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Summary

Grapevine is cultivated worldwide with great eco-
nomic importance. In recent years, our knowledge of 
the physiological and molecular basis of berry quality 
regulation has substantially increased. Abiotic and biotic 
stresses, such as deficit irrigation, low temperature, light/
UV and microbes, to a certain extent, could improve 
grape berry quality by enhancing flavor metabolites, col-
orization or aroma compounds. This review summarizes 
recent data related to the stress of grape berry develop-
ment, with special emphasis on secondary metabolism 
and its response to stresses. A full understanding of how 
grape berry metabolism responds to different stresses is 
important to improve the biochemical qualities of grapes 
and resultant products, such as wine in practice.

K e y  w o r d s :  grapevine; controlled stresses; secondary 
metabolites; positive effect; berry quality.

Introduction

Grapevine (Vitis vinifera L.), is one of the most widely 
cultivated fruit crops worldwide. It is a non-climacteric 
fruit used as table fruit, dried raisins, and for producing 
juices, liquors and wines (Coombe and Hale 1973), with 
production exceeding 75 million tons per year (OIV 2020). 
Grapes are rich in primary and secondary metabolites, which 
are the quality determinants and source of health-promoting 
substances, such as carbohydrates, organic acids, vitamins, 
minerals, and polyphenols (Bender et  al.  2020, Pintać 
et al. 2018).

The development of grape berries can be divided into 
three distinct phases, with a double sigmoid growth curve. 
Stage I and stage III (the rapid growth phases) are separated 
by a lag phase (stage II), which occurs 7 to 10 weeks after 
flowering. During Stage I, stored carbohydrates are used for 
seed development, cell proliferation and expansion. Organ-
ic acid accumulation in vacuoles occurs in this stage, and 
several phenolic compound precursors such as proanthocy-

anidins are synthesized (Coombe 1992). The transition from 
stage II to stage III, completed within 24 hours, is named 
véraison which marks the onset of ripening, characterized 
by softening and coloring of the berry skin and an enlarged 
berry size. During this time, sugars and amino acids begin 
to accumulate rapidly, while organic acid concentrations 
decrease simultaneously (Coombe 1992, Zoccatelli et al. 
2013). The result of these changes lead to the establishment 
of a stabilized sugar to acid ratio, which fundamentally deter-
mines the taste of table grapes and the sensory characteristics 
of wines derived from them (Conde et al. 2007). Anthocya-
nins are synthesized after véraison and reach concentration 
peak at maturation while proanthocyanidins are synthesized 
before véraison (Teixeira et al. 2013). Towards the end of 
the stage III, precursors of aroma and aroma compounds 
(terpenoids and their derivatives, esters, aldehydes and 
thiols) are synthesized and stored as non-volatile precursors 
mainly in exocarp vacuoles (Lund and Bohlmann 2006). 
The exocarp (berry skin) is the main site for the synthesis of 
major flavor metabolites, such as flavonoids, proanthocya-
nidins, polyphenols (Teixeira et al. 2013). Subtle changes 
in metabolites, especially secondary metabolites, are suffi-
cient to affect wine sensory quality. Polyphenols, such as 
anthocyanins, flavonols, proanthocyanidins, stilbenes, and 
other secondary metabolites, may endow grape organoleptic 
characteristics and have also been proven to play a protective 
role in human health (Downey et al. 2003, Balik et al. 2008, 
Flamini et al. 2013).

The physiological and biochemical compositions of 
grapes are mainly determined by both genetic and envi-
ronmental factors (Jackson 2020, Yang et al. 2016). In 
addition to genotypes, research on how biotic and abiotic 
factors influence grape quality has been broadly covered. 
Stresses, including deficit irrigation, temperature, light, 
UV, pathogenic microbes and other environmental mi-
crobes, to a large degree, affect grape metabolism and sub-
sequently the biochemical quality of grape and its resultant 
products. This review summarizes recent data related to 
the influences of stresses, mainly positive effects, on grape 
berry development and metabolism from an overview to 
detailed discussions.
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Secondary metabolites in the grape berries 

Plants synthesize secondary metabolites to better adapt 
to the environment. On the other hand, any environmental 
factors that influence plant growth and development will 
compositionally and quantitatively trigger changes in sec-
ondary metabolites in plant organs, such as grape berries, 
and then influence the economic value of these products. 
These secondary metabolites include phenolics, flavo-
noids, terpenoids, alkaloids and others.

P h e n o l i c  c o m p o u n d s :  Phenolic compounds 
in grape berries can be structurally divided into categories 
of  flavonoid (anthocyanins, flavonols [quercetin, kaemp-
ferol], flavan-3-ols [monomeric catechins and proanthocy-
anidins]) and nonflavonoid compounds (hydroxybenzoic 
and hydroxycinnamic acids and stilbenes [resveratrol]) 
(Chaves et al. 2010, Teixeira et al. 2013, Alonso et al. 
2016). Flavonoid and nonflavonoid compounds are syn-
thesized from phenylalanine through the phenylpropanoid 
synthesis pathway (Buchanan et al. 2015). Phenylalanine, 
for its part, is a product of the shikimic acid pathway, which 
relates the metabolism of carbohydrates to the biosynthesis 
of aromatic amino acids and other secondary metabolites 
(Flamini et al. 2013, Gutiérrez-Gamboa et al. 2021). The 
total extractable phenolics in grapes are distributed with 
percentages of 60-70 % in seeds, 20-30 % in skins, and 
10 % or lower in the pulp (Shi et al. 2003). Due to their 
close association with grape and wine color, bitter taste, 
astringency and others, researchers have attempted to pro-
mote their biosynthesis in grapes (Hornedo-Ortega et al. 
2020, Li and Sun 2019).

F l a v o n o i d  g r a p e  p o l y p h e n o l s :  a n t h o -
c y a n i n s ,  f l a v o n o l s ,  f l a v a n - 3 - o l s :  Flavo-
noids, whose general structure is two phenyl rings and a 
heterocyclic ring, are grouped into several classes that dif-
fer in the oxidation state of the heterocyclic ring (Šikuten 
et al. 2020). The main classes of flavonoids are anthocya-
nins, flavonols and flavan-3-ols.

A n t h o c y a n i n s :  Structurally, anthocyanins have 
the typical flavonoid skeleton C6-C3-C6, which contains 
a heterocyclic benzopyran ring, a fused aromatic ring, and 
a phenyl constituent (He et al. 2010). These compounds 
are synthesized in the cytoplasm but accumulate in vac-
uoles, and then adopt their distinct color (Šikuten et al. 
2020). What produces the red, purple, and blue colora-
tion comes down to the presence and number of hydroxyl 
groups, methylations, and sugar moieties. The color and 
stability of anthocyanins are susceptible to the action of 
pH, light, temperature, and the presence of enzymes, met-
al ions and co-pigments (Beres et al. 2017). Under acid-
ic conditions, anthocyanins appear red but turn colorless 
at pH 4.0, and purple above pH 4.5. When the pH value 
increases to alkaline conditions, a blue color is produced 
(Fontes et al. 2011). The main anthocyanins in grapes are 
glucosides originating from 6 anthocyanins: delphinidin, 
cyanidin, petunidin, peonidin, malvidin, and pelargonidin 
(De Lorenzis et al. 2016). As water-soluble pigments, an-
thocyanins are synthesized via the flavonoid pathway in 
the skins of red grapes during ripening and are also present 
in the flesh of the 'teinturier' varieties (Burns et al. 2002). 

Anthocyanins are responsible not only for the red color 
and its variations in tonality in grapes and red wines, but 
also for contributing to the astringency and bitterness of 
grapes and wines. Studies have shown that certain white 
grape cultivars, such as 'Sauvignon Blanc', 'Riesling' and 
'Chardonnay', contain measurable traces of anthocyanins 
(Arapitsas et al. 2015). In addition, anthocyanins are rec-
ognized as potential pharmaceutical ingredients, as they 
possess antidiabetic, anticancer, anti-inflammatory, antimi-
crobial, anti-obesity, and neuroprotective effects, as well 
as contribute to the prevention of cardiovascular diseases 
(Khoo et al. 2017).

F l a v o n o l s :  Flavonols, as co-pigments with antho-
cyanins, are responsible for stabilizing the color of wines 
and consequently in their by-products (Beres et al. 2017), 
and in the sensory perception of astringency and bitter-
ness (Ferrer-Gallego et al. 2016). Flavonols constitute 
a group of flavonoids that vary in color from white to yel-
low and are closely related in structure to flavones with a 
3-hydroxyflavone backbone. They behave as UV- and pho-
to-protectors as they absorb strongly at UV-A and UV-B 
wavelengths. Therefore, they can be mainly found in the 
outer epidermis of the skin of both white and red grapes in 
3-O-glycoside forms, and no reports have shown that these 
compounds have been detected in the seeds or the pulp of 
grapes (Downey et  al. 2003, 2006). However, flavonols 
are also found in shoots, tendrils, inflorescences, anthers, 
and leaves (Downey et al. 2003). Generally, the red culti-
vars are regularly richer than the white cultivars. The main 
representatives of flavonols in red grape berries are myri-
cetin, quercetin and kaempferol (Fraga 2009). In addition, 
other compounds, such as isorhamnetin, laricitrin, and sy-
ringetin have also been identified (Castillo-Muñoz et al. 
2007). However, myricetin, laricitrin, and syringetin were 
not detected in the white grape cultivars (Mattivi et  al. 
2006). There are two distinct periods of flavonol synthesis 
in grape berries, the first around flowering and the second 
during berry ripening, which are related to the expression of 
genes that encode the enzyme flavonol synthase (Downey 
et al. 2003). Low temperatures and light have a synergis-
tic effect on the expression of genes within the flavonoid 
biosynthesis pathway (Azuma et al. 2012). After exposure 
to sunlight, the flavonol concentration increases before the 
véraison stage, which is induced by the transcription factor 
genes of the MYB family (Matus et al. 2009).

F l a v a n - 3 - o l s :  Flavan-3-ols, also known as flava-
nols, are present in grapes as monomers or polymers called 
proanthocyanidins (PAs) or condensed tannins. The main 
monomers are (+)-catechin, (−)-epicatechin, (+)-gallocate-
chin, (−)-epigallocatechin, and (−)-epicatechin-3-O-gallate 
(Hornedo-Ortega et al. 2020). The favan-3-ols stabilize 
the color and sensory characteristics of the wines derived 
from the grapes due to their astringent and bitter properties 
(Teixeira et al. 2014). Bitter taste perception is enhanced 
by epicatechin and catechin, while astringency is enhanced 
by PAs and galloylation. The intensity and duration of as-
tringency can be ascribed to structural properties such as the 
chain length, the stereochemistry of subunits, and the bond 
sites between subunits (Šikuten et al. 2020). The monomers 
and the trimers of PAs contribute to the highest and the 
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lowest degerees of bitterness, respectively, while monomers 
are less astringent than dimers or trimers (Šikuten et al. 
2020). The accumulation of flavan-3-ols in grape berries 
starts immediately after fruit set, reaches a maximum level 
around véraison and then decreases in concentration during 
ripening (Fujita et al. 2005). PAs, also known as tannins, 
result from the polymerization of flavan-3-ols units, and 
are mainly oligomeric and polymeric forms of (+)-catechin 
and (−)-epicatechin. Tannins are the most abundant class of 
soluble polyphenolics in grape berries and are found in the 
skins, seeds, and stalks of clusters of grapes, which may be 
the microbial and oak sources in wine. Several studies on the 
in vitro and in vivo effects of grape seed proanthocyanidins 
have exhibited anticancer activity. Furthermore, tannins 
were found to have a significant ability to scavenge peroxyl 
radicals in model solutions (Salehi et al. 2019).

N o n - f l a v o n o i d  g r a p e  p o l y p h e n o l s . 
P h e n o l i c  a c i d s  a n d  s t i l b e n e s :  Non-flavonoid 
compounds include hydroxycinnamic and hydroxybenzoic 
acids and stilbenes. Over the past years, these non-flavo-
noid compounds have attracted increasing interest because 
of their potential health benefits (e.g., antioxidant, anti-
bacterial, antiviral, anti-cancerogenic, anti-inflammatory, 
and vasodilatory actions) (Morales-Prieto et al. 2020, 
Scalzini et al. 2021). 

P h e n o l i c  a c i d s :  Phenolic acids are divided into 
two main groups, hydroxybenzoic acids (C6-C1) and hy-
droxycinnamic acids (C6-C3), and reach a maximum lev-
el around véraison, followed by a decrease to a constant 
amount as the fruit ripens (Fia et al. 2022). The concentra-
tions of total hydroxybenzoic and hydroxycinnamic acids 
were higher in wine grapes than in table grapes. Phenolic 
acids, which act as co-pigments, are considered color stabi-
lizing agents of young red wines through co-pigmentation 
with anthocyanins (Heras-Roger et al. 2016). In addition, 
they are also associated with the sensory characteristics of 
astringency and bitterness (Hornedo-Ortega et al. 2020). 
Individually, the main hydroxybenzoic acids in grapes or 
wines are gallic, vanillic, and syringic acids. Hydroxycin-
namic acids are principally found in skins, and ferulic, caf-
feic, p-coumaric and sinapic acids are the most significant. 
Hydroxycinnamic acids are synthesized through the shi-
kimate pathway from phenylalanine and tyrosine through 
the action of phenylalanine ammonia-lyase. In contrast, 
hydroxybenzoic acids are not phenylpropanoids, and they 
are synthesized directly from the shikimic acid pathway 
(Laura et al. 2019). Predominantly present in grapes, gal-
lic acid is considered to be one of the most important hy-
droxybenzoic acids and is the precursor of hydrolyzable 
tannins (Boido et al. 2011). In addition, caffeic and p-cou-
maric acids in grapes and wines can be esterified by the 
glucose of the anthocyanin monoglucosides forming their 
acylated derivates (Hornedo-Ortega et al. 2020).

T h e  s t i l b e n e s :  Stilbenes (1,2-diphenylethyl-
ene), are considered as phytoalexins, produced by plants 
for their roles in adaptation and protection against biotic 
and abiotic stresses. They can be found in the peels, stems 
and seeds of grapes, and red varieties seem to present high-
er stilbene contents than white varieties. The structure of 
stilbenes is composed of two aromatic rings connected by 

an ethylene bridge forming a C6-C2-C6 chain (Teixeira 
et al. 2014). The two aromatic rings could be substituted 
by functional groups such as methoxyl, hydroxyl, geranyl 
or prenyl groups. Moreover, monomeric units can also be 
coupled, leading to the formation of more complex oli-
gomers, including dimers, trimers and tetramers (Takaya 
et al. 2005). According to record reports, the main stil-
benes found in grapes are cis- and trans-resveratrol, piceid, 
piceatannol, and viniferins (Gutiérrez-Gamboa et  al. 
2021). Among the identified stilbenes, resveratrol is the 
most popular compound, conferring its anti-inflammatory, 
anti-oxidative, and anti-aging properties in humans (Cor-
pas et al. 2019, Benbouguerra et al. 2021). Additionally, 
the concentration of stilbene in grape berries mainly de-
pends on the ripening stage, generally after véraison and 
continuing throughout the ripening stage (Adrian et al. 
2000). Since they are associated with plant resistance, in-
fection with fungal diseases, such as Botrytis cinerea, can 
induce the production of resveratrol, ε-viniferin and piceid 
(Jeandet et al. 1995, Bavaresco et al. 1997). Furthermore, 
infection by Plasmopara viticola or other stress factors, 
such as UV radiation, can induce the synthesis of δ-vinfer-
in and ε-viniferin (Błaszczyk et al. 2019).

A r o m a  c o m p o u n d s :  Aroma compounds are 
secondary metabolites of grape berries that determine the 
quality of grapes and wines and, hence, for consumer ac-
ceptance. More than 1000 volatile aroma compounds with 
different polarities were detected in grapes and wines, at 
concentrations ranging from hundreds of milligrams per 
litre to a few picograms per litre (Ferreira 2010). Part of 
them are biosynthezised in berries, and the other part re-
sults from winemaking and aging (Alem et al. 2019). They 
are classified into three categories according to their source 
or origin: primary aromas, also known as grape aromas or 
varietal aromas, are derived from the grapes themselves; 
secondary (or fermentation) aromas arise from yeast me-
tabolism; and post-fermentative (or aging) aromas arise 
from chemical reactions that take place during the wine's 
aging process (Ruiz et al. 2019). Aroma compounds are 
usually located in both the pulp and skin of grapes and are 
classified into the free aroma and bound (glycosylated) 
aroma. The free forms are volatile compounds that possess 
volatile properties, thus contributing to the aroma of ber-
ries. On the other hand, the bound glycoside forms com-
prise non-volatile components that do not directly affect 
the overall grape or wine aroma; however, they are com-
monly known as aroma precursors since they undergo hy-
drolysis to odor-active forms, thereby generating the active 
odor molecules and enhancing the aromatic characteristics 
of grapes (Ghaste et al. 2015, Yao et al. 2021).

Aroma is the result of a complex mixture of multiple 
compounds (terpenoids, C13-norisoprenoids [Carotenoids], 
benzenoids, esters, methoxypyrazines, and thiols) (D'On-
ofrio et al. 2018, Garde-Cerdán et al. 2018). Among 
them, terpenoids and C13 norisoprenoid have the lowest 
perception threshold, thus contributing importantly to the 
aroma (Román et al. 2020). Meanwhile, terpenes, esters 
and benzenoids are strongly linked to fruity and floral 
characteristics; C6-aldehydes and alcohols are known to 
contribute to green leafy aroma characteristics; and meth-



	114	 Xiao-Xia Pan et al.

oxypyrazines possess green capsicum characteristics (Wu 
et al. 2016). Furthermore, C13-norisoprenoids are generally 
responsible for different flavors in fruits and wines, such as 
berry, tobacco, honey, balsamic and violet aromas (Peinado 
et al. 2004, Yuan and Qian 2016). Thiols are derived from 
fatty acid molecules and are usually bound with cysteine 
or glutathione and are odorless until enzymatic release. At 
low concentrations, they can provide desirable blackcurrant, 
citrus and passion fruit aromas to wines (Alem et al. 2019). 
In recent years, many authors have studied the effects of 
agronomic practices and environmental factors on aroma 
compounds, with the aim of being able to modulate and 
improve the chemical composition of the grape aroma (Alem 
et al. 2019, Petretto et al. 2021, van Leeuwen et al. 2018).

Stresses positively influence the biochemistry of grape 
berries

Generally, stresses negatively influence plant growth 
and development in multiple ways. However, grapevines 
(Vitis spp.) like other plants, have an internal adaptive 
mechanism to combat abiotic and biotic stress. In viticulture, 
studies have demonstrated that certain degrees of stress, such 
as water deficit, low/high temperature, UV radiation, path-
ogens or other microbe attack, are beneficial for improving 
grape qualities and characteristics. The biochemical traits 
impacted by various stresses in grape berries are partially 
summarized in Tabs 1 and 2.

Wa t e r  s t r e s s :  Due to global warming, water 
deficit has become an increasing factor limiting grape 
production, especially in the dry and warm Mediterrane-
an region of Europe (Chaves et al. 2007). The impacts of 
water stress on grape quality have been extensively inves-
tigated in recent decades. Studies have demonstrated that 
severe water stress hinders grape development, resulting 
in physiological disorders and decreasing the grape berry 
quality. However, large-scale transcriptome and metabo-
lome analyses revealed the metabolic responses to water 
stress, and many of these modified metabolites positively 
improved gape quality and characteristics. Certain degrees 
of water deficit benefit the overall berry quality and have 
been applied in practices via vineyard water management 
in viticulture (Chaves et al. 2010; Calderan et al. 2021, 
Chacón-Vozmediano et al. 2021). Irrigation of vineyards 
is strictly controlled or even prohibited under the adminis-
tration of commercial organizations in high-quality wine 
producing regions or countries such as Bordeaux, France. 
In general, mild to moderate water stresses result in small-
er berries, and therefore increase the ratio of skin to pulp 
(Roby and Matthews 2004, Conde et al. 2007,  Calder-
an et al. 2021, Zhang et al. 2021). However, total phenol, 
anthocyanin, proanthocyanidin, aroma compounds and 
sugar concentrations in berries usually increased com-
pared with well-watered conditions (Chaves et al. 2007, 
Song et al. 2012, Bonada et al. 2015, Savoi et al. 2017, 
Cáceres-Mella et al. 2018, Zombardo et al. 2020, Cal-
deran et al. 2021). Flavonol concentration can increase 
when stress is applied before pre-véraison (Castellarin 
et al. 2007a, Deluc et al. 2009 Brillante et al. 2017, in 
'Chardonnay') or is unaffected (Deluc et al. 2009 in 'Caber-

net Sauvignon', Savoi et al. 2017), but may decrease when 
stress is applied after véraison (Castellarin et al. 2007a, 
Zarrouk et al. 2012). With the adoption of large-scale me-
tabolite and transcript analyses, as well as multi-omics and 
integrated network analyses, studies have indicated that 
the metabolic response of the grape berries to water stress 
is related to the complex regulation of several metabolic 
pathways, possibly determined by common or specific 
molecular signals (Castellarin et al. 2007b, Deluc et al. 
2009, Hochberg et al. 2015, Roby and Matthews 2004, 
Savoi et al. 2017). Savoi et al. (2017) revealed that the 
concentrations of phenylpropanoids, carotenoids, zeaxan-
thin and monoterpenes were upregulated gene expression 
in response to water stress. Similar results were obtained 
with the white grape 'Tocai Friulano'. Grapevine berries re-
spond to drought by stimulating the production of phenyl-
propanoids, monoterpenes, and tocopherols (Savoi et  al. 
2016). In addition, water-stressed grapevines increased 
aroma compound concentrations in berries, but decreased 
undesirable aroma compound concentrations, such as free 
C6 compounds (hexanal, trans-2-hexenal, and 1-hexanol) 
(Song et al. 2012). 

However, the response of grape to water stress is com-
plex. On the one hand, the effect of secondary metabo-
lites varies with the timing and intensity of stress applied. 
Pre-véraison water stress treatment performed generally 
better than post-véraison treatment based on the majority 
of experiments, resulting in an increase in partial metab-
olites compared with normal or full water status, although 
berry size was reduced to some degree (Deluc et al. 2009, 
Intrigliolo et al. 2012, Romero et al. 2013, Zarrouk 
et  al. 2016). Post-véraison water stress, in contrast, was 
less remarkable than pre-véraison treatment on berry sec-
ondary metabolites, although it had some positive effects 
(Roby and Matthews 2004, Intrigliolo et al. 2012, 
Casassa et al. 2015). Nonetheless, there was still much 
disagreement among the reported literature, which may 
be due to differences in the severity and duration of water 
stress, vine cultivar, climate, soil and altitude.

The grape response to water stresses might be some-
what cultivar-dependent. The effects of water stress on 'Ca-
bernet Sauvignon' seem to differ from those observed in 
'Chardonnay' (Deluc et al. 2009). Water stress activated 
the expression of transcripts associated with proline bio-
synthesis and the phenylpropanoid pathway, with increases 
in ABA, proline, sugar and anthocyanin concentrations in 
'Cabernet Sauvignon', while partially activating the phe-
nylpropanoid, carotenoid and isoprenoid metabolic path-
ways, promoting the synthesis of flavonols and aromas in 
'Chardonnay'. Under similar deficit irrigation, Hochberg 
et al. (2015) showed cultivar-specific responses in metabo-
lites between 'Shiraz' and 'Cabernet Sauvignon'. 'Cabernet 
Sauvignon' (compared with 'Shiraz') exhibited milder met-
abolic alteration of berry-skin primary metabolites, as well 
as less variation in °Brix and berry weight, which coincid-
ed with the research carried out between 'Tempranillo' and 
'Graciano' (Niculcea et al. 2014).

T e m p e r a t u r e :  Likewise, heat stress, which is 
often accompanied by drought, has attracted attention as 
viticulture is sensitive to climate changes (Hannah et al. 
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2013), and the grapevine response to heat stress might also 
be cultivar dependent (Gashu et al. 2020). Research has 
helped uncover the effects of temperature on the accumu-
lation of secondary metabolites as well as the biosynthetic 
pathways involved in their biosynthesis. Grape berry me-
tabolism is sensitive to heat at the flowering and ripening 
stages. Generally, anthocyanin is suppressed by high tem-
peratures, accompanied by lower acidity and higher sug-
ar concentrations in berries (Mori et al. 2005b and 2007, 
Yamane et al. 2006, Azuma et al. 2012, Shinomiya et al. 
2015, Abeysinghe et al. 2019, Arrizabalaga-Arriazu 
et al. 2020, Venios et al. 2020). Photosynthesis was also 
greatly reduced with the consequences of berry size and 
weight reduction (Hale and Buttrose 1973, Coombe 
1987, Camps and Ramos 2012). High temperature affects 
not only the synthesis but also the stability of existing me-
tabolites. High temperature increased the degradation rate 
of anthocyanin as well as the inhibition of mRNA tran-
scription of anthocyanin biosynthetic genes (Yamane et al. 

2006, Mori et al. 2007). In contrast, optimal conditions 
such as cool nights and mild temperate days might be fa-
vored for berry quality. In some grape varieties, exposing 
whole vines or clusters to cold temperature enhances ac-
cumulation or biosynthesis. Mori et al. (2005a) compared 
the effects on berries under high night temperature (30 °C) 
and low night temperatures (15 °C), and found that contin-
uous warm nights generally repressed anthocyanin accu-
mulation in berry skin compared to that of berries grown 
under cool night conditions, owing to the lower activities 
of anthocyanin biosynthetic enzymes, particularly UFGT. 
Similarly, during the 'Kyoho' ripening season under con-
tinuous 24 °C, 27 °C and 30 °C temperatures, skin color-
ation and anthocyanin accumulation were sufficient under 
24 °C, while 27 °C or 30 °C showed insufficient coloration 
and low levels of anthocyanin accumulation, ABA con-
centration, and anthocyanin biosynthetic gene transcript 
levels (Shinomiya et al. 2015). Although anthocyanins 
and proanthocyanidins share several steps in the biosyn-

T a b l e  1

Effects of moderate water deficit on the biochemical parameters of grape berries at harvest. Berry weight (BW) or volume (BV), 
percentage soluble solids (%SS) or °Brix, titrable acidity (TA), total phenols (TP), anthocyanins (As), flavonols (Fs), 

proanthocyanidins (PAs), abscisic acid (ABA), and aroma. –, not assessed; ↑, increase; ↓, decrease; =, no significant change

Authors Cultivar(s) The time applied
Effects on

BW/BV °Brix TA TP As Fs PAs Aroma ABA
Bonada et al. (2015) Shiraz After berry set ↓ ↑ ↓ ↑ ↑ - ↑ ↑ -
Brillante et al. (2017) Cabernet Sauvignon Before véraison = ↓ ↓ - ↑ ↑ ↑ - -
Bucchetti et al. (2011) Merlot After berry set ↓ = = - ↑ - = - -
Cáceres-Mella et al. (2017) Cabernet Sauvignon Before véraison - = = ↑ ↑ - ↑ - -
Cáceres-Mella et al. (2018) Cabernet Sauvignon Before véraison - ↑ ↑ ↑ ↑ - - ↑ -
Casassa et al. (2013) Cabernet Sauvignon After berry set ↓ = ↓ - ↑ - ↑ - -

Casassa et al. (2015) Cabernet Sauvignon
Before véraison ↓ ↓ ↓ - ↑ - ↑ - -
After véraison ↓ ↓ ↓ - = - ↓ - -

Castellarin et al. (2007b) Merlot Before véraison ↓ = = - ↑ - - - -

Castellarin et al. (2007a) Cabernet Sauvignon
Before véraison = ↑ - - ↑ ↑ ↑ - -
After véraison ↓ ↑ - - ↑ ↓ ↑ - -

Chaves et al. (2007)
Moscatel

After berry set
↓ = ↓ ↑ - - - - -

Castelao ↓ ↑ ↓ ↑ ↑ - - - -

De Royer Dupré et al. (2014) Grenache Noir
Before véraison - - - - - - - ↑ -
After véraison - - - - - - - ↑ -

Deluc et al. (2009)
Cabernet Sauvignon

Before véraison
↓ ↑ = - ↑ = - ↑ ↑

Chardonnay ↓ = ↓ - - ↑ - ↑ ↑

Intrigliolo et al. (2012) Tempranillo
Before véraison ↓ = ↓ ↓ ↑ - - - -
After véraison = ↓ = ↓ ↓ - - - -

Koundouras et al. (2009) Cabernet Sauvignon After berry set ↓ ↑ - ↑ ↑ - = ↑ -
Kyraleou et al. (2016, 2017) Syrah After berry set ↓ ↓ = - ↑ - ↑ - -

Matthews and Anderson (1988) Cabernet franc
Before véraison ↓ ↓ ↓ ↑ ↑ - - - -
After véraison ↓ ↓ ↓ ↑ ↑ - - - -

Olle et al. (2011) Shiraz
Before véraison = - - - ↑ - = - -
After véraison ↓ - - - ↑ - = - -

Ou et al. (2010) Merlot After berry set - ↑ ↓ - - - - ↑ -
Qian et al. (2009) Merlot After berry set - - - - - - - ↑ -

Santesteban et al. (2011) Tempranillo
After berry set ↓ = ↓ ↑ ↑ - - - -
After véraison = = ↓ ↑ ↑ - - - -

Savoi et al. (2016) Tocai Friulano After berry set ↓ ↑ = ↑ - - ↓ ↑ -
Savoi et al. (2017) Merlot After berry set ↓ ↑ = ↑ ↑ = ↑ ↑ -
Song et al. (2012) Merlot After berry set ↓ ↑ ↓ ↑ ↑ - - ↑ -
Talaverano et al. (2018) Cabernet Sauvignon Before véraison - ↑ = - - - - ↑ -
Vilanova et al. (2019) Verdejo Before véraison ↓ = = - - - - ↑ -
Zarrouk et al. (2012) Tempranillo After berry set = = = ↑ ↓ ↓ = - ↑

http://xueshu.baidu.com/s?wd=author%3A%28D.%20S.%20Intrigliolo%29%20Centro%20Desarrollo%20Agricultura%20Sostenible&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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thetic pathway, there are many differ-
ences in their regulation and reactivity. 
Another experiment on 'Merlot' showed 
that attenuation of the diurnal tempera-
ture fluctuations (cooled in daytime and 
heated at night) led to higher sugar con-
centrations, berry weights and anthocy-
anin concentrations, but lower flavonol 
and proanthocyanidin concentrations at 
harvest (Cohen et al. 2008). The same 
authors on the same variety demonstrat-
ed the highest proanthocyanidin concen-
tration in heated berries and the lowest 
in cooled berries only in the third year, 
and did not vary during the first two 
years (Cohen et al. 2012). Spayd et al. 
(2002) clarified that moderate tempera-
ture increased anthocyanin concentra-
tions, while clusters exposed to higher 
temperatures led to degradation and 
decreased grape pigments. In addition, 
cool regions typically produced grapes 
with higher malic acid concentrations; 
conversely, grapes grown in warmer 
regions tended to have lower acidity 
(Koundouras et al. 2006). On the oth-
er hand, cool temperatures increased the 
concentrations of C6 volatile aldehydes 
in 'Traminette' berries, whereas the 
monoterpene concentrations were higher 
in hot conditions than in cool conditions 
(Ji and Dami 2008).

L i g h t / U V  r a d i a t i o n :  The 
responses of plants to light are complex. 
Biosynthesis of phenolic compounds is 
sensitive to light environments, which 
reflects the possible role of UV pro-
tectants. Adequate, but not excessive, 
exposure of grapes to sunlight has long 
been known to be beneficial for grape 
and wine quality, especially red wine 
quality. High light exposure can increase 
the activity of phenylalanine ammonia 
lyase (PAL) resulting in higher concen-
trations of phenolics and anthocyanins 
(Roubelakis-Angelakis and Kliewer 
1986). The C13-norisoprenoid concen-
tration was increased substantially in 
sun-exposed bunches of 'Riesling' and 
'Chenin blanc' berries (Gerdes et al. 
2002, Marais et al. 1992). However, it 
is often unclear whether sun exposure 
effects arise from higher density lights or 
from UV radiation, which are both con-
sequences. Many studies have demon-
strated that the synthesis of flavonols is 
a light-dependent process. In different 
varieties, such as 'Pinot noir', 'Shiraz' 
and 'Merlot', light has been confirmed to 
promote the accumulation of flavonols, 
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while anthocyanin was not affected. In 'Shiraz', shading ap-
plied to bunches of grapes prior to flowering was found to 
significantly decrease flavonol synthesis, while in the ex-
posed fruit, the per berry flavonol concentration increased 
during ripening (Downey et al. 2004). In 'Merlot', sun-ex-
posed clusters had almost 10 times greater concentrations 
of total flavonols than shaded clusters (Spayd et al. 2002). 
Interestingly, the results from the same clusters were con-
sistent with the previous results that berries on the sunny 
side had higher levels of quercetin glycoside than berries 
from the shade side (Price et al. 1995). Light can not only 
influence flavonol concentrations but can also modulate the 
expression of flavonol synthase (VvFLS), a key flavonol 
structural gene, and of VvMYBF1, a transcriptional regula-
tor of flavonoid synthesis (Downey et al. 2004, Czemmel 
et al. 2009, Koyama et al. 2012). In addition to flavonols, 
Cortell and Kennedy (2006) found that cluster shading 
also reduced the concentration of anthocyanins and proan-
thocyanidins in the fruit at harvest in 'Pinot noir' grapes. 
Similarly, Jeong et al. (2004) pointed out that the expres-
sion of anthocyanin biosynthesis genes was suppressed in 
shading treatments. Light and low temperature appear to 
have a synergistic effect on berry quality. Sufficient antho-
cyanin accumulation was observed under low temperature 
(15 °C) plus light treatment in grape skin through the reg-
ulation of flavonoid biosynthesis pathway genes, whereas 
high temperature (35 °C) or dark treatment severely sup-
pressed anthocyanin accumulation (Azuma et  al. 2012). 
The experiment of exogenous 24-Epibrassinolide (EBR) 
and light on the mechanism of anthocyanin and proan-
thocyanidin accumulation in grape berries, showed that a 
large quantity of anthocyanins accumulated in the grape 
skins under light treatments, whereas dark treatments sig-
nificantly suppressed anthocyanin accumulation (Zhou et 
al. 2018).

Additionally, UV plays a relevant role in grapevines in 
the production of certain important chemical compounds that 
directly contribute to grape quality. Smart (1987) pointed 
out that high levels of radiation before véraison would 
cause sunburn damage on grapes. However, exposure of 
grape bunches to radiation has shown positive effects on 
skin phenolic accumulation, also berry aroma and aroma 
precursor profiles during ripening (van Leeuwen and De-
strac-Irvine 2017). In several studies, high levels of UV-B 
were reported to enhance the accumulation of UV-absorbing 
compounds, including flavonoids and related phenolics 
(Berli et al. 2008). UV-B was also known to up-regulate 
some key biosynthetic genes of flavonols and anthocyanins, 
resulting in an increased sugar and phenolic concentration 
and a change in their profile (Martínez-Lüscher et al. 
2014, Alonso et al. 2016). Studies showed that flavonol 
levels, particularly quercetin and kaempferol glycosides, 
accumulated to maximum concentrations at véraison by ex-
posure to UV-B, while concentrations of methoxypyrazines 
and amino acids were promoted through canopy shading 
by leaf retention in the fruiting zone (Gregan et al. 2012, 
Liu et al. 2015). Except for compound enhancement, UV-B 
significantly triggered grape berry ripening (Berli et al. 
2011). UV-C was applied daily for three days before the 
harvesting of the table grape variety 'Crimson Seedless', 

and an 86-fold stilbenoid level increase in the grapes was 
achieved (Guerrero et al. 2016). In addition, total phenolic 
compounds, total anthocyanins, and cis-resveratrol tended 
to increase when UV-C radiation was applied to 'Concord' 
grapes after harvest (Pinto et al. 2022). Notwithstanding the 
above, UV-B is also known to up-regulate genes encoding 
PAL and chalcone synthase (CHS), which are regulatory 
enzymes of the phenylpropanoid and flavonoid biosynthetic 
pathways (Berli et al. 2010) .

M i c r o b i o l o g y :  In addition to the abiotic factors 
as discussed above, the effects of ambient microorganisms 
on grape quality such as pathogens and rhizosphere mi-
crobes were also considered (Reynolds 2001, Hong et al. 
2012, Salomon et al. 2016). Well-known 'noble rot' wines 
(also known as botrytized wines) are made from plant path-
ogen Botrytis cinerea-infected berries, and special compo-
nents in B. cinerea-infected grape berries have been de-
tected (Blanco-Ulate et al. 2015). Botrytized wines have 
been made since the 16th century, primarily in the Tokaj 
(Hungary), Rheingau (Germany), and Sauternes (France) 
regions, and are also are produced in increasing amounts 
in Australia, New Zealand and South Africa. B. cinerea is 
a fungal plant pathogen that causes necrotic lesions on a 
wide range of plants and fruit, leading to economic and 
quality losses in wine production. However, unlike bunch 
rot, noble rot results from B. cinerea infections of ripe or 
overripe grapes under particular climatic (i.e. moist nights, 
foggy mornings, and dry days) and edaphic (i.e. low-nu-
trient and well-drained soils) conditions (Magyar 2011, 
Blanco-Ulate et al. 2015). During ripening, cell wall 
and cuticle modifications lead to grape berry softening and 
microfractures on the surface, resulting in vulnerability to 
pathogen infection (Cantu et al. 2008, 2009). B. cinerea 
multiplies on mature grape skin and penetrates into the 
grape skin for nutrient consumption through the secretion 
of extracellular enzymes (Valette-Collet et al. 2003, 
Cilindre et al. 2008, Hong et al. 2012). Hence, infections 
induce metabolic alterations favoring the synthesis of a va-
riety of compounds that contribute to wine flavor and aro-
ma as well as the concentration of sugars. In a study of B. 
cinerea infected berries of 'Sémillon', noble rot altered the 
metabolism as well as ripening processes, by promoting 
the biosynthesis of terpenes and fatty acid aroma precur-
sors (Blanco-Ulate et al. 2015). Interestingly, B. cinerea 
altered grape metabolism and induced the synthesis and 
accumulation of anthocyanins in berries from the white 
grape variety 'Sémillon' as a result of B. cinerea infection 
(Blanco-Ulate et al. 2015).

Furthermore, some of bacteria, such as epiphytic or en-
dophytic plant growth-promoting rhizobacteria, have been 
reported to enhance plant growth while improving resist-
ance towards biotic and abiotic stress in grapevines (Ait 
Barka et al. 2006, Trotel-Aziz et al. 2008). Inoculation 
with arbuscular mycorrhizal fungi increased the intensity 
of CO2 assimilation and stomatal conductance for water 
in the grapevines tested (Mikiciuk et al. 2019). Salomon 
et al. (2014) reported that five bacteria isolated from the 
rhizosphere and roots of Vitis vinifera L. in vineyards of 
Argentina, act as stress alleviators by diminishing water 
losses in correlation with increases in ABA. These bacteria 
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also elicited the synthesis of terpenes, helping grapevines 
cope with stresses (Salomon et al. 2014, 2016). The other 
microbes, endophytes, abundantly distributed within grape 
leaves, have been intensively studied during the past sever-
al decades for the possible application of endophytic fungi 
as metabolic regulators in viticulture. Eight strains of fun-
gal endophytes were re-inoculated to field-grown grape-
vines, and it was found that the physiochemical status of 
the grapevines was reshaped to different degrees (Yang 
et al. 2016). Yu et al. (2020) showed that exposure to fun-
gal endophytes could quantitatively and compositionally 
modify anthocyanins in grape cells. In another study, after 
co-cultivation with different strains of endophytic bacteria 
for 2 weeks, the total stilbene content of the V. amurensis 
cell was increased 2.2-5.3-fold, while it increased 2.6-16.3-
fold when co-cultivated with endophytic fungi (Aleynova 
et al. 2021). Additionally, Dwibedi and Saxena (2018) 
found that some endophytic fungi isolated from the stem 
and leaf tissues of V. vinifera possessed resveratrol-produc-
ing ability. Seven strains of endophytic fungi isolated from 
'Cabernet Sauvignon' were deduced to have the capability 
of producing resveratrol, especially the fungus C2J6 which 
has stable genetic properties and produces high levels of 
resveratrol (Liu et al. 2016). These results attest to the spe-
cial ability of endophytes to produce the same or similar 
bioactive substances as host plants. Thus, the interactions 
between endophytes and grapevines deserve a thorough 
investigation.

A B A :  a  t o o l  t o  e n h a n c e  g r a p e  q u a l -
i t y  a n d  t o  c o n t r o l  a b i o t i c  s t r e s s :  In addi-
tion to ethylene, ABA, known as a stress-associated plant 
hormone, can be considered to be another ripening regu-
lation factor, for its concentration increased dramatically 
at the onset of ripening and exogenous ABA application 
on pre-véraison berries hastened ripening (Coombe and 
Hale 1973, Deluc et al. 2007, Berli et al. 2011, Pilati 
et al. 2017). Moreover, exogenous ABA treatments on the 
berries were reported to enhance the production of several 
metabolites involved in fruit ripening, thereby promoting 
fruit ripening (Jeong et al. 2004, Giribaldi et al. 2010, 
Koyama et al. 2010, Balint and Reynolds 2013, Ber-
li et  al. 2015). Similar results were obtained by groups 
Koyama et al. (2018) and Vergara et al. (2018); the appli-
cation of exogenous ABA  has been shown to increase the 
expression of the VvMYBA1 and VvMYAB2 transcription 
factors (involved in the regulation of the biosynthetic genes 
chalcone isomerase, flavanone 3-hydroxylase gene, and 
anthocyanidin 3-O-glucosyltransferase of the anthocyanin 
pathway) and give rise to an increase in berry color and 
anthocyanin synthesis. In addition, exogenous applications 
of ABA increased the total phenolic compound concentra-
tion of xylem sap extracted from 'Pinot noir' vines (Meyer 
and Kirkpatrick 2011). The application of ABA increased 
the concentration of skin anthocyanins and proanthocyan-
idins, although these positive effects were not reflected in 
'Monastrell' (syn. 'Mourvedre') wines (Ruiz-García et al. 
2013); however, in another report, the concentrations of to-
tal phenolics, proanthocyanidins, flavonoids and anthocy-
anins were higher in the wine produced with ABA-treated 
'Yan73' grapes than in the wine from untreated grapes (Xi 

et al. 2013). The antioxidant capacity, anthocyanins and 
phenolic concentration of 'Muscadine' grapes were en-
hanced by ABA treatment, while the average berry weight, 
TSS and pH of the juice were not affected (Sandhu et al. 
2011). 

To date, considerable progress has been made on the 
role of ABA in the regulation of fruit ripening. However, 
the mechanisms of ABA action remain to be elucidated, 
and there is still much to explore. ABA is also believed to 
play a crucial role in plant adaptation to adverse environ-
mental conditions, including drought, temperature, light, 
and salinity (Leng et al. 2014). Water stress can increase 
ABA concentrations in the leaves of grapevine (Okamo-
to et al. 2004). As a determinant factor of stomatal clo-
sure, ABA controls both transpiration and assimilation, 
promoting expansive cell growth by saving leaf water and 
reducing xylem tension, likely altering structural growth 
by limiting CO2 entry (Ferrandino and Lovisolo 2014, 
Pantin et al. 2012). Aquaporins are another target for 
ABA regulating water and carbon fluxes. In response to 
water stress, ABA loading by xylem to perivascular tissues 
acts as a signal to trigger aquaporin-mediated parenchy-
ma-to-xylem radial water flow during embolism refilling 
(Kaldenhoff et al. 2008). Berli et al. (2010) suggested 
that the grape leaf antioxidant defence system was activat-
ed by UV-B radiation with ABA acting downstream in the 
signaling pathway. While in leaves of maize, Tossi et al. 
(2009) suggested that UV-B perception triggered an in-
crease in ABA concentration, which activated NADPH ox-
idase and hydrogen peroxide generation, and then, a nitric 
oxide (NO) synthase-like-dependent mechanism increased 
NO production to maintain cell homeostasis and attenuate 
UV-B-derived cell damage. Not only can the ABA-medi-
ated effects of water stress and UV-B radiation influence 
grape berry secondary metabolites, but in addition, a pos-
itive effect of ABA-mediation on anthocyanin accumula-
tion in response to heat and cold was demonstrated. Mori 
et al. (2005b) reported that the total anthocyanin concen-
tration of 'Pinot noir' was greatly reduced under high night 
temperatures (30 °C); however, the suppressive effect was 
annulled when clusters were sprayed with ABA, and the 
total anthocyanin concentration was almost the same as un-
der low night temperatures (15 °C).

Conclusion and Perspectives

From the above-mentioned overview of published in-
formation, one may summarize that grape berries function 
as a sophisticated biochemical factory. In this factory, they 
synthesize phenolic and aroma compounds, import and 
accumulate water, minerals, sugar, organic acids. Abiot-
ic and biotic stress modifies growth and development of 
grapevine. The accumulation of secondary metabolites in 
berry pulps, seeds and skins of secondary metabolites is 
derived by the response to stress at the berry level. Thus, 
the development of viticulture practices for optimizing 
primary and secondary metabolites in challenging envi-
ronments is an important issue, reflecting on an enhance-
ment of table grape and wine quality. To date, by means of 
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high-throughput transcriptomic, proteomic, metabolomic 
and phenomic approaches, many scientific advances have 
achieved in better understanding of berry metabolism and 
composition, and of their variations; however, the current 
knowledge on the particular mechanisms is still far from 
well understood. In the context of climate change, much 
effort is underway to reveal how endogenous and external 
signals are perceived by the grape, thus modulating ripen-
ing, metabolic pathways, and hence berry composition. In 
this regard, future investigations involving genetic diver-
sity and metabolic pathways in response to environmental 
conditions also deserve more attention.
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