with the exception that nonanoic acid was used instead of octan-3-ol as internal standard. The ethanol concentration was measured by gas chromatography, the final sugar concentration by the dinitrosalicylic acid method (MILLER 1959). The ethanol concentration was measured by gas chromatography, the final sugar concentration by the dinitrosalicylic acid method (MILLER 1959).

Fermentation: Pinot noir grape juice (1.4 l) with 218 g·l⁻¹ sugar, 7.7 g·l⁻¹ total acidity (as H₂SO₄), 1.12 g·l⁻¹ malic acid and 4 g·l⁻¹ of SO₂ was inoculated with 10⁶ cells·ml⁻¹, with 3 different strains (SY055: *S. uvarum*, a cryotolerant yeast isolated as described above; 12233: *S. uvarum*, a cryotolerant yeast used as a reference for cryotolerant strain and Fermol Bouquet: *S. cerevisiae*, a mesophilic yeast.

Fermentations were conducted at 10 and 25 °C. Samples were taken during the alcoholic fermentation and analysed for the sugar concentration, glycerol and ethanol. The glycerol analysis was carried out enzymatically using specific kits (Boehringer Mannheim, Germany). Fermentations with cryotolerant yeasts were usually completed in 10-12 d at 10 °C and in 6-7 d at 25 °C. Extraction, analysis by gas chromatography and identification of major volatile compounds of the fermenting juice were carried out according to the method of BERTRAND (1988), with the exception that nonanoic acid was used instead of octan-3-ol as internal standard. Extractation and wine analysis was carried out in triplicate. Gas chromatography was performed with a Chrompack CP 9001, a flame ionisation detector and a capillary column Carbowax 20M (60 m x 0.25 mm x 0.2 μm). Oven temperature was raised from 40 to 200 °C at a rate of 2 °C·min⁻¹. Nitrogen was used (22 ml·min⁻¹) as carrier gas. Both, injector and detector were operated at 250 °C.
Cryotolerant *Saccharomyces* strains

Table 1

Growth and fermentation characteristics of selected cryotolerant wine yeasts at various temperatures

<table>
<thead>
<tr>
<th>Strains</th>
<th>Growth rate (h⁻¹) at 10 °C</th>
<th>Fermentation rate (CO₂, mg/100 ml for 0-12 days) at 10 °C</th>
<th>Ethanol yield (v/v, %) at 10 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces uvarum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group I</td>
<td>SY054</td>
<td>0.31</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>SY046</td>
<td>0.41</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>SY043</td>
<td>0.21</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>SY045</td>
<td>0.21</td>
<td>75</td>
</tr>
<tr>
<td>Group II</td>
<td>SY014</td>
<td>0.11</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>SY028</td>
<td>0.09</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>SY005</td>
<td>0.10</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>SY029</td>
<td>0.10</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>SY062</td>
<td>0.08</td>
<td>96</td>
</tr>
<tr>
<td>Group III</td>
<td>12233</td>
<td>0.24</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>SY066</td>
<td>0.21</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>SY055</td>
<td>0.20</td>
<td>112</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group II</td>
<td>Fermol Rouge</td>
<td>0.11</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Fermol primeur</td>
<td>0.10</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Fermol Bouquet</td>
<td>0.18</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>SY021</td>
<td>0.12</td>
<td>96</td>
</tr>
</tbody>
</table>

a = Fermentation tests and growth were carried out in 125 ml synthetic medium containing 6.7 g·l⁻¹ Yeast Nitrogen Base Difco, 200 g·l⁻¹ glucose, 3 g·l⁻¹ tartaric acid, 2 g·l⁻¹ malic acid, 0.3 g·l⁻¹ citric acid, 2 g·l⁻¹ asparagin and pH was adjusted to 3.5.

b = Fermentation rates were expressed by the weight of CO₂ produced.

c = Ethanol concentrations were measured by gas chromatography at the end of fermentation.

ND = not determined because it took more than 130 days to finish fermentation.

Among the isolated yeasts, we can distinguish between three groups:

I: Yeasts which ferment well at 10 °C but which have a low production of ethanol at intermediate temperatures. At 10 °C they have a growth rate of 0.2-0.41 h⁻¹ and show a good fermentability at low temperature (strains SY054 and SY046). They are named 'cryotolerant' yeasts (KISHIMOTO et al. 1993) and correspond to group A according to WALSH and MARTIN (1977).

II: Yeasts which ferment well only at 25 °C. They have an optimum temperature range of 30-36 °C and grow with difficulty at low temperature (Fermol Bouquet, Fermol Rouge, SY021, Tab. 1). They are named mesophilic yeasts and correspond to group B according to WALSH and MARTIN (1977). They ferment at both temperatures and its ethanol yield was similar to that of *S. cerevisiae*. On the other hand, the ethanol yield of cryotolerant yeasts is lower (1.9-3.2 %) when fermentation is conducted at 25 rather than at 10 °C. In contrast, *S. cerevisiae* showed higher yields of ethanol at 25 °C.

III: Yeasts fermenting well at 10 and 25 °C, with a normal production of ethanol at intermediate temperatures. They are named 'cryophilic' yeasts, too (strains 12233, SY066, SY055, Tab. 1).

Therefore, groups I and III include cryotolerant yeasts whereas group II includes mesophilic yeasts. At low temperature (10 °C) the specific growth rate and fermentability of cryotolerant yeasts were superior to the mesophilic yeasts. During fermentation at 10 °C, the CO₂ evolution velocity of cryotolerant yeasts ranged from 1.7 to 1.9 mg CO₂·100 ml⁻¹ for 0-20 d. These figures were 2-2.5 times as high as those of *S. cerevisiae*.

Fermentations: To determine differences in the composition of wine produced with the mesophilic *S. cerevisiae* or with the cryotolerant *S. uvarum* at 25 and 10 °C the amount of glycerol and ethanol produced at the end of the fermentation was determined (Tab. 2). At 25 °C, the cryotolerant strains SY055 and 12233 produced higher
The results show that cryotolerant strains could be interesting for the production of aromatic compounds. Acetate and 2-phenethyl acetate were produced at higher levels with Fermol Bouquet compared to the mesophilic yeast (Fermol Bouquet, FB). Compared with both cryotolerant and non-cryotolerant yeast (FB, SY055), the cryotolerant yeast (SY055) produced more medium-chain fatty acids at both temperatures.

In contrast to our findings, CASTELLARI et al. (1992) and COTTE et al. (1995) reported a greater production of isoamyl acetate and 2-phenethyl acetate when using S. uvarum. Our results show that cryotolerant strains could be interesting in wine making in terms of the production of glycerol and aromatic compounds.
Acknowledgements

This work was supported by grants of the Pascal Biotech, AEB and Spindal societies. The authors also thank Prof. A. BERTRAND, Université de Bordeaux II, for his help in the extraction and analysis of volatile compounds. The authors also thank Prof. GUIDICI for stimulating discussion and for providing cryotolerant strain N° 12233 to us.

References

GUIDICI, P.; CAGGIA, C.; PULVIRENTI, A.; 1997: Cryotolerant Saccharomyces strains and spoilage of refrigerated must. 18th International Specialized Symp. on Yeasts. 24th-29th August, Bled, Slovenia, L7-03.

Received November 10, 1997