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Summary

In order to explore the drought resistance mecha-
nism of grape rootstocks, two grape rootstock species, 
'1103P' (a drought-tolerant rootstock) and '101-14M' 
(drought-sensitive), were treated with moderate water 
deficit (field capacity of 45-50 %). Throughout the ex-
perimental period, the leaves of '1103P' showed a high-
er stomatal conductance (gs), relative water content 
and photosynthetic rate (Pn) than '101-14M', indicating 
'1103P' was more resistant to tolerant than '101-14M'. 
We propose that '1103P' could prevent water loss from 
leaves under drought conditions based on the discover-
ies that '1103P' had higher leaf phytohormone abscisic 
acid (ABA) content and leaf cuticular wax content, and 
smaller stomata aperture than those of '101-14M'. Ad-
ditionally, the activities of H2O2-scavenging enzymes in 
leaves of '1103P' were higher than those of '101-14M' 
under drought conditions, indicating the lipid peroxi-
dation induced by H2O2 of '1103P' was less serious than 
that of '101-14M'. Therefore, better water-saving and 
higher reactive oxygen species (ROS) scavenging abili-
ties contributed together to stronger drought resistance 
of '1103P' than '101-14M'. 

K e y  w o r d s :  ABA; drought; stomata; H2O2; chlo-
rophyll fluorescence; Vitis; cuticular wax.

Introduction

Grapevine (Vitis vinifera) is one of the most economi-
cally important fruits worldwide. However, this crop often 
encounters drought stress in production. Severe water defi-
cit is the main environmental factor limiting plant growth 
and yield, especially in semi-arid regions (Chaves et al. 
2003). Plants have developed various mechanisms to en-
hance their drought tolerance, including changing mor-
phological and physiological traits such as plant structure, 
growth rate, water-use efficiency (WUE), tissue osmotic 
potential, and stomatal conductance (Escalona et al. 2003, 
Sharp et al. 2004, Nemeskéri et al. 2010, Liu et al. 2013).

On the one hand, reducing water loss in plants could 
improve drought resistance. There are two main ways to 
prevent water loss in plants. One is stomatal transpiration, 
and the other is cuticular transpiration (Escalona et al. 

2013). Stomata regulation is one of the key mechanisms 
allowing plants to regulate and optimize evaporative water 
loss (Tombesi et al. 2015). Under drought stress, plants par-
tially or completely close stomata to maintain a favorable 
water balance and limit the carbon gain (Ciais et al. 2005, 
Franks 2013). The phytohormone abscisic acid (ABA) is 
considered a chemical signal to mediate stomata behavior 
during water deficit (Malladi and Burns 2007, Seki et al. 
2007, Speirs et al. 2013, Li et al. 2014). Biochemical and 
genetic studies have suggested that 9-cis-epoxycarotenoid 
dioxygenase (NCED) is the key enzyme in the ABA bi-
osynthetic pathway in plants (Iuchi et al. 2001, Zhang 
et al. 2009). Also, among the five NCED family members, 
NCED3 plays a crucial role in drought-induced ABA bi-
osynthesis (Guo et al. 2015). Leaf cuticular wax content 
(CWC) is an important factor avoiding non-stomatal tran-
spiration, which protects the plants against abiotic and biot-
ic stresses (Xue et al. 2017, Li et al. 2019). Under drought 
stress, cuticular wax is accumulated to reduce water losses 
from non-stomatal evaporation (Bi et al. 2017, Luo et al. 
2019). Many studies indicated that drought-tolerant culti-
vars usually have higher leaf CWC than drought-sensitive 
cultivars (Guo et al. 2016).

On the other hand, plants enhance drought tolerance 
mainly via improving the ability of removing harmful 
substances, such as reactive oxygen species (ROS) (Mit-
tler et al. 2015, Wang et al. 2018), which could induce 
membrane lipid peroxidation, ultimately leading to mem-
brane dysfunction (Li et al. 2011). Drought-stressed plants 
over-produce ROS, and excessive ROS can lead to lipid 
peroxidation, protein degradation, and nucleotide damage 
further inhibiting a wide range of plant cellular processes 
(Xu et al. 2016). Therefore, suppressing ROS production 
or enhancing the capacity for ROS scavenging can weaken 
drought-induced oxidative damage (Hossain et al. 2015). 
H2O2, one of the most important ROS, participates in a se-
ries of processes for plant development, stress responses, 
and programmed cell death (Choudhury et al. 2017), and 
the enzymes of catalase (CAT), peroxidase (POD), and 
ascorbate peroxidase (APX) play an essential role in scav-
enging H2O2. Although responding behavior to drought has 
been investigated in several plant species, the systematic 
drought tolerance mechanism to drought is not yet fully 
understood in Vitis. Here, we used two genotypes of grape 
rootstocks with contrasting responses to drought stress, 
and compared their photosynthetic characteristics, stoma-
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tal behavior, ABA content, the expression of NCED3, H2O2 
content and activities of H2O2-scavenging enzymes under 
moderate water stress conditions. The objective of the 
present work is to uncover the physiological mechanism of 
grapevine to drought by comparing the anatomical, physi-
ological and biochemical processes of two Vitis rootstocks.

Material and Methods

P l a n t  m a t e r i a l :  Plants of '1103 Paulsen' 
(1103P) and '101-14' Millardet et de Grasset (101-14M), 
tolerant and highly sensitive to drought respectively, orig-
inating from different climate regions (Tab. 1), were used 
in this study. The former originated in dry regions, and is 
one of the most drought tolerant grapevine rootstocks. By 
comparison, 101-14M, which thrives in wet habitats, is 
highly resistant to water-logging and shade, but sensitive to 
drought (Li et al. 2019b). One-year-old vines of both root-
stocks were grown in PVC pots (20 cm × 15 cm × 28 cm) 
filled with a 5:1:1 (v:v:v) mixture of forest soil:sand:or-
ganic substrate. Pots were placed in a condition-controlled 
greenhouse (30 ± 2 °C during the day and 25 ± 2 °C at 
night, with relative humidity 50 ± 5 % and natural light 
condition). The plants were watered once every three days 
with half-strength Hoagland nutrient solution before the 
experiments. Standard horticultural practices were fol-
lowed for disease and pest control.

E x p e r i m e n t a l  d e s i g n s :  50 d after planting, 
the plants of each cultivar were divided into two groups: 
control plants were maintained at near field capacity 
throughout, and drought-stressed plants were exposed to 
45-50 % field capacity (Stolf-Moreira et al. 2019). Mois-
ture stress was initiated by withholding irrigation, until soil 
humidity reached 45-50 % field capacity; the control group 
was kept at near field capacity until end of the experiment. 
Pots were weighed twice per day (early in the morning and 
late afternoon) and water was added to maintain the soil at 
the desired values. The experimental design was complete-
ly randomized, with 3 replicates of each group (40 plants 
per replicate). When the soil of drought stressed treatment 
dropped to designated values (45‑50  % field capacity), 
then we defined the day as day 0. The third to fifth leaves 
(generated during the experiment) from the top of a stem 
were sampled from both groups between 09.00 and 11.00 h 
on 0, 7, 14, 21, and 28 d. The collected leaves were rapidly 
frozen in liquid nitrogen and stored at -80 °C, which were 
used for measuring the content of ABA, H2O2 content, ac-
tivities of H2O2 -scavenging enzymes, and relative expres-
sion of NCED3.

R e l a t i v e  w a t e r  c o n t e n t :  On day 0, 7, 14, 
21, and 28 of drought treatment, the relative water content 

was computed according to the method described by Gax-
iola et al. (2001). Leaves of each rootstock were excised 
from each treatment group and their fresh weights were re-
corded immediately. After the leaves were floated in deion-
ized water at 4 °C overnight, their rehydrated weights were 
determined. Finally, they were oven-dried at 70 °C for 48 h 
and weighed again. Relative water content was calculated 
as RWC = (fresh weight–dry weight) ⁄ (rehydrated weight–
dry weight).

M e a s u r e m e n t s  o f  p h o t o s y n t h e t i c 
c h a r a c t e r i s t i c s :  The net photosynthetic rate (Pn), 
transpiration (Tr), the intercellular CO2 concentration (gi) 
and stomatal conductance (gs) were recorded between 
09.00-11.00 h, with a portable system (Li-6400; LICOR, 
Lincoln, NE, USA). All measurements were carried out at 
1,500 μmol photons·m-2·s-1. The cuvette CO2 concentration 
was set at 400 μmol CO2·mol-1 air, with a vapor pressure 
deficit of 2.0-3.4 kPa. For each group, measurements were 
done in fully expanded and fully exposed leaves on day 0, 
7, 14, 21, and 28 of drought treatment. 

D e t e r m i n a t i o n  o f  c h l o r o p h y l l  f l u o -
r e s c e n c e :  Chlorophyll fluorescence parameters were 
measured with a pulse-amplitude modulated (PAM-2500) 
fluorometer (Walz, German). Measurement of chlorophyll 
fluorescence parameters was repeated once for each leaf, 
and five leaves of each treatment were chosen for dark ad-
aptation for more than 30 min. After dark-adapted treat-
ment, the minimal fluorescence (Fo) and the maximal 
fluorescence (Fm) were measured under a low modulated 
light over a 0.8 s period. The maximum fluorescence in 
the light-adapted state (Fm′) was recorded after a second 
saturation pulse. Then, the actinic light (7,000 μmol·m-

2·s-1) turned off and the far-red light turned on for measur-
ing the minimal fluorescence in a light-adapted state (Fo). 
The maximum photochemical quantum yield of PSII (Fv/
Fm), the effective photochemical quantum yield of PSII 
(ΦPSII), and electron transport rate (ETR) were calculated 
according to Wang et al. (2012) and Perez-Martin et al. 
(2014).

Q u a n t i f i c a t i o n  o f  c u t i c u l a r  w a x  c o n -
t e n t :  The method for cuticular wax isolation was per-
formed as described previously by Guo et al. (2016), with 
minor modifications. Five new leaves (3rd to 5th position 
from the top on each plant) were collected from each treat-
ment on day 14 of drought treatment. Wax was extract-
ed by dipping the leaves in 30 mL CHCl3 for 30 s. The 
wax extract was filtered using filter paper and air-dried in 
a desiccator at room temperature until there was no change 
in weight. Subsequently, the leaves were oven-dried for 
24 h at 70 °C. Yield of cuticular wax and dry weight (DW) 
of leaves were determined on an analytical scale with an 
accuracy of 0.01 mg (Sartorius Quintix BP211D, Germa-

T a b l e  1

Origin information for two Vitis rootstocks used in experiments of responses to drought stress

Rootstocks Genetic origin Origin locality Climate Soil type
1103P V. berlandieri × V. rupestris Sicily, Italy Etesian climate sandy and stony soil
101-14M V. riparia × V. rupestris Western France Temperate marine climate Marl loam
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ny). Cuticular wax content (CWC) was calculated using 
the following formula: CWC (mg·g-1) = Extracted wax 
weight/DW.

M e a s u r e m e n t s  o f  l e a f  s t o m a t a l  d e n -
s i t y :  Five new leaves (third to fifth position from the 
top of each plant) were sampled from the control and 
drought-stressed plants of '101-14M' and '1103P' on a 14 d 
of drought treatment. A leaf surface imprint method was 
used (Yu et al. 2008). Briefly, a drop of nail varnish was 
applied to a glass slide, and the adaxial side of a sampled 
leaf was pressed on the glue for about 30 s. The leaf was 
removed and the imprint on the glass slide was observed 
with a light microscope (Olympus BX53F; Tokyo, Japan). 
Five plants per treatment, three leaves per plant and three 
areas per leaf, were examined.

O b s e r v a t i o n s  o f  l e a f  s t o m a t a  b y  s c a n -
n i n g  e l e c t r o n  m i c r o s c o p y  ( S E M ) :  Four 
new leaves (3rd to 5th position from the top on each plant) 
were collected per treatment group for each rootstock on 
day 14 of drought treatment. The samples were immedi-
ately fixed with a 4 % glutaraldehyde solution in 0.1 M 
phosphate-buffered saline (PBS; pH 6.8) to avoid any al-
terations during sample preparation. After being rinsed five 
times with PBS (for 5, 10, 15, 20, and 30 min), they were 
dehydrated in a graded ethanol series, vacuum dried, and 
gold-coated. Samples were scanned on a SU8010 scanning 
electron microscope (JHITACHI Ltd., Tokyo, Japan). Sto-
mata were counted at random in 20 visual sections on the 
abaxial epidermis, and final tallies were used to compute 
their densities. Lengths, widths, and apertures were meas-
ured randomly from 20 stomata on the same specimens, 
using Image J software.

D e t e r m i n a t i o n  o f  A B A  c o n t e n t :  BA 
in frozen levels, collected on day 0, 7, 14, 21, and 28 of 
drought treatment, were measured as described by Zhang 
et al. (2008). Briefly, analyses were performed using an 
Agilent 1290 HPLC system (Agilent Technologies, Bö-
blingen, Germany) (Autosampler, Binary Pump and diode 
array detector) equipped with a reverse phase column (In-
ertsil ODS-3, 250 × 4.6 mm, 5 µm); the injection volume 
was 20 μL and the detection was made at 254 nm. The 
mobile phase was methanol with 0.6 % acetic acid (dis-
solved in re-distilled water) (45:55, v: v); and flow rate, 
0.8 mL·min-1. The compound was identified by comparing 
the retention times with ABA external standards (Sigma, 
St. Louis, MO, USA). The peaks were quantified by an 
external standard method, using the measurements of the 
peak areas and a calibration curve.

H 2 O 2  c o n t e n t  a n d  a c t i v i t i e s  o f  H 2 O 2 
- s c a v e n g i n g  e n z y m e s :  H2O2 was extracted with 
5 % (w/v) trichloroacetic acid and measured as described 
by Patterson et al. (1984). For H2O2-scavenging enzymes, 

0.1 gram of frozen leaf samples were ground in a chilled 
mortar with 1 % PVP, then homogenized with 1.2 mL of 50 
mM potassium phosphate buffer (pH 7.8) containing 1 mM 
EDTA-Na2 and 0.3 % Triton X-100. For the assay of ascor-
bate peroxidase (APX), 1 mM ascorbate was added to this 
mixture. Each homogenate was centrifuged at 13 000 g for 
20 min at 4 °C. The supernatant was used for analysis of 
SOD, POD, and APX. Catalase (CAT) activity was deter-
mined by monitoring the disappearance of H2O2 by meas-
uring the decrease in absorbance at 240 nm (extinction co-
efficient of 39.4 mM-1·cm-1) (Chance and Maehly 1955). 
Peroxidase (POD) was assayed at 470 nm (extinction co-
efficient 25.2  mM-1·cm-1) by using H2O2 and guaiacol as 
the reaction substrates (Chance and Maehly 1955). APX 
activity was monitored as the decrease in absorbance at 
290 nm when reduced ascorbate was oxidized (extinction 
coefficient of 2.8 mM-1·cm-1) (Nakano and Asada 1981).

R T- P C R  a n a l y s i s :  Total RNA was extracted 
from frozen leaves, collected on day 0, 7, 14, 21, and 28 of 
drought treatment, according to the method described by 
Pou et al. (2013). Sequence for primers of VvNCED3 was 
determined according to Zheng et al. (2015). All primers 
have been used in this study are listed in Tab. 2. Poly(A)+ 
RNA was purified with a poly(A)+ PrimeScript™ RT re-
agent Kit with gDNA Eraser (TaKaRa, Japan) according 
to the manufacturer's instructions. Real-time PCR was 
performed on an ABI7500 instrument (ABI, USA) using 
SYBR Green qPCR kits (TaKaRa) according to the manu-
facturer's instructions. To test the suitability of these prim-
ers, the specificity and identity of the reverse transcription 
(RT)-PCR products were monitored after each reaction by 
conducting melting-curve analysis of the products. 

Ubiquitin was used as the reference gene, and relative 
expression data of VvNCED3 gene was calculated as Pou 
et al. (2013). Three independent biological replications 
were performed for each experiment.

S t a t i s t i c a l  a n a l y s i s :  Data were expressed as 
means ± standard deviation (SD). The data were analysed 
by Tukey's tests. A p-value of < 0.05 indicated a significant 
difference.

Results

P h o t o s y n t h e t i c  a n d  R W C  r e s p o n s e s 
t o  d r o u g h t  s t r e s s :  In response to drought stress, 
Pn, gs, gi, Tr were reduced in the stressed plants of both root-
stocks throughout the drought stress period (Fig. 1). In the 
first 7 d, the decline of Pn, gs, gi, Tr on '101-14M' were much 
more rapid than that on '1103P'. More specifically, the re-
duction of Pn, gs, gi, Tr on '1103P' were 53.1, 61.7, 27.8, 
and 47.3 %. While, for '101-14M', the counterparts were 

T a b l e  2

Primers used for quantitative real-time RT-PCR

 Gene  Forward primer (5′ - 3′ )  Reverse primer (5′ - 3′)
 VvNCED3  TTCCCTCACGAGTTCCCTATG  TCCTCTGCAATCTGACACCAAG 
 Ubiquitin  GTGCTGTCAACTGCAGGAAA  GTAGCCATGGCACATCCAAT
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70.0, 71.5, 39.4 and 64.6 %, respectively. Nevertheless, 
throughout the drought stress period, except day 0, '1103P' 
had high reading for all four photosynthetic characteristics.

 LRWC on '1103P' was higher than '101-14M' under 
non-stressed conditions (Fig. 2). Values for this parameter 
on both rootstocks decreased under water stress, while the 
decline rate of  LRWC on '101-14M' was faster than that 
on '1103P'. Moreover, '1103P' had higher LRWC than '101-
14M' under drought stress conditions.

C h l o r o p h y l l  f l u o r e s c e n c e  r e s p o n s -
e s  t o  d r o u g h t  s t r e s s :  The response of Fo, Fv/
Fm, ΦPSII, and ETR to drought conditions for '1103P' and 
'101-14M' plants was shown in Fig. 3. Although, Fo in-
creased, Fv/Fm, ΦPSII, and ETR decreased with contin-
uing drought, and changes of '101-14M' were much more 
rapid than '1103P'. More specifically, compared to control 
(c.f., day 0), Fo on '1103P' increased by 102.0 % on day 
28 and Fv/Fm, ΦPSII, and ETR on '1103P' diminished by 
31.3, 62.4, and 78.0 %, respectively. However, Fo on '101-
14M' increased by 138.0 % and Fv/Fm, ΦPSII, and ETR 
on '101-14M' decreased by 40.9, 81.6 and 89.7 %, respec-
tively. . On the other hand, those changes began at different 
times. For example, the Fo on '101-14M' increased rapidly 
on day 7, while '1103P' began on day 14. Besides, through-
out the drought stress, the Fo on '101-14M' was higher and 
the Fv/Fm, ΦPSII, ETR were lower than those on '1103P'.

L e a f  c u t i c u l a r  w a x  c o n t e n t :  Drought 
stress caused an increase in leaf cuticular wax content on 
both rootstocks (Fig. 4). Whether under non-stressed or 
drought stressed conditions, the leaf cuticular wax con-
tent of '1103P' was higher than for '101-14M'. In addition, 
under drought conditions, cuticular wax content rose by 
38.4 % and 21.2 % in the drought-tolerant and -sensitive 
rootstocks, respectively.

Fig. 1: Changes in net photosynthesis (Pn), transpiration rate (Tr), stomatal conductance (gs), and intercellular CO2 concentration (gi) 
of '1103 P' and '101-14M' under control (CK) and drought conditions. Data are means of 5 replicates ± SD. Different letters denote 
statistically significant differences by Tukey's test (P < 0.05).

Fig. 2: Changes in leaf relative water contents of '1103 P' and 
'101-14 M' under control (CK) and drought conditions. Data are 
means of 5 replicates ± SD. Different letters denote statistically 
significant differences by Tukey's test (P < 0.05).

S t o m a t a l  d e n s i t y  a n d  b e h a v i o r :  Leaf 
lower surfaces were scanned at ×3000 magnification. The 
drought stress caused stomata to close in both rootstocks 
(Fig. 5) Under well-watered conditions, '101-14M' had 
significantly higher stomatal density (Fig. 5A, D), whereas 
the stomata length, width and aperture were almost simi-
lar on both rootstocks (Fig. 5B, C). Stomatal apertures on 
both rootstocks significantly decreased under water stress 
(Fig. 5D). Compared with control, stomatal apertures were 
24.3 % on '1103P' and 40.5 % on '101-14M' (Fig. 5D, 
Fig. 6). Besides, stomata length and width were not signi- 
ficantly affected by the water deficit, except stomata width 
of '1103P' became remarkably smaller compared with the 
control (Fig. 5C).   
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A B A  c o n t e n t  a n d  r e l a t i v e  e x p r e s s i o n 
o f  N C E D 3 :  The ABA contents and relative expression 
of NCED3 in leaves of both rootstocks increased, and then 
decreased under the drought treatment, peaking at around 
day 14. Meanwhile, the ABA contents and expression 
of NCED3 in leaves of '1103P' were higher than that of 
'101-14M' under water stressed conditions (except Day 0) 
(Fig. 7A, B). 

H 2 O 2  c o n t e n t  a n d  a c t i v i t i e s  o f  a n t i -
o x i d a n t  e n z y m e s :  Drought stress caused a rapid 
increase of H2O2 contents in both rootstocks leaves, while 
the content on '101-14M' was higher than that on '1103P' 
throughout almost the whole drought period (Fig.  8A). 
Both rootstocks significantly enhanced activities of CAT 
(Fig. 8B), POD (Fig. 8C), and APX (Fig. 8D) under stress. 
The peaking time of CAT and POD activities was at around 
day 14, and the peaking time of APX activity was at around 

Fig. 3: Changes in parameters of chlorophyll fluorescence of '1103 P' and '101-14M' under control (CK) and drought conditions. Data 
are means of 5 replicates ± SD. Different letters denote statistically significant differences by Tukey's test (P < 0.05).

Fig. 4: Leaf cuticular wax content (CWC) comparison between 
'1103 P' and '101-14 M' under control (CK) and drought conditions. 
Data are means of five replicates ± SD. Different letters denote 
statistically significant differences by Tukey's test (P < 0.05).

day 21. However, APX activity was significantly elevated 
throughout the whole drought period compared with the 
control. In addition, the activities of CAT, POD, and APX 
on '1103P' were higher than those on '101-14M' under 
drought stress.

Discussion

There were a variety of mechanisms in plants in re-
sponse to water stress, which might maintain plant function 
in multiple ways (Hoekstra et al. 2001). The adaptive re-
sponses to water deficit include mechanisms to avoid wa-
ter loss, protect cellular components, and repair damages 
(scavengers of toxic oxygen species). However, the mecha-
nisms of how grapevine rootstock coped with drought have 
not been fully clarified. Here we focus on the physiologi-
cal and biochemical processes of two specific rootstocks 
(tolerant and sensitive to drought) to determine the mecha-
nisms of grapevine rootstock under drought stress. 

( 1 )  ' 1 1 0 3 P '  h a d  h i g h e r  a b i l i t y  o f  m a n -
a g i n g  s t o m a t a  b e h a v i o r  i n  c o m p a r i s o n 
t o  ' 1 0 1 - 1 4 M ' :  Stomatal transpiration is one of the 
main ways of plants losing internal water. Their opening 
and closing are controlled by environmental and internal 
parameters (Kolbe et al. 2018), including water deficit. 
Under drought stress, partial or complete stomatal closure 
allows plants to maintain a favorable water balance (Liu 
et al. 2013). Therefore, it is proved that stomatal density 
and behavior have an essential role in determining drought 
tolerance. In this study, '1103P' had smaller stomatal den-
sity and width than '101-14M' under both well-watered 
and drought conditions. Especially, under drought condi-
tions, the closing degree of stomata on '1103P' (75.7 % ) 



was much higher than that on '101-14M' (59.5 %). And this 
might be the reason why '1103P' maintained higher leaf 
RWC under drought conditions. Although the stomata ap-
erture of '1103P' was smaller than that of '101-14M', the 
photosynthetic rate of '1103P' was higher. This might be 
caused by the differences of mesophyll conductance be-
tween '1103P' and '101-14M' (Tomás et al. 2014).

Many studies have confirmed that abscisic acid medi-
ates the stomatal behavior in response to drought by acti-
vating activity of guard cell membrane-localized channels 
and transporters, which decreased guard cell turgor and ul-
timately closing the stomata (Malcheska et al. 2017, Quan 
et al. 2018, Dong et al. 2018). Under drought conditions, 
expression of VvNCED3 (ABA biosynthesis gene) was 

Fig. 5: Effects of drought on stomatal properties of leaves from '1103P' and '101-14M' under control and drought conditions: density 
(A), length (B), width (C), and aperture size (D), Data are means of values from 15 images ± SD. Different letters denote statistically 
significant differences by Tukey's test (P < 0.05).

Fig. 6: SEM images of stomata from leaves of '1103P' and '101-14M': control leaves with open stomata (A, '101-14M' and C, '1103P'); 
closed stomata of leaves exposed to drought stress for 7 d (B, '101-14M' and D, '1103P'). Magnification × 3000, scale bars = 20 µm.
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significantly up-regulated on both rootstocks, and the ABA 
content also elevated. However, the leaves of '1103P' had 
higher ABA contents and NCED3 expression level than 
that of '101-14M', which led to the faster stomata closing 
on '1103P' in response to drought. 

( 2 )  T h e  l e a v e s  o f  ' 1 1 0 3 P '  h a d  h i g h e r 
c u t i c u l a r  w a x  c o n t e n t :  The aerial parts of plants 
are covered with cuticular wax, which controls non-sto-
matal water loss and gas exchange, and protects plants 
from UV irradiation, thus contributing to drought tolerance 
(Kunst and Samuels 2009). Cuticular wax accumulated 
under drought stress in plants, such as wheat, rice, and 
maize (Bi et al. 2017, Xue et al. 2017, Guo et al. 2018, Li 
et al. 2019a). Guo et al. (2016) suggested that drought-tol-
erant wheat cultivars usually have higher leaf cuticular 
wax content (CWC). In this study, '1103P' (drought-tol-
erant cultivar), had higher leaf CWC than '101-14M' (the 
drought-sensitive cultivar) under both well-watered and 
drought conditions, and this helped avoid non-stomatal 
water loss on '1103P' under drought stress.

 ( 3 )  ' 1 1 0 3 P '  h a d  m o r e  a c t i v e  a n t i o x -
i d a n t  e n z y m e s :  Reactive oxygen species (ROS) 
significantly accumulated under abiotic stress conditions, 
which caused oxidative damage and cell death (You et al. 
2015, Nxele et al. 2017). Increasing evidence showed that 
accumulation of ROS damages photosystem II proteins by 
lipid peroxidation (Pospíšil et al. 2017, Guo et al. 2018). 
Therefore, manipulating ROS levels provides an opportu-
nity to enhance plants tolerances to unfavorable environ-
mental conditions (Nxele et al. 2017). Hydrogen peroxide 
(H2O2), one of the most important ROS, participates in a 
series of processes under abiotic stress (Bae et al. 2016, Li 
et al. 2017, Zhou et al. 2018). Drought induced the H2O2 
accumulation in leaves of both '1103P' and '101-14M'. The 
activities of H2O2-scavenging enzymes, including CAT, 
POD, and APX, were also up-regulated. However, the 
activities of those enzymes on '1103P' were higher than 
those on '101-14M', leading to lower leaf H2O2 content 
on '1103P'. Many studies suggested that H2O2 directly in-
volved in the regulation of stomatal movement (An et al. 

Fig. 7: Changes of ABA contents and expression of NCED3 gene in leaves of '1103 P' and '101-14M' under control (CK) and drought 
conditions. Data are means of 5 replicates ± SD. Different letters denote statistically significant differences by Tukey's test (P < 0.05).

Fig. 8: Changes in H2O2 accumulations and activities of antioxidant enzymes in leaves under control (CK) and drought conditions: H2O2 
content (A), CAT activity (B), POD activity (C), and APX activity (D). Data are means of 5 replicates ± SD. Different letters denote 
statistically significant differences by Tukey's test (P < 0.05).



2016, Sun et al. 2017). Li et al. (2014) reported the cor-
relation between elevated H2O2 level and ABA-induced 
stomatal closure. Additionally, photosystem II proteins on 
'1103P' were less damaged under drought stress, and thus 
Fv/Fm on '1103P' was higher. In conclusion, higher ABA 
content, ROS scavenging enzymes activity, and leaf cutic-
ular wax content, and smaller stomatal aperture on '1103P' 
contribute to stronger drought resistance. 
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