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Summary 

Three pathogenesis-related (PR-1-like) proteins 
extractable at pH 8.0 were found to accumulate in 
grapevine leaves after fungal pathogen (Oidium tucken) 
infection. These proteins were caUed gPR-1 (grape
vine pathogenesis-related) proteins. Estimated mo
lecular masses in SDS-containing gels were: gPR-la 
15.5 kDa; gPR-lb 16.8 kDa; gPR-lc 17.7 kDa. Antise
rum raised against tobacco PR-la reacted specificaUy 
with grapevine Counterparts. Likewise, stimulation of 
gPR-1 protein accumulation was observed when a set 
of prototype elicitors was added to grapevine ceU sus
pension cultures. Results with inducing elicitors also 
showed that the extracellular PR-1-like proteins rep
resent the only isoforms of this prominent group of 
pathogenesis-related proteins found in grapevine. 

K e y wo r d s : Vit is vinifera L. , Limberger, protein, elicitor, 
defense, Western blotting. 

Introduction 

Pathogenesis-related (PR) proteins accumulate as patt 
of a multicomponent defense response in plants exposed 
to pathogens and various external stimuli (review: R!GDEN 
and Couns 1988). The best characterized PR proteins are 
the tobacco PR-1 proteins, a group of three closely re
lated members, PR-la, PR-lb and PR-lc. 

PR-1 proteins represent a dominant group of PRs and 
their expression is comrnonly used as a marker of systemic 
acquired resistance (SAR, STICHER et al. 1997). Since their 
discovety in tobacco cultivars exhibiting the hypersensi
tive response (HR) after TMV infection (GIANTNAZZI et al. 
1970; V AN LooN and V AN KAMMEN 1970), numerous re
searchers have attempted to assess the function of PR-1 
proteins in plants, but without much success (BucHEL and 
LINTHORST 1999). The PR-1 isoforms have been weil char
acterized in terms of sequence (MATSUOKA et al. 1987), 
gene regulation (BEILMANN et al. 1991 ), synthesis (ÜHAS HJ 
and MATSUOKA 1985), and cellular localization (CARR et al. 
1987). Moreover, PR-1 proteins are induced under non
pathogenic, developmentally regulated events e.g. flower
ing (LoTAN et a l. 1989) and cytokinin fluctuation 
(MEMELI NK et al. 1987). The structure of tomato PR-1 b 

(Pl4a) was solved recently by nuclear magnetic resonance 
and found to represent a unique molecular architecture 
(FERNANDEZ et al. 1997). Likewise, homology searches us
ing the protein database network service revealed no sig
nificant homology to any plant gene. A limited homology 
exists to a subset of vety specific proteins from yeast, in
sects and vertebrates (V AN ~OON and V AN STRIEN 1999) 
indicating that the PR-1 family makes a distinct and highly 
conserved group of proteins. 

Although the PR-1 proteins of plants were the subject 
of much of the earlier work on PRPs and continue to be 
intensively studied, their apparent biological function(s) 
remain unknown. Nevertheless, the dish·ibution and loca
tion of the PR-1 proteins suggest at least 4 potential func
tions . First, these proteins may have an interferon-like and/ 
or antifungal activity which induces changes in surround
ing healthy plant tissues (GIANTNAZZI and KAssANIS 1974). 
The study of transgenic tobaccos constitutively express
ing the PR-1 b gene did not support the latter statement. 
Cun et al. (1989) and CARR et al. (1989) independently 
demonsh·ated that the PR-1 b protein of tobacco was not 
sufficient for TMV resistance and thus, the PR-1 proteins 
may not function as unique antiviral factors. Similarly, 
ALEXANDER et al. (1993) demonstrated that constitutive 
high-Ievel expression of PR-I a in transgenic tobacco re
su lts in tolerance to infection by two oomycete pathogens, 
Peronospora tabacina and Phytophtora parasitica var. 
nicotianae. Second, the PR-1 protein may alter the extra
cellular environment in such a way as to inhibit pathogen 
infection with the cells and/or tissues . Since the PR-1 pro
teins have a very limited antifungal activity (V AN LooN and 
V AN STRlEN 1999), it must be concluded that this is not 
their primaty biological function . Third, they may have no 
direct effect on pathogen replication itself but may be in
duced as part of a generalized response to plant disease 
status. Perhaps the PR -1 genes encode proteins involved 
in protecting plants against many, although not all, kinds of 
environmental sh·esses since the expression of the PR-lb 
gene can be dissociated from TMV resistance (Couns and 
WAGHI 1983, ASSELIN et a/. 1985, ÜHASHJ and MATSUOKA 
1985). Fourth, they may not play a direct roJe in the resist
ance response but may rather function as stress proteins 
which help to Iimit the damage caused by pathogens or the 
host' s own response to the pathogens or both. In this con
text, two wheat cDNAs that encode proteins PR-1.1 and 
PR-1.2 have recently been cloned by MoLINA et al. (1999) 
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wbo demonstrated that a1though expression ofboth oftbese 
genes was induced upon infection by Erysiphe graminis, 
the genes did not respond to activators of systemic acquired 
resistance (SAR), such as SA, benzothiadiazole (BTH), or 
isonicotinic acid (INA). Alternatively, the novel dark regu
lation of the PR-I transcript (EYAL et al. 1992) may point 
to additional nonpathogenesis-related roles for these genes 
in plant-environment interaction. Taken together, the high 
extent of sequence conservation of the plant PR-1 proteins 
from different families is remarkable, but to define their 
actual function(s) in plants, new strategies need to be de
vised. 

In spite of the considerable amount of data available 
on PR-proteins in herbaceaus plants, to our knowledge 
there are only a few reports giving some informations on 
PR-proteins in woody plants. In grapevine, RENAULT et al. 
(1996) and DELOIRE et al. (1997) have identified grapevine 
PR-2 (ß-1,3-glucanase) and PR-3 (chitinase) type proteins 
by immunoblotting tests with tobacco anti-PR-2 and anti
PR-3 antibodies, respectively. The gene encoding the PR-
2 protein has been recently cloned and its expression was 
studied in grape berries at different developmental stages 
and in wounded berries with or without salicylic acid 
elicitation (KRAEVA et al. 1998). 

Even though to date, PR-1 proteins have been identi
fied in approximately 25 plant species, virtually nothing is 
known about this group ofPRs in grapevine. Since the iden
tification and characterization of grapevine PRs with re
spect to their putative biological function(s) in resistance 
are our long-term goal, experiments conceming PR-1-like 
proteins have been initiated. In this paper we present the 
first information, to our knowledge, about the presence of 
PR-1-like proteins in pathogen and/or elicitor-treated 
grapevine 1eaves and cultured suspension cells, respec
tively. 

Material and Methods 

Plant material and cell cultures: 
Grapevine (Vitis vinifera L. cv. Limberger, covar. 
orientalis) plants were grown in a growth chamber at 
28 ± 1 "C (RH 60 %) with a 14 h light period (130 W m·2) . 

Alternatively, the rapidly growing cell suspension line D 1 
(photosynthetically active), derived from a stably propa
gated Limberger callus culture, was grown in a modified 
Murashige-Skoog (MS/D, pH 5.8) medium containing 3 % 
sucrose (w/v), 1 mg J- 1 NAA and 0.2 mg J-1 BAP. Multipli
cation subcultures were carried out in 250 m1 flasks agi
tated at 110 rpm in an orbitary shaker. Cells were used for 
experiments 4 d after subculture. 

P r e p a r a t i o n o f e I i c i t o r s : The fungal cell 
wall elicitor was prepared from grey mold (Botl )'tis cin
erea Pers. et Fries, a grapevine isolate) according to the 
pubJished protocoJ of MALOLEPSZA and URBANEK (1994). 
The elicitor was used at a final concentration of 2.4 J..tg of 
glucose equivalents (2.2 ~tg of protein) per ml cell suspen
sion culture. 

Crab-shell chitosan (Sigma, Deisenbofen, Germany) 
was ground to a fine powder and purified following the pro
cedure of EL GHAOUTH et al. ( 1992). Salicylic acid 
(300 J..tM, Duchefa, Haarlem, The Netherlands) was pre
pared in DMSO (0.5 % final concentration) and titrated to 
pH 5.7. Methyljasmonate (50 J..tM MeJA, Duchefa , 
Haarlem, The Netherlands) was prepared from a stock so
lution in ethanol (0.1 % final concentration). Both 0.1 % 
ethanol (EtOH) and 0.5 % DMSO alone were used as con
trol. 

Pathogen inoculation and elicitor 
t r e a t m e n t s : Powdery mildew, Uncinula necator 
(Schein.) Burr, a natural isolate, was propagated on grape
vine plants in a cabinet with computer-controlled environ
ment. The conidia ( Oidium tuckeri Berk) were sprayed on 
grapevine leaves using the KenAir airduster (Kemo, Swin
don, UK) and treated plants were transferred to the con
trolled environment (28 ± 1 "C, RH 60 %, 16 h photope
riod at 130 W m·2). A control experiment was carried out 
by spraying sterile distilled water instead of the conidia 
inoculum on the leaves. 

Four days after subculture log phase cells were used 
and treatment with the elicitors was performed in the origi
nal flasks in the light to avoid any stress associated with 
the transfer. Six days after the treatments, the cells and the 
spent medium were harvested separately for protein ex
traction. 

P r e p a r a t i o n o f p r o t e i n e x t r a c t s : To 
prepare extracts from conh·ol and treated plant material, 
leaves or cells were mixed with 5 volumes (w/v) of ice
cold TRISEPAC extraction buffer (50 mM Tris-HCl, pH 8.0, 
500 mM sucrose, 1 mM EDTA, 0.2 % insoluble PVP, 
6 mM ascorbic acid and 0.1 % cysteine) and homogenized 
using a prechilled mortar and pestle. Homogenates were 
centrifuged at 20,000 g for 10 min at 4 "C, the supematant 
was concentrated using solid PEG 8000 and stored at -20 "C 
until further use. 

Extracellular proteins were isolated from the spent 
medium immediately after the elicitation protocol was 
completed. Cells were separated from the medium to which 
solid anunonium sulphate was added to reach 90 % Satura
tion. The precipitated proteins were collected by centrifu
gation (20 min, 20,000 g), dissolved in buffer A (50 mM 
Tris-HCI, pH 8.0, 1 mM EDTA) and the suspension dia
lysed against several changes of the same buffer. The pro
tein solution was concentrated and stored as above. 

Powdery mildew mycelia (2.0 g) were suspended in 
ice-cold TRISEPAC buffer ( 10 ml) and bomogenized us
ing a motor-driven Diax 900 homogenizer (Heidolph, 
Keilheim, Germany) for 5 min at maximum speed. The 
exh·act was further processed and storedas described above. 

The protein concentration in the extracts was deter
mined colorimetrically by the method ofBRADFORD (1976), 
using BSA as standard. 

An a I y t i c a I S D S - PA G E : SDS-PAGE was 
performed by the method ofLAEMMLI (1970) with a 12.5 % 
resolving gel and a 5 % stacking gel in a SE 600 apparatus 
(Hoefer, San Francisco, USA). Each lane of the gel was 
loaded with equal amounts of protein and the gel was sil-
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ver-stained by the procedure of BLUM et al. (1987). 
Prestained size markers (Bio-Rad, Richrnond, USA) were 
used to calculate the size of the PR-1 proteins. 

Immunoblotting and SIBA-ECL test : 
For irnmunodetection, proteins were transfen·ed from other 
gels onto nitrocellulose membrane (PROTRAN BA-85 , 
Schleicher und Schüll, Dassel, Germany) in Bio-Rad blot
ting apparah1s. The transferwas carried out at 10 V for 24 h 
in 40 mM Na-phosphate (pH 6.5). After electrophoretic 
transfer of the proteins, the blots were immunoprocessed 
basically according to RErKA (1999). The immunospecific 
signal was developed with the chemiluminescent substrate 
from the SuperSignal West Dura kit (Pierce, Rockford, 
USA) and visualized using the ECL-Hyperfilm (Amersham, 
Buckinghamshire, UK). 

The elicitor-stimulated expression of the PR-1-like 
gene products was estimated following the SIBA-ECL pro
tocol (REPKA et al. · 1996). Individual samples equivalent 
to 5 11g of total proteins were slotted onto PROTRAN 
BA-85 nitrocellulose membrane using the Slot Blot PR648 
apparatus (Hoefer, San Francisco, USA). After loading the 
samples, the membranewas immunodecorated either with 
anti-tobacco PR-la serum or with anti-petunia chalcone 
isomerase (CHI) serum both diluted 1:1 ,000. Serological 
reactions were detected by chemiluminescence as de
scribed for immunoblots. 

Results 

Changes in protein composition following powdery 
mildew ( Oidium tuckeri) infection of grapevine leaves were 
analyzed by SDS-PAGE (Fig. 1, A). From the protein pat
terns obtained after exh·action with a pH 8.0 buffer, at least 
6 new, low-molecular mass proteins were identified. The 
protein bands induced by fungal infection are numbered 
according to their apparent molecular masses on the SDS-

St H M H M 
kDa kDa 

21.5-

A B 

~ 17.7 gPR-1c 
~ 16.8 gPR-1b 
~ 15.5 gPR-1a 

Fig. 1: Electrophoretic patterns on polyacrylamide gel and corre
sponding immunoblot of crude exh·acts from untreated grapevine 
leaves (H), leaves treated with Oidilm1 tuckeri (I) , Oidiwn tuckeri 
mycelium (M) . A: silver stained 12.5 % SDS-PAGE ofsoluble pro
teins extracted at pH 8.0. Proteinbands induced by fungal infection 
are numbered according to thei.r apparent molecular mass. The 
molecular mass standards (St) were soybean hypsin inhibitor (21 ,500) 
and hen egg white Iysozyme (14,400) . B: the same extracts were 
subjected to 12.5 % SDS-PAGE and then transferred to a nitrocel
lulose membrane and immunodetected with the rabbit anti-tobacco
PR-la serum. Each lane ofthe gelwas loaded eilher with 5 or 251-lg 

and stained with silver or immunodecorated, respectively. 

PAGEgel (Fig. 1, A, lane I, numbers 1-6). Since none of 
these proteins were detectable either in healthy grapevine 
or in fungal mycelium extract, we consider them as true 
PR-proteins. 

In the immunological blotting test, three of the 6 pro
teins induced by fungal infection reacted specifically with 
the antiserum raised against PR-la purified from TMV
inoculated Nicotiana tabacum leaves (Fig. 1, B). The im
munoreactive proteins were designated gPR -1 a (15. 5 kDa ), 
gPR- lb (16.8 kDa) and gPR-lc (17 .7 kDa) in order ofde
creasing mobility, using the nomenclature recently pro
posed by VAN LooN and VAN STRTEN (1999) . 

The accumulation pattern of gPR-1 in response to sev
eral potent elicitors was analyzed by SIBA- ECL blot analy
sis, using the tobacco anti-PR-la serum. Accumulation of 
gPR-1 protein in the cultivation medium was substantially 
induced by fungal elicitor, salicylic acid, chitosan and me
thyl jasmonate, albeit to a various extent (Fig. 2). Surpris
ingly, a low-level accumulation of gPR-1 'Was detected also 
in EtOH serving as the MeJA control, while neither DMSO 
control nor unelicited controls (0 and 6 d after the onset 
of elicitor treatment) accumulated respective protein. 
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Fig. 2: Slot-immunoblot analysis of gPR-1 protein accumulation upon 
pretJ·eatinent of cultured grapevine cells with various elicitors. Cells 
were preincubated for 6 d with the indicated compounds . After the 
treatmentwas completed, equal amounts ofthe spent medium cor
responding to 51-lg oftotal proteins were blotted and immunoproc
essed using antisemm specific to tobacco PR-la protein.The inlllluno
positive signalwas detected using the chemiluminescence substrate. 
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Fig. 3: Slot-immunoblot analysis of gPR-1 and CHIprotein accumu
lation in grapevine cells pretreated with various elicitors. Cells 
pretreated as indicated in Fig. 2 were assayed either for accumula
tion of gPR-1 protein or for CHl protein serving as an intracellular 
marker. Equal amounts corresponding to 51-lg oftotal proteins were 
blotted and immunoprocessed either with anti-tobacco PR-lase
mm or with anti-petunia CHI serum. The immunopositive signalwas 
detected using the chemiluminescence substJ·ate. SA- salicylic acid, 
Be- Bofly tis cinerea elicitor, MJ- methyl jasmonate, CH- chitosan. 
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In order to confirrn an extracellular compartmenta
lization of gPR-1 products, protein extracts from control 
and elicited cell suspension cultures were analysed for the 
presence of immunoreactive signal using the SIBA-ECL 
blotting test. Simultaneously, equal amounts ofthe respec
tive protein extracts were immunodecorated either with to
bacco anti-PR-1a serum or with petunia anti-chalcone iso
merase (CHI) serum serving as an intracellular protein 
marker. Fig. 3 shows that none of these elicitors had a sig
nificant effect on gPR-1 accumulation when compared with 
that typical for CHI accumulation. These results suggest that 
only extracellularly compartmentalized isoforrns of PR-1-
like proteins exist in pathogen and/or elicitor-treated grape
vines. 

Discussion 

The present report describes the identification and ac
cumulation of three grapevine PR-1-like proteins, namely 
gPR-1a, gPR-1b and gPR-1c. As far as we know this is the 
first report on expression of grapevine and even of woody 
plant PR-1-like proteins. Firstly, we have shown that gPR-1 
proteins are induced in grapevine leaves by fungal infec
tion. The three gPR-1 proteins separated by one-dimen
sional SDS-PAGE have similar molecular masses 
(15,500-17,700), which perfectly fits the size ofthe PR-1 
family proteins that had been shown previously to be 
present in the intercellular fluid of tobacco leaves infected 
with a tobacco mosaic virus (ANTONIW and PIERPOINT 1978; 
MATSUOKA and ÜHASHI 1984). Secondly, grapevine gPR-1 
proteins belong to the group of tobacco PR-1 proteins as 
shown by their serological relationships with these pro
teins. 

Tobacco leaf PR-I proteins have been considered to 
be induced not only by pathogen infection, but also by 
chemical treatments (V AN LooN 1983). To address this 
question in grapevine, various potent biotic and abiotic 
elicitors were tested by inmmnoblotting in suspension cell 
cultures. Treatment of grapevine cells with the Boflytis 
cinerea elicitor resulted in a massive accumulation of 
gPR-1 protein (Fig. 2). Moreover, two other popular 
elicitors of plant defense genes expression, salicylic acid 
(SA) and chitosan (CH), have shown to be almost equally 
effective in induction of gPR-1 protein accumulation. One 
ofthe most surprising and puzzling aspect of our study was 
the accumulation of the gPR-1 protein we observed after 
methyl jasmonate (MeJA) application. However, based on 
the fact that there is no rep011 on MeJA-induced PR-1 ex
pression in plants and on the coincidence of the relative 
signal intensities for both MeJA and EtOH (the MeJA 
solubilizer), we suggest that the accumulation of gPR -1 
protein is rather due to EtOH than to MeJA itself. Thus, 
the grapevine PR-1 are stress-related proteins because the 
present work showed that these proteins can in fact be in
duced by stress other than pathogen infection. In contrast, 
the findings that heat-shock did not induce the expression 
oftobacco PR-1 protein (ÜHASHI and MATSUOKA 1985) and 
on the other hand, the expression of this protein via stress-

independent factor(s) (EYAL et al. 1992), provide further sup
port for the existence of a second pathway for PR-1 gene 
induction. 

We have demonstrated that all three grapevine PR -1 
proteins are predominantly localized in the extracellular 
space when compared with the accumulation of an intrac
ellular marker protein (Fig. 3). This finding correlates very 
weil with the localization experiments perforrned by CARR 
et al. (1987) who also immunolocalized these proteins to 
the extracellular spaces predominantly in regions adjacent 
to viral lesions. 
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