Control of root-knot nematode in grapes

by

G. RAJENDRAN and T. G. NAGANATHAN

Introduction

The damage caused by plant parasitic nematodes to grapevine (Vitis vinifera) is very serious, distributed throughout the cultivating areas of the world (RASKI et al. 1965 and PINOCHE et al. 1976). According to RASKI et al. (1965) several species of root-knot nematodes, Meloidogyne spp., parasitize grape and differ in importance depending upon the geographical location. In California, M. incognita, M. javanica and M. thamesi occur on grape, M. incognita being the most common and important one. Grapevine in Australia is infested exclusively by M. javanica (MEAGHER 1969). TEHOU (1974) indicated that the nematode induces gall production in young rootlets, and heavy infection may completely destroy the root system of young plants.

MEAGHER (1969) proved that application of DBCP (composition below) at 28 l/ha to Sultana vine increased the yield of fruits. RASKI et al. (1965) demonstrated that the application of DBCP in irrigation water at 22.5 l/ha increased the yield in grapevines.

This study was conducted to demonstrate the effectiveness of Aldicarb (2-methyl-2-(methylthio)propionaldehyde O-(methylcarbamoyl)oxime), a 10 % systemic granular pesticide, DBCP (Nemagon, 1,2-dibromo-3-chloropropane), a volatile liquid soil fumigant, Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-methyl-carbamate), a 3 % systemic granular nematicide, and Tagetes interplanting on the control of root-knot nematode at established vineyards.

Materials and methods

The experiment was conducted in a 4-year-old vineyard at Anamalai of Coimbatore District. The vines of Vitis vinifera var. Muscat Hamburg growing in the selected site showed poor development and decline in fruit production. The analysis of root samples indicated a severe root-knot infection.
The plantation was divided into 25 plots of 4 vines each and randomized block design containing 5 treatments, each replicated 5 times, was adopted. The plot size was 5×3 m with a spacing of 2 m between the rows and 1.5 m between the vines. The treatments were, besides an untreated control, Aldicarb (10% granular formulation) applied at the rate of 2 g a.i.\(^1\) per vine (5 kg/ha), Carbofuran (3% granular formulation) at the rate of 0.6 g a.i. per vine (1.5 kg/ha), DBCP (60% emulsifiable concentrate formulation; Tata product) at the rate of 1.2 ml/m\(^2\) (12 l/ha) and marigold (*Tagetes erecta* var. Orange) seedling interplanting (74000 plants/ha). The granules were applied around the base of the plant on the root zone 30 cm away from the main vine as a circular band 7–8 cm wide, removing 10 cm top soil to expose the roots, covered after application and irrigated. Nemagon was mixed with the irrigation water as it flew into a bed surrounded by ridges 10 cm high, so that the water that ultimately stagnated contained a homogenous mixture of the chemical. The marigold seedlings of 40 d were interplanted at 30 × 15 cm apart. All treatments were given during the same day of pruning of vines.

Root samples of 10 g were drawn from each plot before applying the treatment and at harvest (3 months after treatment). Nematode gall density (number of galls per g of roots) was assessed. At harvest, weight of bunches and number of bunches per plot were recorded and analysed statistically.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Means of 5 replications</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Galls/g of roots (n)</td>
<td>Bunches/ plot (n)</td>
<td>Yield/ plot (kg)</td>
<td>Calculated yield (t/ha)</td>
<td>Increase of yield (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before treatment - At harvest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldicarb</td>
<td>51.0 37.0</td>
<td>125.2</td>
<td>27.8</td>
<td>18.5</td>
<td>96.4</td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>49.0 37.6</td>
<td>80.8</td>
<td>22.6</td>
<td>15.0</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>DBCP</td>
<td>49.8 34.8</td>
<td>122.0</td>
<td>25.4</td>
<td>17.9</td>
<td>72.6</td>
<td></td>
</tr>
<tr>
<td>Tagetes interplating</td>
<td>48.8 57.0</td>
<td>79.0</td>
<td>18.0</td>
<td>11.9</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>51.6 60.2</td>
<td>55.2</td>
<td>14.4</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (P = 0.01)</td>
<td>N.S.</td>
<td>12.26</td>
<td>21.93</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Examination of the roots revealed the presence of *M. incognita*. The root gall density before application of chemicals was high and uniform and there was no significant difference between treatments. The gall density at harvest showed a significant reduction ($P = 0.01$) in the treatments Aldicarb, Carbofuran and DBCP. Plants treated with Aldicarb, DBCP and Carbofuran showed a significant increase ($P = 0.01$) in the number of bunches and in fruit weight. *Tagetes* interplanting has also given an increase in the fruit yield (Table).

\(^1\) active ingredient.
Control of root-knot nematode in grapes 273

Discussion

Systemic granular nematicides are known to control M. incognita and to increase yield in banana (VALLE-LAMBOY and AYALA 1976). RASKI et al. (1965) have found that in grapes yield is increased by Nemagon application. Reduction in root-knot gall density in tomato and cotton was reported by RODRIGUEZ-KABANA and PEGGY (1976) due to systemic granular nematicides. Similar results were obtained in the present studies. In field experiments Tagetes spp. increased the yield of most crops on sandy and peaty soils by 10—40% by decreasing Pratylenchus and Meloidogyne populations, (WEBSTER 1972). A similar result was obtained in the present experiment and this may be attributed to the fewer number of adult females in galls.

Summary

In a nematode infested vineyard, application of Aldicarb 2 g a.i. per vine, DBCP 1.2 ml/m² and Carbofuran 0.6 g a.i. per vine after pruning brought down the root-knot nematode. A significant increase in number of bunches and yield of fruits was obtained in Aldicarb treatment followed by DBCP, Carbofuran and Tagetes interplanting.

Acknowledgement

This work was carried out in the All India Coordinated Fruit Improvement Project of the Indian Council of Agricultural Research, Department of Horticulture, Tamil Nadu Agricultural University, Coimbatore.

Literature cited

Eingegangen am 22. 3. 1978

G. RAJENDRAN
Assistant Nematologist
All India Coordinated Fruit Improvement Project
Tamil Nadu Agricultural University
Coimbatore — 641 003
India