Supplemental material of the manuscript published in Vitis 54, 107–116 (2015): ## Impact of light exposure on fruit composition of white 'Riesling' grape berries (Vitis vinifera L.) M. FRIEDEL¹⁾, M. STOLL¹⁾ C. D. PATZ²⁾, F. WILL²⁾ and H. DIETRICH²⁾ ¹⁾ Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany ²⁾ Department of Wine Chemistry and Beverage Technology, Hochschule Geisenheim University, Geisenheim, Germany Supplemental Table 1 List of standards used for calibration of the HPLC method for the determination of grape skin phenolics | Phenolic standard | Used in calibration | Source | | | |-------------------|---------------------|--------------------------------|--|--| | 280 nm: | | | | | | Gallic acid | yes | Fluka, St. Gallen, Switzerland | | | | Procyanidin B1 | yes | Extrasynthese, Lyon, France | | | | Tyrosol | yes | Sigma-Aldrich, St.Louis, U.S. | | | | Catechin | yes | Roth, Karsruhe, Germany | | | | Procyanidin B2 | yes | Extrasynthese, Lyon, France | | | | Epicatechin | yes | Fluka, St. Gallen, Switzerland | | | | 320 nm: | | | | | | Caftaric acid | no | calculated as caffeic acid | | | | GRP | no | calculated as caffeic acid | | | | p-CGT | no | calculated as coumaric acid | | | | Coutaric acid | no | calculated as ferulic acid | | | | Fertaric acid | no | calculated as coumaric acid | | | | Caffeic acid | yes | Roth, Karsruhe, Germany | | | | Coumaric acid | yes | Fluka, St. Gallen, Switzerland | | | | Ferulic acid | yes | Roth, Karsruhe, Germany | | | | 360 nm: | | | | | | Que-3-rutinoside | yes | Roth, Karsruhe, Germany | | | | Que-3-galactoside | yes | Extrasynthese, Lyon, France | | | | Que-3-glucoside | yes | Extrasynthese, Lyon, France | | | | Que-3-glucuronide | yes | Extrasynthese, Lyon, France | | | | Que-3-xyloside | yes | isolated by Henny Zeßner* | | | | Que-3-arabinoside | yes | isolated by Henny Zeßner* | | | | Que-3-rhamnoside | yes | Extrasynthese, Lyon, France | | | ^{*} Zessner, H.; Pan, L.; Will, F.; Klimo, K.; Knauft, J.; Niewöhner, R.; Hümmer, W.; Owen, R.; Richling, E.; Frank, N.; Schreier, P.; Becker, H.; Gerhäuser, C.; 2008: Fractionation of polyphenol-enriched apple juice extracts to identify constituents with cancer chemoprotective potential. Molecular Nutrition Food Research 52:28-44. M. Friedel *et al.* ## Supplemental Table 2 Concentration of phenolics given as $\mu g \cdot g^{-1}$ berry skin fresh weight \pm standard deviation, experimental year 2011. Leaf removal: all leaves in the bunch zone removed; Shade: Complete shading by covering bunches with boxes impermeable to light. E-L numbers given after the treatment indicate the developmental stage in which the treatment was applied. Treatment, year and sampling date effects were evaluated using a generalized linear model (GLM). Treatment and year effects are given in Tab. 4. "n.d." = not detected; "+" = values are between limit of detection and limit of quantification. GRP = grape reaction product; p-CGT = p-coumaroylglycosyltartrate; Que = quercetin | Date | 20.09 | 20.09.2011 | | 17.09.2011 | | |-----------------------------|------------------------|-------------------|--------------------|-------------------|--| | Treatment | Leaf removal
E-L 27 | Control | Shade
E-L 29-31 | Control | | | Flavanols | | | | | | | Procyanidin B1 | 0.013 ± 0.003 | 0.011 ± 0.001 | 0.043 ± 0.011 | 0.076 ± 0.072 | | | Catechin | 0.05 ± 0.004 | 0.049 ± 0.005 | 0.092 ± 0.036 | 0.047 ± 0.024 | | | Procyanidin B2 | 0.067 ± 0.002 | 0.06 ± 0.007 | 0.034 ± 0.015 | 0.02 ± 0.022 | | | Epicatechin | 0.011 ± 0 | 0.016 ± 0.003 | 0.013 ± 0.005 | 0.013 ± 0.008 | | | Total Flavanols | 0.141 ± 0.006 | 0.135 ± 0.014 | 0.182 ± 0.053 | 0.155 ± 0.118 | | | Hydroxycinnamic acids | | | | | | | Coumaroylglucose | 0.007 ± 0.001 | 0.007 ± 0.001 | 0.012 ± 0.002 | 0.011 ± 0.007 | | | Caftaric Acid | 0.217 ± 0.046 | 0.208 ± 0.005 | 0.696 ± 0.064 | 0.513 ± 0.045 | | | GRP | 0.004 ± 0 | 0.004 ± 0 | 0.004 ± 0.001 | 0.006 ± 0.003 | | | p-CGT | 0.006 ± 0.001 | 0.006 ± 0.002 | 0.009 ± 0.002 | 0.01 ± 0.006 | | | Coutaric acid | 0.1 ± 0.022 | 0.088 ± 0.007 | 0.365 ± 0.044 | 0.252 ± 0.033 | | | Fertaric acid | 0.025 ± 0.001 | 0.019 ± 0.003 | 0.021 ± 0.002 | 0.018 ± 0.002 | | | Caffeic acid | 0.015 ± 0.001 | 0.011 ± 0.004 | 0.004 ± 0.001 | 0.012 ± 0.003 | | | Cumaric acid | 0.01 ± 0.002 | 0.009 ± 0.002 | 0.004 ± 0.003 | 0.018 ± 0.005 | | | Total Hydroxycinnamic acids | 0.383 ± 0.067 | 0.352 ± 0.007 | 1.114 ± 0.11 | 0.84 ± 0.086 | | | Flavonols | | | | | | | Que-3-rutenoside | 0.324 ± 0.02 | 0.15 ± 0.067 | 0.115 ± 0.061 | 0.21 ± 0.051 | | | Que-3-galactoside | 0.252 ± 0.021 | 0.138 ± 0.048 | 0.03 ± 0.017 | 0.137 ± 0.047 | | | Que-3-glucoside | 0.751 ± 0.052 | 0.454 ± 0.138 | 0.06 ± 0.024 | 0.452 ± 0.159 | | | Que-3-glucuronide | 0.812 ± 0.016 | 0.488 ± 0.139 | 0.425 ± 0.2 | 0.605 ± 0.124 | | | Que-3-xyloside | 0.017 ± 0.001 | 0.01 ± 0.003 | 0 ± 0.001 | 0.007 ± 0.005 | | | Que-3-arabinoside | 0.256 ± 0.02 | 0.114 ± 0.055 | 0.016 ± 0.012 | 0.159 ± 0.058 | | | Que-3-rhamnoside | 0.512 ± 0.034 | 0.258 ± 0.107 | 0.004 ± 0.003 | 0.299 ± 0.132 | | | Total Flavonols | 2.925 ± 0.123 | 1.613 ± 0.551 | 0.651 ± 0.313 | 1.868 ± 0.541 | | | Total Phenolics | 3.449 ± 0.075 | 2.1 ± 0.558 | 1.947 ± 0.44 | 2.863 ± 0.553 | |