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Summary

Yield and its prediction is one of the most import-
ant tasks in grapevine breeding purposes and vineyard 
management. Commonly, this trait is estimated manually 
right before harvest by extrapolation, which mostly is la-
bor-intensive, destructive and inaccurate. In the present 
study an automated image-based workflow was devel-
oped for quantifying inflorescences and single flowers in 
unprepared field images of grapevines, i.e. no artificial 
background or light was applied. It is a novel approach 
for non-invasive, inexpensive and objective phenotyping 
with high-throughput.

First, image regions depicting inflorescences were 
identified and localized. This was done by segmenting 
the images into the classes "inflorescence" and "non-in-
florescence" using a Fully Convolutional Network 
(FCN). Efficient image segmentation hereby is the most 
challenging step regarding the small geometry and 
dense distribution of single flowers (several hundred 
single flowers per inflorescence), similar color of all 
plant organs in the fore- and background as well as the 
circumstance that only approximately 5 % of an image 
show inflorescences. The trained FCN achieved a mean 
Intersection Over Union (IOU) of 87.6 % on the test 
data set. Finally, single flowers were extracted from the 
"inflorescence"-areas using Circular Hough Transform. 
The flower extraction achieved a recall of 80.3 % and a 
precision of 70.7 % using the segmentation derived by 
the trained FCN model.

Summarized, the presented approach is a promising 
strategy in order to predict yield potential automatically 
in the earliest stage of grapevine development which is 
applicable for objective monitoring and evaluations of 
breeding material, genetic repositories or commercial 
vineyards.

K e y  w o r d s :  Vitis vinifera ssp. vinifera; BBCH 59; Con-
volutional Neural Network (CNN); computer-based phenotyping; 
semantic segmentation.

Introduction

Grape yield is one of the most important traits in the 
scope of grapevine breeding, breeding research and vineyard 
management (Molitor et al. 2012, Preszler et al. 2013, 
Töpfer and Eibach 2016, Simonneau et al. 2017). It is af-
fected by genetic constitution of cultivars, training system, 
climatic conditions, soil and biotic stress (Bramley et al. 
2011, Kraus et al. 2018, Howell 2001). Several prediction 
models recently published are often based on destructive, 
laborious measurements and extrapolations right before 
harvest (detailed overview is given by de la Fuente et al. 
2015). For targeted vineyard management, i.e. yield adjust-
ments due to bunch thinning, early yield predictions between 
fruit set and veraison (begin of grape ripening), are required 
in order to achieve well-balanced leaf-area-to-fruit-ratios, 
which are essential for maximized grape quality (Auzmendi 
and Holzapfel 2014, de la Fuente et al. 2015).

Flower development, flowering and fruit set rate are 
directly linked to the amount of yield and thus are prom-
ising traits for comparative studies (Petrie et al. 2005). In 
grapevine breeding programs and research, investigations 
regarding the flower abscission (i.e. level of coulure or fruit 
set rate) and its genetic, physiological and environmental 
reasons are of peculiar interest (Boss et al. 2003, Lebon et al. 
2004, Marguerit et al. 2009, Giacomelli et al. 2013, Domin-
gos et al. 2015). However, phenotyping of such small and 
finely structured traits is commonly done by visual estima-
tions and thus achieve phenotyping scores that are more or 
less inaccurate and subjective, depending on the experience, 
awareness and condition of the employees. Currently, more 
accurate measurements require much more labor-intensive 
and partially destructive measurements, which preclude 
repetitive monitoring studies of several hundreds of different 
grapevine genotypes, e.g. crossing progenies (Giacomelli 
et al. 2013, Keller et al. 2010).

The application of fast imaging sensors facilitates mul-
tiple field screenings of large experimental plots, breeding 
populations and genetic repositories. In combination with 
efficient and automated data analysis, objective, precise and 
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comparable phenotypic data can be produced with minimal 
user interaction. Fast, inexpensive and simple-to-apply 
sensors, e.g. consumer cameras, are promising for cost-ben-
efit and user friendly approaches. Recently, different sen-
sor-based methods were developed for flower quantification 
based on images of individual captured grapevine inflores-
cences (Diago et al. 2014, Aquino et al. 2015 a, b, Millan 
et al. 2017, Liu et al. 2018). All of these approaches require 
images of a single inflorescence in front of well distinguish-
able backgrounds, i.e. artificial background or soil, which 
makes screenings of large numbers of plants more difficult 
and laborious. 

Further, exertions of tractor-based approaches (Nuske 
et al. 2014) or other field phenotyping platforms (Kicherer 
et al. 2015, 2017, Aquino et al. 2018) are not feasible by 
analysis of individual plant organs. Regarding to this crucial 
restriction, a novel image analysis strategy for images of 
whole grapevine canopies without artificial background and 
additional light is required. Efficient identifying and localiz-
ing of the image regions that depict inflorescences hereby is 
the most challenging step regarding the small geometry and 
dense distribution of single flowers within inflorescences, the 
similar color of all plant organs in the fore- and background, 
as well as the circumstance that only approximately 5 % of 
the image area shows single flowers (Fig. 1).

the desired image regions just from the image data itself. 
By training a CNN on inflorescence segmentation data, a 
segmentation model able to deal with the complex scenes 
of images of whole grapevines was generated. CNNs have 
established themselves as a state-of-the-art method for many 
tasks of image processing, including image classification 
(Krizhevsky et al. 2012, Simonyan et al. 2014) as well 
as, more recently, image segmentation (Long et al. 2015, 
Ronneberger et al. 2015).

CNNs used for image classification classify complete 
images, e.g. showing cars, buildings, dogs, etc. and gener-
ally follow a common structure that shows two phases: the 
feature extraction phase and the classification phase. In the 
feature extraction phase multiple convolution layers and 
pooling layers generate successively more complex class 
characteristic image features (in the convolution layers) 
thereby downsampling the image size (in the pooling layers). 
In the classification phase multiple fully connected layers de-
rive class labels based on the derived image features. CNNs 
for image segmentation generally implement a classification 
of each pixel in an image. Two approaches to CNN-based 
image segmentations are most important here:

Long et al. 2015 introduced the Fully Convolutional 
Networks (FCNs) for image segmentation. The architec-
ture of a classification network is modified in a way that its 
fully connected layers for the complete image classification 
are replaced by multiple convolutional layers and decoder 
layers. In this network, the up-convolutional layers upsam-
ple the output size and the up-convolutional layers learn 
localization of class labels by combining the more precise 
high resolution features from layers of the extraction phase 
with the upsampled output. Due to upsampling, this part 
can increase the spatial resolution up to the input-dimen-
sions, providing per-pixel information on the input image. 
Therefore, an FCN shows the following two phases: the 
feature extraction phase (as in the classification networks) 
followed by a decoder phase that results in a classification 
on the original image resolution, i.e. assigns a class label to 
each pixel of the image. This kind of network is also called 
encoder-decoder network: a given input image is encoded in 
terms of features at different scales in the first phase while 
the second phase decodes all these features and generates a 
segmentation of the image.

U-Net (Ronneberger et al. 2015) is a popular architec-
ture of FCNs and can be trained end-to-end. This was not 
possible for the FCN approach presented by Long et  al. 
2015, which requires the encoder part to be pre-trained 
before being able to train the decoder part.

In this study, a U-net-like architecture of an FCN was 
used for the segmentation. The major objective of the present 
study was the development and validation of an automated 
image analysis workflow in order to quantify the number of 
single flowers per grapevine inflorescences in unprepared 
field images for non-invasive, inexpensive and objective 
phenotyping with high-throughput. The workflow of our 
approach shows four steps (Fig. 2):

1. Fast, inexpensive and simple-to-handle image taking 
with consumer camera.

2. Identification and localization of inflorescences 
employing FCN-based image segmentation.

Fig. 1: Major challenges of unprepared grapevine images: Only 
5 % of images are inflorescences and all plant organs are green 
(a); no standardized light conditions resulting in varying color 
characteristics of inflorescences, i.e. different green tones (b) (c); 
dense location of single flowers within one inflorescence (d).

In this study, the task of identifying and localizing the 
inflorescence areas was understood as a segmentation task, 
i.e. a task of partitioning the image into the classes "inflo-
rescence" and "non-inflorescence" by assigning a class label 
to each individual pixel. While traditional approaches to 
image segmentation employ handcrafted heuristic criteria 
(e.g., intensity and color distributions) to identify appro-
priate image regions, deep learning convolutional neural 
networks (CNNs) allow learning descriptive criteria of 
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3. Flower extraction by applying Circular Hough 
Transformation on segmented images.

4. Evaluation of resulting phenotypic data

Material and Methods

P l a n t  m a t e r i a l ,  i m a g e  c a p t u r e  a n d 
p r e - p r o c e s s i n g  s t e p s :  For image capturing, i.e., 
step 1 of our workflow (Fig. 2), a single-lens reflex (SLR) 
camera (Canon EOS 70D) and a focal length of 35 mm was 
used for image capture in the field under natural illumination 
conditions with manually controlled exposure. The distance 
to the plants was approximately 1 m.

108 field images of the Vitis vinifera ssp. vinifera 
'Riesling' and 'Chardonnay' were captured at the end of May 
2016 when plants reached the BBCH stage 59 (Biologische 
Bundesanstalt, Bundessortenamt und CHemische Industrie; 
Lorenz et al. 1995).

The field images were randomly divided into a training 
set (98 images) and an evaluation or test set (10 images). 
Both the training and evaluation set were manually annotated 
with bounding polygons around their inflorescences (Fig. 3). 
Additionally, the evaluation set was annotated with the 
center of each individual flower visible within the images. 
In order to reduce work load in the annotation process, the 
training set was less precisely annotated than the evaluation 
set. Since most of the image area shows non-inflorescence 
parts of plants, it was assumed that false positives would 
for the most part not be learned as positives during training.

M e t h o d o l o g y : Step 2 of our workflow (Fig. 2) 
addresses the identification and localization of inflorescences 
in the image. This is done by applying a trained FCN, as 
introduced by Long et al. 2015 (see "ROI segmentatin", 
right column), to the input image. The FCN was trained on 
the annotated inflorescence segmentation data of the training 
set (see above "Image capture and pre-processing steps"). 
After training, the FCN is able to derive a segmentation of 
the input image, determining for each pixel whether it is 
part of an inflorescence, or if it can be ignored. Generally, 
the pixels depicting inflorescence form coherent regions. 
Since these regions are of interest for further processing 
(i.e. single flower extraction and deriving phenotyping data) 
these regions are called "regions of interest" (ROI). In Fig. 2 

the result of an image segmentation is depicted in terms of 
a heat map where the red areas show the identified ROIs, 
i.e. the inflorescences.

In the third step of our workflow single flowers are ex-
tracted from all detected ROIs of an image. This was done by 
applying a Circular Hough Transform (CHT) on the image 
areas of the ROIs (see page 99 on flower extraction). For 
this study, the CHT was modified to consider the gradient 
direction, similar to the modification presented by Roscher 
et al. 2014.

R O I  s e g m e n t a t i o n :  Due to large areas of the 
image containing non-inflorescence parts of vines and vary-
ing lighting conditions throughout the images, filtering the 
image by the color of individual pixels, as it was done by 
Aquino et al. 2015 as a first step of finding inflorescences, 
would not produce reliable results.

Instead, we employ an U-net-like architecture, as pro-
posed by Ronneberger et al. 2015, to identify and localize 
inflorescences in the image. The network architecture is 
based upon the AlexNet architecture (Krizhevsky et al. 
2012) as an encoder part, with a short decoder part added to 

Fig. 2: Phenotyping workflow: Captured images of grapevines are analyzed by segmenting them into "inflorescence" and "non-inflo-
rescence" via FCN and applying circle detection for flower extraction within the class "inflorescence". Finally, objective and precise 
phenotypic data are provided for further analysis.

Fig. 3: Annotation of an inflorescence using bounding polygons 
(fuchsia) and of single flowers using points (red) in the test set. The 
training set inflorescence polygons were annotated less precise in 
order to reduce workload.
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it. The architecture is visualized in Fig. 4, where each vertical 
blocks depicts layers of the full convolutional network. The 
first olive block labeled as "data" depicts input images of 
size 608 x 608 pixels with three layers for the RGB com-
ponents. The second, blue block labeled as "Conv1" depicts 
96 convolutional filters. Each filter encodes the image data 
in different types of trained features and shows an output 
size of 150 x 150 pixels. The third, green block labeled as 
Pool1 (max) depicts the downsampling of the output of the 
96 layers convolutional filters down to 74 x 74 pixels. All 
following blue and green boxes up to the box labeled as 
"Conv7" depict convolutional and pooling layers that encode 
the input image successively in more and more complex and 
abstract feature representations, thereby downsampling the 
output size to 34 x 34 units. This downsampling part can be 
seen as the left (downgoing) part of the shape of the character 
"U". The following layers labeled as "Conv8", "Up-Conv1" 
and ”Up-Conv2”, respectively, show the upgoing part of the 
shape of the character "U". From this the name of the so-
called U-net architecture was given by Ronneberger et al. 
2015. The upgoing part fuses and upsamples all feature 
representations to the original image size, thereby deriving 
class labels (inflorescence / non-inflorescence) for all pixels. 
For the sake of completeness, Tab. 1 provides more detailed 
information for those who are familiar with convolutional 
networks and interested in the technical design of our U-net-
based architecture. 

For this network, the numbers of outputs of most layers 
were reduced from the values used in the AlexNet architec-
ture in order to reduce memory requirements. 

For the implementation the caffe-segnet (Badrina-
rayanan et al. 2015) fork of the caffe library (Jia et al. 2014) 
was used. This inflorescence segmentation network uses only 
two upsampling layers (denoted by Ronneberger et al. 2015 
as "up-convolution"). Layer Up-conv1 upsamples to the 
resolution of layer Conv1. The outputs of layer Up-conv1 
and layer Conv1 are then appended and a convolution is 
applied in layer Conv8. Layer Up-conv2 then upsamples 

to the resolution of the input image and produces output of 
the two classes, inflorescence and non-inflorescence. This 
architecture design was chosen on the assumption that the 
information of the first convolution is sufficient to find a 
fine separation between inflorescence and non-inflorescence, 
given the context of the surrounding image was provided 
by the last layer of the encoder network.

The training was done on the per-pixel class informa-
tion provided by the manual annotation. Due to the high 
memory requirements, the network could not be trained 
on the full 5472×3648 pixel images. Instead, the network 
was trained on 5292 non-overlapping images patches of 
608 × 608 pixels (as depicted in the olive input data layer 
of Fig. 4) produced from the training set. "Complete image 
segmentation" (page 99) describes how we resolved this 
problem of memory footprint. The network was trained using 
a Stochastic Gradient Descent solver, with a fixed learning 
rate of 5·10-5, a momentum of 0.9, a weight decay of 10-4  
and a batch size and iteration size of 1. 

Since the detection and localization of inflorescences 
results in regions of interest (ROI), mean Intersection Over 
Union (IOU) was used as a quality measure. IOU is defined 
per class as the cardinality of the intersection of the detected 
areas and actual areas of a class divided by cardinality of 
the union of these areas.

  |Tc∩Pc|IOU(c) =                       (1)  |TcUPc|

Fig. 4: The AlexNet-based FCN with up-convolution-based decoder 
part. Below spatial resolution and number of outputs are shown. 
The arrow denotes the concatenation of the channels of the outputs 
of Conv1 and Up−conv1, as input for Conv8. This is a visualization 
of the architecture presented in Tab. 1.

T a b l e  1

The network structure of the FCN used for inflorescence segmen-
tation by layers. For the last output layer the softmax function 
(Prob layer) is used to map the resulting two output values for each 
pixel to probabilities for the two output classes (inflorescence and 
non-inflorescence respectively). The Concat-layer combines the 

channels of the outputs of Conv1 and Up−conv1. 
Technical note: all convolution layers are followed by ReLUs. As 
in the AlexNet definiton, Local Response Normalizations follow 
the Pool1 and Pool2 layers. Both up-convolutions use a stride of 4, 
Conv8 uses a padding of 1. All further parameters were chosen 

according to the Alexnet definition

Name Type Output Ksize
Data Input 3 × 608 × 608
Conv1 Convolution 96 × 150 × 150 11 × 11
Pool1 Max. Pooling 96 × 75 × 75 3 × 3
Conv2 Convolution 128 × 75 × 75 5 × 5
Pool2 Max. Pooling 128 × 37 × 37 3 × 3
Conv3 Convolution 192 × 37 × 37 3 × 3
Conv4 Convolution 192 × 37 × 37 3 × 3
Conv5 Convolution 192 × 37 × 37 3 × 3
Pool5 Max. Pooling 192 × 35 × 35 3 × 3
Conv6 Convolution 256 × 35 × 35 3 × 3
Conv7 Convolution 256 × 35 × 35 3 × 3
Up-conv1 Up-convolution 32 × 150 × 150 14 × 14
Concat Concatenate 128 × 150 × 150
Conv8 Convolution 64 × 150 × 150 3 × 3
Up-conv2 Up-convolution 2 × 608 × 608 12 × 12
Prob Softmax 2 × 608 × 608
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The development of the mean IOU on the validation set 
during the training is shown in Fig. 5. The best model pro-
duced by the training achieved a mean IOU of 87.6% after 
285500 iterations. This best-performing model was used 
as the segmentation model for the single flower extraction.

Fig. 6 shows an example of the segmentations produced 
by the trained model.

not be possible with arbitrary high-resolution input sizes, due 
to memory requirements. Instead of processing a complete 
image at once, it might be required to divide an image into 
smaller patches, as it was done previously for training the 
model. For prediction, the segmentations produced for the 
patches then have to be recombined to produce a segmen-
tation of the complete image. This approach is a common 
workaround for this kind of bottleneck and was applied 
similarly by Ronneberger et al. 2015. The image patch 
size used during training does not limit the image patch size 
available for prediction. If sufficient memory is available, 
a larger image patch size can be chosen in order to increase 
runtime performance, without requiring a new model to be 
trained. As opposed to Ronneberger et al. 2015, the network 
used here was designed to produce an output of the same 
spatial size as the input by using padding and choosing the 
up-convolution kernels accordingly. This resulted in the 
network producing sub-optimal results at the boundary edges 
between two patches. This effect is shown in Fig. 7, in which 

Fig. 5: Accuracy and mean Intersection Over Union (IOU) of the 
Fully Convolutional Network (FCN) during training. The flat be-
havior at the end of the graph indicates that further training would 
have not yielded much improvement of the model and that no 
overfitting occurred. The best-performing model was found after 
training for 285500 iterations (IOU of 87.6 %).

Fig. 6: Example of the segmentation produced by the trained FCN 
model. (a) Original input image of the grapevine 'Chardonnay'. (b) 
Segmentation heatmap with detected "inflorescences".

Fig. 7: Assembly of FCN-segmented image patches into whole 
images. (a) Assembly of image patches without overlapping, 
resulting in artifactual, inaccurate edges (white arrowheads). (b) 
Assembly of image patches with overlapping resulting in correctly 
segmented regions without missing information.

segmentation errors can be seen along the edges between 
processed image patches. As a workaround, the sub-optimal 
boundary edges of the prediction for each individual image 
patch were discarded. This effectively results in the predicted 
segmentation covering a smaller area within the input image 
patch. In order to produce a segmentation of the complete 
image the images were processed in overlapping patches in 
such a way that the smaller segmentations produced from 
the patches cover the complete input image. At the boundary 
edges of the complete input image artificial context was 
provided by mirroring the input image. This was done analog 
to the method described by Ronneberger et al. 2015. This 
results in a refined segmentation, which then can be used 
for the third step of our workflow, i.e. the flower extraction.

F l o w e r  e x t r a c t i o n :  For the extraction of single 
flowers from the previously found ROIs we approximate 
the contours of the single flowers by two-dimensional 
spheres. Due to this approximation we can apply the Circular 
Hough Transform (CHT) to detect the flowers. The CHT 
is a well-established approach to find imperfect instances 
of spheres by a voting procedure that is carried out in the 

C o m p l e t e  i m a g e  s e g m e n t a t i o n :  While 
the designed network architecture is fully convolutional and 
therefore can scale it's output with it's input, in practice this is 

(a)

(b)
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parameter space of two-dimensional spheres. The parameter 
space of two-dimensional spheres shows three dimensions: 
two dimension for the two-dimension coordinates of the 
position (x,y) of center of a circle hypothesis and the third 
dimension for the radius of a circle hypothesis.

This approach is similar to that of Roscher et al. 2014, 
where CHT was used to find berries of grape vines and deter-
mine their size. This third stage of processing of our workfl

w (Fig. 2) includes some pre-processing of the image, 
applying edge detection, removing any edges not within 
an ROI, applying the CHT and extracting the candidates 
according to the voting analysis in the parameter space. The 
implementation was done using the OpenCV library (Itseez 
2017). For preprocessing a local contrast normalization, as 
described by Jarrett et al. 2009, was applied, in order to 
allow for a single set of edge thresholds of the edge detection 
for flower contours throughout the image. This was required, 
since different areas of the images could be more or less 
blurry, either due to depth of field and distance, or due to 
slight movement of the inflorescences by wind.

For edge detection the Canny Operator was used. After 
using the implementation provided by the OpenCV library, 
edges not within an ROI were removed.

For the Hough Transform, single flowers of the radii 
between domain-specific minimum and maximum values of 
flower radii were checked. This interval represents the size of 
most single flowers within the field images. As a modifica-
tion to the standard Hough Transform, each edge point only 
casts votes for a circle arc in its gradient direction, as well as 
the opposing direction, in order to reduce noise within the 
Hough Transform. Here, the arc in which votes were cast 
was chosen at γ =   = 22.5°.  Additionally the voting values 
were normalized by dividing them by the number of possible 
votes they could achieve in total, in order to allow for direct 
comparison between values of different radii.

For the extraction of candidate single flowers all can-
didates above a certain threshold were sorted according to 
their value. By iterating over this sorted list of candidates, 
starting with those of highest value, the final resulting single 
flowers were selected. This was done by maintaining an oc-
cupancy map. If the center point of a candidate is not marked 
as occupied within the map, it is selected and a circle with 
r = 1.5 · rcandidate is marked as occupied on the map. This 
increased radius was chosen to allow for slight overlapping 
of candidates. After an iteration over all candidates, the 
selected candidates are returned as result. This is shown in 
algorithm 1. An example of this CHT-based flower extraction 
is shown in Fig. 8.

For validation, the candidate single flowers produced 
by the extraction were compared against the annotated sin-
gle flowers by iterating over the candidates and finding the 
closest annotated single flower. If a single flower was within 
a certain radius-dependent distance of the candidate, the 
candidate was considered a true positive. Annotated single 
flowers selected for one candidate were ignored for future 
candidates. Candidates without a matching annotated single 
flower were considered false positives and annotated single 
flowers without a candidate near them were considered 
false negatives. Using these measures, F1 score, recall and 
precision were determined.

Results

The focus of this study is set on the efficiency of the 
image processing procedures, i.e. steps 2 and 3 of our work-
flow. Therefore, we first present the evaluation of the iden-
tification and localization of inflorescences by the trained 
FCN-segmentation model. Then, we present the evaluation 
of flower detection and quantification.

I d e n t i f i c a t i o n  a n d  l o c a l i z a t i o n  o f  i n -
f l o r e s c e n c e s :  The trained FCN-segmentation model 
achieved a mean Intersection Over Union (IOU) of 87.6 %, 
with class-specific IOUs of 76.0 % for inflorescences and 
99.1 % for non-inflorescence. Examining the segmentations 
on the test set predicted by the segmentation model, it can 
be shown that most wrong classifications are false positives 
occurring around actual flower areas (Fig. 9a), while individ-

Data: Sorted list of candidate circles C, Image size 
          S, Radius factor a
Result: A List of circles
Image O(S): = Unset;
List Result ← Ø;
foreach c ϵ C do
      if O(c.position) = Unset then
            Result.append(c);
            DRAW_CIRCLE (O, c.position, c.radius · a);
      end
end
Algorithm 1: Algorithm for selecting the final circles (Result) from 
the circle candidates (C) produced by the Circular Hough Trans-
form. By maintaining an occupancy map O strongly overlapping 
circles are prevented.

Fig. 8: Example of the Circular Hough Transform-based flower 
extraction, using the segmentation previously shown in Fig. 6. 
(a) section of heatmap showing class "Inflorescence", (b) result 
of flower extraction within the region classified as "Inflorescence".

π
8
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ual false positives occur rarely. The false positives around 
flower areas are likely to be a result of the evaluation set 
being more precisely annotated than the training set. False 
negatives occur more rarely and usually occur at very small 
inflorescences of only a few single flowers (Fig. 9b) and 
occasionally at the edges of larger inflorescences (Fig. 9a).

While the FCN-segmentation model achieves high IOU 
values on the test set and in practice performs well as a ba-
sis for the flower extraction (see below), the performance 
could still be improved. Training the model on more images 
would, most likely, allow the network to learn a better gen-
eralization. Additionally, data augmentation (e.g. modified 
brightness, hue, saturation) during training could further 
improve the results.

Since the model was not yet tested on other grapevine 
varieties, it is unknown how well it generalizes to those. 
However, it can be assumed that it performs best on the 
varieties it was trained on. Incorporating more different 

Fig. 9: (a) False positives (blue) within an inflorescence and false 
negatives (red) at the edge of an inflorescence produced by the 
segmentation model. (b) False negatives (red) on a small inflores-
cence produced by the segmentation model. (c) Inconsistent flower 
extraction on a blurry background inflorescence detected by the 
segmentation. (d) False positives on a branch (lower arrowhead) 
and false negatives (upper arrowhead) of the flower extraction.

T a b l e  2

The performance of the flower extraction using different segmentations. The 
performance measures include F1 score, recall, precision, mean estimated over 
actual visible number of single flowers (EOA) and standard deviation of EOA 

over the test set

Segmentation F1
(%)

Recall
(%)

Precision
(%)

EOA
(%)

σ(EOA)
(%)

None 9.8 85.5 5.2 1718.7 336.7
Segmentation model 75.2 80.3 70.7 115.4 8.66 
Ground truth 80.0 84.3 76.1 112.7 10.17

grapevine varieties into the training set would improve the 
generalization of the inflorescence detection, allowing for 
the application on other varieties

F l o w e r  d e t e c t i o n  a n d  q u a n t i f i c a t i o n : 
The single flower detection and quantification was evaluat-
ed separately on (a) the complete image without providing 
segmentation, (b) the segmentation produced by the trained 
model and (c) the manually generated ground truth segmen-
tation. The performance measures F1 score, Recall and Pre-
cision using each of the segmentations are shown in Tab. 2. 
Additionally, the 'EOA' column shows the mean amount of 
single flowers estimated over the amount annotated. The 
standard deviation of this value over the validation set is 
given in the 'σ(EOA)' column.

The flower extraction is prone to producing false pos-
itives over false negatives, generally resulting in a higher 
recall than precision. False negatives can occur in regions 
not labeled as ROI by the previous step (Fig. 9d, top) and 
at inflorescences which were labeled as ROI, but which 
are too blurred for the CHT to detect the single flowers 
(Fig. 9c). False positives often occur on other small plant 
structures within ROIs, e.g. the stems of inflorescences 
(Fig. 9d, bottom).

Since the flower extraction tends to overestimate the 
number of single flowers (Tab. 2, column EOA), a linear 
regression was fitted to correct for it. Tab. 3 shows these 
measurements as well as the absolute number of single 
flowers estimated and annotated for each individual test 
sample for the segmentation model. This linear model 
(shown in Fig. 10) achieved a coefficient of determination 
of R2 = 0.930. However, due to the small sample size this 
relation might not generalize well and should be examined 
again utilizing more samples, including samples with fewer 
flowers.

While the best performance was achieved on the ground 
truth segmentation, the F1 score on the segmentation pro-
duced by the trained model is lower by only 4.8 %. This 
relatively small difference in performance of the flower 
extraction using the automatically generated segmentation 
data and the annotated segmentation data shows that the 
application of an FCN-based segmentation model is a 
promising strategy.

To meet the challenge of overestimation in the flower 
extraction step, future work will investigate the employment 
of a trained CNN in the flower extraction step instead of the 



	102	 R. Rudolph et al.

Circular Hough Transform. The trade-off will be additional 
annotation work in the training data: instead of labeling 
inflorescences by bounding polygons (Fig. 3) single flowers 
must be labelled - e.g. by bounding circles. This new CNN-
based flower extraction could be either implemented as a 
separate processing step operating on the inflorescence areas 
or directly as part of the segmentation network.

R u n t i m e  p e r f o r m a n c e :  The runtime behavior 
of both the segmentation model and the flower extraction 
were evaluated on the following system: MSI GE60-OND 
Gaming Notebook; Intel Core i7-3630QM 2.4GHz, 8GB 
DDR3 RAM, GeForce GTX 660M (2GB GDDR5 SDRAM). 
The operating system run was Arch Linux (64 bit Linux 
kernel, version 4.12.10 ). The libraries used were the at the 
time of writing most recent git version of caffe-segnet (rc2-
338-gdba43980), cuda 8.0.61, cudnn 7.0.1 and opencv 3.3.0.

The segmentation model was run using the GPU mode 
of the caffe library. In order to make the best use of the mas-
sive parallelization possible with GPUs, the image patches 
were chosen as large as possible. One of the spatially largest 
networks able to fit in the 2GB graphics memory of the test 

system was that of an input size of 1216 × 1216 pixels. This 
allowed for processing of a complete image of 5472 × 3648 
pixels in 20 image patches.

Including mirroring at edges, disassembling into patches 
and reassembling, the mean time of a segmentation was 
measured at 7.8 s. It can be expected that using upcoming, 
more modern graphics cards the runtime performance of the 
segmentation would significantly increase, due to availabil-
ity of more memory, allowing for larger patches, as well as 
general increases in speed in modern hardware.

The flower extraction was run as a single-thread process 
on the CPU. On the segmentation produced by the trained 
model the mean runtime per image was 4.161s. Since the 
memory footprint of the flower extraction is relatively low, 
when used in practice, the throughput of the flower extraction 
could be massively sped up by using more threads/cores. 
This possibility makes the segmentation the main bottleneck 
of the complete system. 

However, even without optimization of the flower ex-
traction step, the total required time of about 12s per image 
should still allow for a practical application of the system.

Conclusions

In the present study, a low-cost and commercial avail-
able consumer camera was used in order to reveal sim-
ple-to-apply image acquisition of normal growth grapevines 
directly in vineyards. Further, an efficient, automated image 
analysis was developed for reliable single flower detection 
and quantification. It is the first study facilitating efficient 
and contactless screening of large sets of grapevines re-
ceiving objective and high-quality phenotypic data. This is 
important for further studies regarding the development of 
reliable early yield prediction models for objective character-
ization and multi-year monitoring of breeding material, e.g. 
crossing populations and genetic repositories. Early yield 
prediction is a promising strategy for grapevine training 

T a b l e  3

The performance of the flower extraction using the trained segmentation model for all images of 
the test set. The measures include F1 score, recall, precision, estimated over actual number of single 

flowers (EOA), as well as the raw numbers of annotated and estimated single flowers

Image F1
(%)

Recall
(%)

Precision
(%)

EOA
(%)

Annotated Estimated

Chardonnay Frontal 04 78.3 82.2 74.7 110.1 1157 1274
Chardonnay Frontal 08 76.4 86.2 68.5 125.8 839 1056
Chardonnay Frontal 11 76.4 80.1 69.3 115.6 1074 1242
Chardonnay Upwards 02 77.1 83.4 71.7 116.3 1312 1527
Chardonnay Upwards 05 72.1 70.2 74.2 94.5 1876 1774
Chardonnay Downwards 07 72.1 83.3 69.9 119.0 935 1113
Riesling Frontal 09 75.8 83.1 69.6 119.3 1138 1358
Riesling Upwards 04 72.6 81.0 65.8 123.1 1110 1367 
Riesling Upwards 13 72.9 80.9 66.4 121.8 971 1183
Riesling Upwards 04 77.6 80.9 74.5 108.4 1320 1432

Fig. 10: Linear regression model of estimated vs. annotated single 
flower numbers within the test set. The test set consists of 10 ran-
domly chosen images (6 'Chardonnay', 4 'Riesling') of differing 
perspectives.
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systems showing more complex canopy architectures, e.g. 
semi-minimal pruned hedges. Further, the developed strate-
gy makes carrying of artificial backgrounds or invasive treat-
ments of grapevines due to defoliation unnecessary which 
opens up possible vehicle-based phenotyping applications.

In order to make predictions about the complete plant 
using the developed strategy, it further needs to be shown that 
the information gained about the inflorescences and flowers 
visible in the images can be extrapolated to all inflorescences 
and flowers of the plant.

Further, training the FCN on grapevine images of early 
stages of fruit development, i.e. fruit set (BBCH 71) or 
groat-sized berries (BBCH 73), will enable comparison of 
quantified single flowers and quantified young berries in 
order to phenotype susceptibility to fruit abscission, i.e. level 
of coulure, objectively and with high throughput. However, 
the system has to be robust for its reliable application on high 
diversity phenotypes. Therefore, further large data sets for 
different stages of plant development, different grapevine 
cultivars and phenotypic variable breeding populations 
are required for validation. Finally, the development of an 
intuitive graphical user interface will improve usability for 
potential users, i.e. breeders or scientists.
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