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Summary

To obtain primary insight into the pathway(s) by which

defense responses in grapevine (Vitis vinifera L.) are in-

duced, suspension cultures of grapevine cells were treated

with an elicitor released from the mycelium of the

necrotrophic fungal pathogen Botrytis cinerea (PERS et

FRIES). It induced a typical array of defense responses, in-

cluding cell death accompanied by the production of H
2
O
2

from the oxidative burst and accumulation of diverse groups

of pathogenesis-related (PR) proteins and key enzymes of

the general phenylpropanoid pathway, comprising phenyla-

lanine ammonia-lyase (PAL), 4-coumarate-CoA ligase

(4CL), chalcone synthase (CHS) and chalcone isomerase

(CHI). Nuclear run-off experiments demonstrated that the

fungal elicitor caused rapid transcriptional activation of

genes encoding diverse defense-related products followed

by a massive salicylic acid production.

K e y   w o r d s :  Vitis vinifera L., cell death, defense

response, gene expression, oxidative burst, PR proteins, run-

off transcription, Western slot blot.

Introduction

Elicitors represent a diverse array of bioactive molecules

of either pathogen (exogenous elicitors) or of host origin

(endogenous elicitors) that can induce defense responses

in plant tissue. Many elicitors have been described, e.g.

simple and complex carbohydrates (DIXON et al. 1983; SHARP

et al. 1984; EBEL 1986), peptides, proteins, and glycoproteins

(GROSSKOPF et al. 1991; EBEL and COSIO 1994), fatty acids and

derivatives (BOSTOCK et al. 1982; PREISIG and KUC 1985).

Many reports indicate that the response of plant cells

to elicitors consists of a highly defined series of temporally

and spatially regulated events. Electrolyte leakage, oxidative

burst, production of phytoalexins and PR proteins, protein

phosphorylation/dephosphorylation, membrane depolariza-

tion, and increased biosynthesis of salicylic acid (SA), eth-

ylene, and jasmonic acid have been described for leaf tissue

treated with nonspecific or specific elicitors (PEEVER and

HIGGINS 1989; FELIX et al. 1991; YU et al. 1993; LEVINE et al.

1994; HAMMOND-KOSACK et al. 1996; JABS et al. 1997; ZIMMER-

MANN et al. 1997). Thus, the resolution of biochemical and

molecular processes by which the elicitor exerts its com-

plex changes in cell metabolism is an interesting challenge.

In contrast to viruses or bacteria, the fungal surface

appears to be replete with a plethora of elicitor active com-

pounds; indeed a single fungal isolate produces a diverse

array of elicitor active fragments (ANDERSON 1987). Fungal

culture fluids and the fraction heat-released from mycelial

cell walls have been used widely as elicitors (DARVILL and

ALBERSHEIM 1984; PARKER et al. 1991; CAMPBELL and ELLIS

1992; NÜRNBERGER et al. 1994; DE WITT 1995).

Many physiological, biochemical and molecular aspects

of the elicitor-stimulated defense responses can be studied

in suspension-cultured plant cells. Although the existence

and identity of elicitors remain obscure in most plant-patho-

gen systems, these cells have an acute chemosensory per-

ception system for a variety of elicitors and react to them

with the transcriptional activation of a number of genes,

including those coding for PR proteins or for enzymes of the

general phenylpropanoid pathways (HAHLBROCK and SCHEEL

1989; LAMB and DIXON 1990).

Only limited information is currently available on the

inducible defense mechanisms in grapevines. Most effort

has been focused on the induction of a number of PR pro-

teins, including chitinases and b-1,3-glucanases in grape-

vine leaves, following application of SA or infection by

Botrytis cinerea (RENAULT et al. 1996). BUSAM et al. (1997)

reported differential expression of two chitinase genes in

grapevine responding to SAR (systemic acquired resistance)

activators and fungal challenge with Plasmopara viticola.

More recently, GIANNAKIS et al. (1998) reported a correlation

between the combined activities of chitinase and b-1,3-

glucanase in a range of grapevine cultivars and their field

resistance to powdery mildew. JACOBS et al. (1999) induced

and cloned different PR cDNAs in grapevine leaves infected

with powdery mildew and treated with the ethylene releas-

ing compound ethephon. Recently, an elicitor-stimulated

accumulation of three extracellular PR-1-like proteins has

been demonstrated in grapevine cell suspension (REPKA et al.

2000).

In the present study, we used an elicitor heat-released

from the mycelium of Botrytis cinerea. To study early events

of elicitor-stimulated plant defense in detail we used sus-

pension cultures of grapevine cells for a bioassay of the

elicitor response. Treatment of these cells with the fungal

elicitor led to typical defense responses, including oxidative

burst, cell death, defense-related protein accumulation, tran-
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scriptional activation of defense-related genes and biosyn-

thesis of salicylic acid.

Material and Methods

F u n g a l   a n d   p l a n t   m a t e r i a l :  Botrytis cinerea

(a grapevine isolate) in stock culture was cultivated on po-

tato dextrose agar (Oxoid) in the dark at 25 °C. Field-grown

Vitis vinifera L. cv. Limberger plants from the CRIVE cam-

pus were grown in vitro on a modified Murashige-Skoog

medium (MS/D, pH 5.8) as described previously (REPKA

et al. 2000). The cell culture was kept as callus (line D1) on

the medium supplemented with 3 % sucrose (w/v), 1 mg l-1

NAA and 0.2 mg l-1 BAP. A suspension cell culture was

established from these calluses by transferring small pieces

of well-grown callus tissue to 120 ml of a fresh MS/D me-

dium in 250 ml Erlenmeyer flasks; subsequently they were

agitated at 120 rpm and 27±1 °C. In all experiments cell sus-

pensions had grown for 4 d after subculturing.

P r e p a r a t i o n   o f   e l i c i t o r :  The fungal cell wall

elicitor was prepared from grey mold (Botrytis cinerea PERS.

et FRIES, a grapevine isolate) according to REPKA et al. (2000).

The elicitor was applied either as a crude cell wall prepara-

tion or crude elicitor prepared from mycelium was further

autoclaved for 20 min or autoclaved and then dialyzed ex-

haustively for 2 d against distilled water. The amount of

protein and sugar in this elicitor preparation was determined

according to DUBOIS et al. (1956) and BRADFORD (1979); the

sugar content was expressed as glucose equivalents. For

experiments on biological activity, the final concentration of

the elicitor was 2.4 mg glucose equivalents per ml cell sus-

pension culture.

C e l l   s u s p e n s i o n   t r e a t m e n t   w i t h   e l i c i t o r :

Four days after subculture log phase cells were used; the

treatment with the elicitor was performed in the original flasks

in the light to avoid any stress associated with the transfer.

Six days after the treatments, the cells and the cultivation

medium were harvested separately for protein extraction.

Alternatively, after the elicitation protocol had been com-

pleted, cells from suspension culture were harvested and

immediately submerged in RNAlater reagent (Ambion, Hou-

ston, USA) for subsequent RNA extraction or for archival

storage at - 20 °C.

A n a l y s i s   o f   c e l l   d e a t h :  Dead cells were

quantified according to TURNER and NOVACKY (1974). Data

are means of three replicates. Alternatively, cell viability was

determined cytochemically by double staining with

fluorescein diacetate (FDA) and propidium iodide (PI).

Aliquots of 2 ml cell suspension were transferred to sterile

24-well tissue culture plates (Nunc, Roskilde, Denmark). Af-

ter adding 88 ml filter sterile elicitor, yielding a final concen-

tration of 2.4 mg ml-1 elicitor, or sterile water, the suspensions

were incubated under diffuse light on a rotary shaker at

110 rpm and 25 °C. To determine cell death at different times,

one drop of cell suspension was transferred to an Eppendorf

tube containing 1 ml of water, 10 ml of the FDA stock solu-

tion (1 mg ml-1) and 20 ml PI stock solution (1 mg ml-1). After

incubation of the mixture at room temperature for 5 - 10 min,

about 20 ml of the stained cell suspension were observed

under a Provis AX-70 fluorescence microscope (Olympus,

Hamburg, Germany). Photos were taken using a Progressive

3 colour CCD camera (Sony, Tokyo, Japan) and digital im-

ages were processed with Adobe PhotoDeluxe 2.0 software

(Adobe Corp., San José, USA).

A s s a y   o f   t h e   o x i d a t i v e   b u r s t :  Hydrogen

peroxide production was quantified by chemiluminescence

due to the ferricyanide-catalyzed oxidation of luminol (Sigma;

YANO et al. 1998). The chemiluminescence, recorded with a

luminometer (model FB12, Berthold, Pforzheim, Germany) was

integrated for a 30 s period immediately after the start of the

reaction. Destruction of exogenous and/or endogenous H
2
O

2

in cell suspension cultures was assayed by a starch/I
2
 pro-

cedure (OLSON and VARNER 1993).

P r o t e i n   e x t r a c t i o n   a n d   a n a l y s i s :  Frozen

suspension cells were added to a mortar containing prechilled

TRISEPAC extraction buffer (50 mM Tris-HCl, pH 8.0, 500

mM sucrose, 1 mM EDTA, 0.2 % insoluble PVP, 6 mM ascor-

bic acid and 0.1 % cysteine) and  processed according to

REPKA et al. (2001). The homogenate was filtered through a

layer of Miracloth (Calbiochem, Zug, Switzerland) and cen-

trifuged at 20,000 g for 20 min at 4 °C. Supernatants were

concentrated using Centriprep-3 concentrators (Amicon,

Witten, Germany), passed through Sephadex G-25 PD-10

minicolumns (Pharmacia, Uppsala, Sweden) and stored at

-20 °C. Protein concentrations were determined according

to BRADFORD (1976). The supernatant containing soluble pro-

teins was used for measurements of PRX activity according

to REPKA and SLOVÁKOVÁ (1994).

W e s t e r n   s l o t   b l o t t i n g :  For quantitative, rapid

screening of the accumulation of the defense-related gene

products, the Slot Immuno Binding Assay coupled with

Enhanced Chemiluminescence Detection - SIBA/ECL (REPKA

et al. 1996) was used. Individual samples equivalent to 5 mg

of total proteins were slotted onto a nitrocellulose mem-

brane (PROTRAN BA-85, 0.45 mm, Schleicher & Schüll,

Dassel, Germany) using the slot blot apparatus (model PR

648, Hoefer Scientific, San Francisco, USA). After loading

the samples, the membrane was blocked for 1 h at room

temperature in 5 % Blotto (non-fat dried milk) in TEN buffer

(50 mM Tris-HCl, pH 7.4, 5 mM EDTA, 150 mM NaCl, 0.05 %

Tween-20) and a panel of various antisera was used to probe

the blots. Antisera used for immunodetection of defense-

related proteins have been raised against tobacco PR-1a

(ANTONIW and PIERPOINT 1978), tobacco PR-2a (KAUFFMANN

et al. 1987), cucumber PR-8 (REPKA 1997), cucumber PR-9

(REPKA and SLOVÁKOVÁ 1994), parsley PAL (APPERT et al.

1994), petunia CHI (VAN TUNEN and MOL 1987), and carrot

extensin (EXT) (CASSAB and VARNER 1987). The membranes

were washed 4 times in TEN buffer for 10 min each. Horse-

radish peroxidase-conjugated swine anti-rabbit IgG (SwaR,

Sevac, Prague, Czech Republic) was diluted 1 : 50,000 for the

secondary antibody reaction. Antigen-antibody complexes

were visualized using SuperSignal West Dura reagent (Pierce,

Rockford, USA) and images were recorded on Hyperfilm-

ECL (Amersham, Buckinghamshire, UK).

T o t a l   R N A   e x t r a c t i o n   a n d   s l o t   b l o t

h y b r i d i z a t i o n   a n a l y s i s :  For RNA extraction,



approximately 0.5 g of cells stored in RNAlater were directly

homogenized by using an RNAWIZ isolation reagent as in-

dicated by the manufacturer (Ambion). Absorbance at 260

and 280 nm was used to determine purity and concentration

of RNA. To confirm that RNA had not been degraded and

that equivalent samples were loaded in each slot, the

GenoGold total nucleic acid staining reagent (Vector Labs,

Burlingame, USA) was used following the manufacturer's

instructions. For RNA slot blot analysis, aliquots contain-

ing 5 mg of RNA were denatured in 2.5 M formaldehyde, 6 x

SSPE (6 x SSPE = 900 mM NaCl, 60 mM NaH
2
PO

4
, 6 mM

EDTA, pH 7.7) at 60 oC for 1 h in a total volume of 50 ml.

Samples were immediately applied to a prewetted (water then

6 x SSPE) NYTRAN N-13 membrane (Schleicher & Schüll)

using a slot blot apparatus PR 648 (Hoefer). Prehybridization

(17 h at 42 °C) was conducted in nuclease-free BLOTTO-MF

solution (120 mM Tris-HCl, pH 7.4, 8 mM EDTA, 600 mM

NaCl, 1 % non-fat dried milk powder, 50 % deionized

formamide, 1 % SDS) according to MONSTEIN et al. (1992). A

synthetic oligonucleotide (20-mer, MWG Biotech, Ebersberg,

Germany) modified at the 5´end with biotin was used as the

PR-9 (prx)-RNA complementary probe designed from the

nucleotide sequence of the coding strand for the peptide

HFHDCFV (5´-CATTTTCACGATTGTTTC-GT-3´; HENRISSAT

et al. 1990). Gene specific probes were used for PR-1 (pCNT3;

MEMELINK et al. 1990), CHS, 4CL and PAL (pLF15, Pc4CL-1,

PcPAL-4, respectively; SOMSSICH et al. 1989). Probes were

gel purified and psoralen-biotin-labelled using BrightStar

nonisotopic labeling kit (Ambion). Hybridization of the

probes (100 ng ml-1) was carried out in BLOTTO-MF solu-

tion at 46 °C for 24 h. Posthybridization stringency washes

consisted of three 15 min washes: 1. in 6 x SSPE, 0.1 % SDS

at 25 °C, 2. in 6 x SSPE, 0.1 % SDS at 46 °C, and 3. in 6 x SSPE

at 46 °C. Membranes hybridized with biotinylated probes

were incubated at 25 °C for 1 h in 5 % BLOTTO-TEN buffer

(REPKA and SLOVÁKOVÁ 1994). Membranes were then incu-

bated in a solution of horseradish peroxidase-conjugated

avidin D (2.5 mg ml-1, Vector Labs) in TBS buffer (100 mM

Tris-HCl, pH 7.5, 100 mM NaCl, 2 mM MgCl
2
, 0.05 %

Tween-20) for 1 h. Finally, the membranes were washed three

times, 10 min each, in TBS buffer. The signal was visualized

using enhanced chemiluminescence as described for

immunoblots.

For Northern blot analyses, aliquots containing 5 mg of

RNA were denatured as above, fractionated on a 1.2 % for-

maldehyde gel, transferred to a nylon membrane (NYTRAN

N-13, Schleicher & Schüll) using a vacuum blotting device

(Bio-Rad, Hercules, USA), washed, prehybridized and hy-

bridized with gene specific probes as described for RNA

slot blots. The signal was visualized using enhanced chemi-

luminescence as described for immunoblots and the levels

of transcript accumulation were directly determined on films

by area integration using a MD 300A computing densitom-

eter (Molecular Dynamics, Sunnyvalle, USA).

P r e p a r a t i o n   o f   t r a n s c r i p t i o n a l l y   a c t i v e

n u c l e i :  Transcriptionally active nuclei were isolated from

control and elicited grapevine cells according to ZHANG et al.

(1995). The intactness of isolated nuclei was estimated with

DAPI staining; 2 ml of 20 mg ml-1 DAPI in 1 x HB buffer

(100 mM Tris-HCl, pH 9.4, 800 mM KCl, 100 mM EDTA,

10 mM spermine, 10 mM spermidine, 500 mM sucrose) were

mixed with 198 ml of grapevine nuclei prepared as above in

500 ml microcentrifuge tubes in the dark. After the mixture

was incubated on ice for 1-2 min, about 10 ml of the stained

nuclei suspension were studied under an Olympus AX-70

Provis epifluorescence microscope with phase contrast ob-

jective lenses. Isolated nuclei were suspended in 50 mM

Tris-HCl (pH 8.0), 5 mM MgCl
2 
, 10 mM b-mercaptoethanol,

25 % glycerol and stored at -20 oC for up to 2 weeks without

losing transcription activity.

N u c l e a r    r u n - o f f    e x p e r i m e n t s :  Nuclei

isolated from cells at various times after elicitation were

allowed to complete transcripts in vitro. The standard �cold�

in vitro mixture contained 1.8 x 107 nuclei, 30 mM

(NH
4
)

2
SO

4
, 2 mM MnCl

2 
, 0.5 mM each of ATP, GTP, CTP,

and biotin-16-UTP (40 % modified, 60 % unmodified

nucleotide) to give a final volume of 500 ml. Samples were

incubated for 45 min at 30 °C with occasional gentle stirring.

After incubation nuclei were sedimented and total RNA was

isolated with RNAwiz reagent (Ambion). DNA fragments

containing a coding region of the PR-1, PR-2, PR-9, PAL,

CHS, CHI, 4CL or Actin (BPR188, R&D Systems) gene

were isolated, denatured and transferred to nitrocellulose

membranes (BA85, 0.45 mm, Schleicher & Schüll) using

the PR648 slot-blot apparatus (Hoefer). Membranes were

then prehybridized for 12 h under similar condition as for

Northern blots. After prehy-bridization, membranes were

dissected and pieces containing one row of slots each of the

DNA fragments were hybridized with the appropriately

labeled total RNA. Hybridization was carried out in small

glass tubes using 850 ml of the hybridization mixture

supplemented with probe RNA and 10 % dextran sulphate

for 48 h at 42 °C. Hybridizations were performed in an HB-

2D hybridizer (Techne, Cambridge, UK). Posthybridization

stringency washes, signal development and processing were

performed essentially as described  for Northern slot blots.

S a l i c y l i c   a c i d   ( S A )   e x t r a c t i o n   a n d

q u a n t i t a t i o n :  3 g of untreated or elicitor-treated cells

were collected and free and conjugated SA were extracted

and analysed by HPLC as described in REPKA et al. (2001).

Results

E l i c i t a t i o n   o f   s u s p e n s i o n - c u l t u r e d

c e l l s :  Addition of Botrytis cinerea elicitor (Bc-e) as low

as 2.4 mg glucose equivalents per ml suspension-cultured

Limberger cells caused a marked increase in cell death as

determined by Evans blue vital stain (Fig. 1 A). The kinetics

of elicitor-induced cell death were biphasic: phase I peaked

after 36 h, and affected about 6 % of the cells; phase II

peaked after 72 h and affected about 90 % of the cells. In

comparison with phase I, phase II was much more massive

and the enhancement of cell death was about 15-fold higher.

To check both, control and elicitor-treated grapevine cell

suspensions for cell death, 24 h after challenge with water or

the elicitor cells were simultaneously stained with fluorescein

diacetate (FDA) and propidium iodide (PI) and examined by

Biological activity of the elicitor from B. cinerea mycelium 207
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fluorescence microscopy. Compared to the control, grape-

vine cell suspensions challenged with elicitor showed a sig-

nificant increase in red fluorescent cells the DNA of which

was stained by propidium iodide, indicating that they were

dead (Fig. 1 B).

The oxidative burst, measured by the release of H
2
O

2
,

was investigated using a luminol-peroxidase assay after

challenging suspension-cultured grapevine cells with Bc-e.

Addition of the elicitor
 
to cells induced the formation of

H
2
O

2
 from the oxidative burst (Fig. 1 C). There was an appar-

ent correlation between the strong H
2
O

2
 burst and the kinet-

ics of the first phase of cell death which peaked at the same

time. On the other hand, there was no clear correlation be-

tween H
2
O

2 
levels and phase II of cell death indicating that

H
2
O

2
 from the oxidative burst is not directly implicated in

this phase of elicitor-stimulated cell death.

As a complementary test, we examined the effects of

elicitation on extracellular peroxidase (PRX) activity

(Fig. 1 D). Addition of Bc-e to suspension-cultured cells sig-

nificantly stimulated the activity of extracellular PRX, the

maximum induction occurring 12 h after treatment. It is inter-

esting to note that, likewise to cell death measurements, the

kinetics of PRX activity were also biphasic but had a much

longer lag between phases. Moreover, the increase in PRX

activity preceded a massive H
2
O

2
 production from the

oxidative burst suggesting a possible causal link between

both processes.

To investigate elicitor-induced accumulation of defense-

related products, total protein isolated from the cultivation

medium of unelicited and elicitor-treated suspension cells

was immunoprobed with PR-2 (b-1,3-glucanase) antiserum

(Fig. 1 E). In the control medium, PR-2 protein was not de-

tected while in the medium from elicitor-treated cells, PR-2

protein was first detected after a 6-h treatment although only

in a minute amount. Surprisingly, the most intense signals

were obtained 36 and 72 h after the onset of the treatment

which corresponds to the time when cell death peaked, i.e.

phases I and II.

A c c u m u l a t i o n   o f   d e f e n s e - r e l a t e d

p r o t e i n s :  The fact that treatment of grapevine suspen-

sion cells with elicitor released from the mycelium of B. cin-

erea results in a PR-2 protein accumulation prompted us to

further investigate whether the induction of this product is

accompanied by an accumulation of other groups of defense-

related proteins. Seven different antisera used to probe the

blot have been shown previously to be specific to a given

family of defense-related proteins. Quantitative Western slot

blot analysis with corresponding densitometric scans re-

vealed that solely after elicitor treatment PR proteins and

key enzymes of the phenylpropanoid pathway accumulated

to various extent exception: extensin, a hydroxyproline rich

protein (Fig. 2  A, B). In the case of extensin, elicitor treat-

ment caused a slight increase of the signal intensity if com-

pared with both controls (0 and 6 d after the onset of the

treatment).

Fig. 1: Elicitor-stimulated events in suspension-cultured grapevine

cells. A: Induction of cell death following treatment with an elicitor

(n); cell death of untreated cells (s). B: Cells stained with both,

FDA and propidium iodide, 24 h after elicitor or water treatment:

Elicitor-treated cells (right panel), control (left panel). C: H
2
O
2

production of treate (n) and untreated cells (s). D: PRX activity

of untreated (s) and elicitor-treated (n) cells. E: Kinetics of PR-2

protein accumulation in the spent medium of control and elicitor-

treated cells.

Fig. 2: Elicitor-stimulated accumulation of defense-related pro-

teins. A: Elicitor-treated cells and the cultivation medim (Eli) were

used for protein isolation. Protein was also isolated from the un-

treated cells, the medium at time zero (C
0
) and 6 d after the onset

of the treatment (C
6
). B: Relative signal intensities quantified by

laser densitometry. Bars represent standard deviation.

I n   v i t r o   t r a n s c r i p t i o n   a s s a y s :  The effect

of elicitor treatment on the stimulation of the transcription

of a set of grapevine defense genes, in comparison to the

constitutively expressed actin gene, was determined by run-

off transcription with isolated nuclei (Fig. 3). Slot blot analy-

sis of the transcription rates of these genes in nuclear run-

off experiments has shown that the elicitor caused a rapid

transcriptional activation of chalcone synthase (CHS ), chal-

cone isomerase (CHI) and certain PR protein (PR-2 and PR-9)

genes within 5 min and possibly even earlier. Other genes

tested, including PR-1, phenylalanine ammonia-lyase (PAL),

and 4-coumarate-CoA ligase (4CL) were transcriptionally

activated within 5-10 min.

T i m e   c o u r s e   o f   e l i c i t o r - i n d u c e d

e x p r e s s i o n   o f   d e f e n s e - r e l a t e d   g e n e s :

Accumulation of defense-related mRNAs was analyzed by



Northern blot hybridization. The cDNAs and/or synthetic

oligos used as probes were PR protein genes and other

defense-related genes known to be activated during plant

defense reaction. The selected probes were divided into two

groups, each of them consisting of 4 representative genes.

The first group of probes was specific to PR-1, PR-2 (b-1,3-

glucanase), PR-8 (chitinase type III), and PR-9 (anionic per-

oxidase) genes. The second group of probes was specific to

4 key enzymes of the phenylpropanoid pathway, PAL, 4CL,

CHS, and CHI. The quantified steady-state levels for these

defense-related mRNAs are presented in Fig. 4. In contrast

to the control after treatment with Bc-elicitor there are differ-

ences in the kinetics of the induction of individual defense-

related mRNAs. As early as 4 h after treatment with the elicitor

messenger RNAs corresponding to PR-1 and PR-9 started

to accumulate (Fig. 4 A). Maximum accumulation of PR-1

and PR-9 mRNAs was observed 24 and 8 h post-treatment,

respectively. The RNA induction pattern for PR-2 and PR-8

genes was shown to be almost identical but differed sub-

stantially from the previous ones with regard to the fact that

increase in mRNAs accumulation was delayed; it started

significantly only 16 h after the onset of the treatment. The

maximum of steady-state levels was reached after 24 h.

mRNAs of the key enzymes of the phenylpropanoid

pathway, PAL, CHS and CHI, increased rapidly with maxima

4 h after addition of the elicitor (Fig. 4 B); their concentration

declined rapidly. The 4CL transcripts are induced more slowly

with maximum levels about 8 h after elicitation and then a

decline of the mRNA was observed. Moreover, there was a

second peak of CHS and CHI transcripts accumulating 24 h

after addition of the Bc-elicitor (exception: PAL and 4CL).

Thus, based on the kinetics of expression, two classes

of genes could be clearly distinguished. Genes of the first

class comprising PR-1, PR-9, CHI, and CHS genes were char-

acterized by a rather rapid activation of their expression upon

treatment with the elicitor while the second class of genes

comprising PR-2, PR-8, PAL, and 4CL genes was character-

ized by a delayed stimulation of expression.

P r o d u c t i o n   o f   s a l i c y l i c   a c i d  (SA) :

Endogenous cellular levels of free SA and salicylate gluco-

side (SAG) were determined in elicited and unelicited grape-

vine suspension cultures (Fig. 5). Levels of free SA increased

sharply 4-24 h after the treatment, and then decreased to a

relatively constant level (Fig. 5 A, closed circles). In control

cell suspensions inoculated with sterile water (Fig. 5 A, closed

triangles), free SA did not significantly accumulate, except

after 4 h, but it was substantially lower than in elicitor-treated

samples. When SAG was analysed, a similar pattern of ac-

cumulation was observed, but with significantly lower lev-

els (Fig. 5 B, closed circles). In control cell suspensions

(Fig. 5 B, closed triangles), no significant accumulation of

SAG was observed.

Discussion

Rapid cell death is one defense mechanism of plants

against pathogens. The present study demonstrates that

treatment of grapevine cells with elicitor released from the

mycelium of Botrytis cinerea caused a marked increase of

cell death. Unexpectedly, the kinetics of cell death as a re-

sponse to elicitation was atypical, and phase I and phase II

of cell death after treatment with a B. cinerea-derived elicitor

could be distinguished. A similar kinetics of cell death has

not been demonstrated so far. We propose two possible

explanations, which are not mutually exclusive: (1) biphasic

cell death reflects an inherent characteristic of grapevine

and, in general, may be valid also for other woody plant

species. It is important to note that most elicitor-stimulated

responses have been analyzed in herbaceous plant species

only; (2) we performed our tests with a crude elicitor and

Fig. 3: Run-off transcription from nuclei-isolated cells treated with

Bc-e. Slot blot analysis was performed with immobilized cDNAs

specific to the 7 defense-related genes. Actin: constitutively ex-

pressed transcript used as a control.

Fig. 4: Kinetics of defense-related mRNA accumulation in grape-

vine cells treated with the elicitor. A: PR1 (s), PR2 (¢), PR8 (n),

and PR9 (   ) transcripts. C: PAL (D), 4CL (u), CHS (l), and CHI

(o) transcripts. The data of RNA blot analyses plotted as relative

transcript accumulation using the control (untreated) sample as

standard. The ethidium bromide-stained gels demonstrate equiva-

lent RNA quantities loaded in each slot (B and D).
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thus, it is more likely that phase I and II resulted from the

activity of two or more different elicitors released simultane-

ously from the mycelium. Analogically, a biphasic oxidative

burst has been reported to occur in parsley cell suspen-

sions treated with a crude Phytophthora sojae cell wall prepa-

ration (JABS et al. 1997).

Considering the production of H
2
O

2
 from the oxidative

burst as an easily detectable parameter presumed to be as-

sociated with pathogen defense (LEVINE et al. 1994; DOREY

et al. 1999), the present report shows that in suspension-

cultured grapevine cells the crude preparation from B. cin-

erea can act as an H
2
O

2
 elicitor. The kinetics of H

2
O

2
 produc-

tion were shown to be closely correlated with phase I of cell

death induced by an elicitor. RUSTÉRUCCI et al. (1996) have

also reported a correlation between a cryptogein-induced

oxidative burst in tobacco cell culture and the ability of

cryptogein to induce hypersensitive responses of tobacco

leaves. These experimental results suggested that H
2
O

2
 from

the oxidative burst is necessary for the elicitor-induced in-

crease in cell death. If this inference is correct, the question

arises why phase II is not associated with the production of

H
2
O

2
. LEVINE et al. (1994) demonstrated that a short pulse of

H
2
O

2
 is sufficient to activate the hypersensitive cell death

mechanism, and that additional doses of exogenous H
2
O

2

administered during the lag phase after initial exposure to

H
2
O

2
 did not increase the rate of cell death. However, in

contrast the �gain and loss-of-function� experiments per-

formed by DOREY et al. (1999) clearly indicated that H
2
O

2

from the oxidative burst induced by an elicitor from

Phytophthora megasperma was neither necessary nor suf-

ficient to induce cell death in tobacco cell suspensions.

Moreover, we have hypothesized above that biphasic kinet-

ics of cell death as a response to elicitation of grapevine

cells may be due to the fact that a crude mycelial preparation

contained more than one elicitor active compound. Thus it

is possible that each phase is dependent on different types

of reactive oxygen species (ROS). Consequently, one possi-

ble candidate may be the active molecule O
2

- . Studies have

involved O
2

- rather than H
2
O

2
 as an essential component

involved in defense activation in parsley (JABS et al. 1997)

and cell death induction in the lsd1 mutant of Arabidopsis

thaliana (JABS et al. 1996). To determine whether O
2

- may be

actually instrumental in the elicitor-stimulated cell death in

suspension-cultured grapevine cells remains to be demon-

strated.

A plethora of defensive proteins frequently accumulate

during defense response events. Concomitant with early

defense responses of the elicited grapevine cell suspen-

sions was a rapid and transient increase in the activity of

extracellular PRX. The pattern and time frame of PRX induc-

tion in grapevine cell cultures is consistent with that of elic-

ited cell cultures of other angiosperms (CHAPPELL and

HAHLBROCK 1984; DALKIN et al. 1990) and some gymnosperms

(CAMPBELL and ELLIS 1992).

Both, cell death and PR-2 protein accumulation showed

almost identical kinetics which suggests that intracellular

(probably vacuolar) isoform(s) of b-1,3-glucanase released

from collapsed cells could contribute to elevated levels of

the enzyme. Moreover, immunological analyses with a panel

of antisera revealed that elicitor stimulation induced expres-

sion and accumulation of other classes of defense-related

proteins, including various PR proteins and key enzymes of

the phenylpropanoid pathway.

Most of the elicitor-induced proteins examined so far

are induced at the transcriptional level (HAHLBROCK and

SCHEEL 1989; LAMB and DIXON 1990). Nuclear run-off experi-

ments have shown that elicitor treatment of grapevine cells

give rise to mRNA accumulation for different defense-re-

lated genes with induction times varying between less than

5 min and 10 min. A similar rapid stimulation of the transcrip-

tion of plant defense genes was observed for other elicitor-

treated cell suspension cultures, including bean (HENDRICK

et al. 1988) and parsley (LOZOYA et al. 1991). The differences

in the kinetics of induction of these genes may reflect either

separate cellular signals or possibly one signal which acti-

vates divergent pathways. Interestingly, the stimulation of

the transcription of some of these grapevine genes within

2-3 min after the elicitor treatment represents one of the most

rapid stimulations of plant gene transcription in response to

an external stimuli and is comparable to the most rapid gene

activation systems in animal cells. Therefore, it is tempting

to speculate that the signal transduction pathway between

elicitor recognition and activation of these defense genes

probably includes very few steps.

Expression of the various physiological and biochemi-

cal defense responses in plants is known to be coordinately

regulated ( LAMB et al. 1989; GRAHAM and GRAHAM 1991). For

instance, in tobacco, PAL and OMT gene expression is in-

duced about 24 h after TMV infection (PELLEGRINI et al.

1994; GUO et al. 2000), while PR protein gene transcription

starts only 2-3 d later (BREDERODE et al. 1991; WARD et al.

1991; BAILLIEUL et al. 1995). Similar differential kinetics of

defense gene expression were observed in this study after

treatment with the Bc-elicitor. While expression of class I

genes was induced soon after treatment with the elicitor,

induction of class II genes was delayed with a lag of 8 h.

Fig. 5: Kinetics of free (A) and conjugated (B) salicylic acid (SA)

accumulation in grapevine cell suspensions treated with the elicitor.

s: SA of control cells, l: SA of elicitor-treated cells.



These genes were induced only at a time when the amount

of class I transcripts started to decrease.

There is a large body of evidence that SA is a signal

molecule triggering some of the plant defense responses,

such as PR protein production (review: MALAMY and KLESSIG

1992). Application of the fungal elicitor derived from B. cin-

erea resulted in a massive production of both, free and con-

jugated SA in a ratio similar to that described for the HR to

TMV (MALAMY et al. 1992) or for the active oxygen species

generator rose bengal (ENYEDI 1999). Whether SA produced

due to an elicitor treatment is the endogenous signal for PR

protein gene induction and ultimately is responsible for the

development of SAR in intact plants remains, however, to

be elucidated.

Handling of cell suspension cultures is relatively easy,

this makes them valuable and attractive for standardized

experiments to study elicitor-induced defense responses.

Although for various cell suspension cultures, several

elicitor molecules have been shown to induce defense-re-

lated responses, the physiological conditions and develop-

mental stages between suspension-cultured cells and cells

of intact plants differ. Therefore, conclusions drawn from

studies on suspension-cultured cells have to be taken with

some caution if used to explain defense mechanisms of in-

tact plants. Thus, the analysis of the complex responses of

intact grapevines to elicitor treatment will certainly have a

high priority in the future.
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