
Vitis 55, 129–133 (2016)

© The author(s). 
                              This is an Open Access article distributed under the terms of the Creative Commons Attribution Share-Alike License 
                              (http://creative-commons.org/licenses/by-sa/4.0/).

DOI: 10.5073/vitis.2016.55.129-133

VitisPathways: gene pathway analysis for V. vinifera

M. V. Osier

Rochester Institute of Technology, Rochester, New York, USA

Correspondence to: Dr. M. V. Osier, Rochester Institute of Technology, Gosnell Building 08 - Rm 1338, 85 Lomb Memorial Drive, 
Rochester, New York 14623, USA. E-mail: mvoscl@rit.edu 

Summary

Pathway enrichment analysis of genetic and pro-
teomic data is fraught with multiple testing and other 
interpretive issues. A web-based tool, VitisPathways, was 
developed to simplify the process of pathway analyses for 
Vitis researchers while maintaining statistical robustness. 
Because enrichment analysis tools outside of pathway 
analysis have shown non-regularity to multiple test 
corrections, simulations were used to assess the degree 
of regularity in Vitis knowledgebases and its impact on 
interpretation. This tool is freely available and can be an 
aide to hypothesis generation in transcriptomic studies 
of Vitis.

K e y  w o r d s :  Vitis vinifera; pathway; Fishers exact test; 
gene expression; genomics; proteomics.

Introduction

Large-scale transcriptomic and genomic studies are 
becoming more common for understanding aspects of 
Vitis vinifera transcriptional control such as development 
(Sweetman et al. 2012, Venturini et al. 2013, Chitwood 
et al. 2014) and host-pathogen interactions (Perazzolli 
et al. 2012). These studies often generate large numbers of 
genes determined to be of interest. On their own, these large 
lists gene are often daunting. Resources such as VitisNet 
(Grimplet et al. 2012) and GrapeCyc (Plant Metabolic Net-
work, http://www.plantcyc.org/about/databases_overview.
faces#grapecyc) connect genes and specific metabolic or 
signaling pathways as means to structure the results and 
assist researchers in understanding their large gene lists in 
the context of metabolic pathways. However, utilizing the 
resources often require installing and learning to use external 
tools such as Cytoscape (http://www.cytoscape.org/), or 
doing pathway analysis "by hand".

To make preliminary pathway analysis quantitative and 
as accessible as possible to the grape genetics community, 
a web-based resource, VitisPathways, was developed to 
assist in prioritizing gene lists through application of the 
Fishers Exact Test. VitisPathways will work from nearly 
any browser and requires little input or technical knowledge. 
No assumptions are made about the nature of the molecular 
experiment (microarray, RNA Seq, proteomics, etc.). Vi-

tisPathways is publicly available from "http://www.rit.edu/
VitisPathways". In similar enrichment analysis methods for 
highly structured data such as the Gene Ontology (Ashburn-
er et al. 2000), it has been noted that the structure of the 
ontology can impact the false positive rate in a non-linear 
and highly unpredictable fashion (Osier et al. 2004). Metab-
olomics databases also have degrees of structure because the 
pathways themselves have overlap in genes and metabolites. 
Due to the large number of functional overlaps of genes, 
as demonstrated by the large number of accessions at each 
edge in the VitisNet pathway picture files, on average any 
two pathways with any shared genes will have 12.1 genes 
overlapping between them. Some of these are unique genes 
and some are isoforms. However, in both cases there may be 
unique activities to these genes; compressing the genes into 
a single activity instead of counting them individually would 
be inappropriate. Pathways with more genes will likely have 
larger overlaps, which could create a bias in which larger 
pathways would have a larger than linear increase in hits. 
To test for similar impact from the structure of one of the 
pathway databases (VitisNet), simulations were also carried 
out to identify unpredictable effects of structure between 
pathways on expected results.

Material and Methods

VitisPathways reads in the significant gene list as 
either VitisNet Unique ID (typically VITxxxxxxxx) or 
accession numbers used by GrapeCyc (typically GS-
VIVT01xxxxxxxxx), a short description, the user’s email 
address, and the number of permutations desired (100 or 
1000). Genes are associated with pathways and a Fishers Ex-
act Test (FET) is performed using the "fisher.test" subroutine 
in R (http://www.r-project.org/). All associated pathways are 
reported by email to the user in a tab-delimited format. In 
addition to statistical information, all genes associated with 
a given pathway are reported to allow follow-up hypothesis 
testing.

Permutations are used to correct for multiple testing. 
Permuted gene lists are generated from the entire gene list 
of VitisNet or GrapeCyc respectively. For each pathway 
with any gene association, FET is again calculated on the 
permuted gene list. The number of permuted p-values at least 
as significant for the permutated data set as for the user data 
set are tallied and reported as a corrected p-value.
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Output is sent to the user as a tab-delimited email body 
containing each pathway, the four gene counts used in the 
FET analyses, the FET results, the permutation results, and 
the list of user genes associated with that pathway.

To explore expected distributions for VitisNet analysis 
and the possible effect of structure on results, simulated 
data sets were generated as 1000 data files with a specific 
number of genes (increments of 50 from 50 to 1250) picked 
randomly from the total gene list. Analysis of simulated sets 
by VitisPathways was performed without permutations. In 
these analyses, a "hit" for a pathway means that for a given 
gene set of a given gene set size, that pathway was deter-
mined to be significant by FET. For pathway mean hits, the 
number of hits is determined across all 1000 simulated data 
sets for each gene set size, and the mean of those numbers 
is taken. For gene set mean hits, the number of hits for each 
pathway across all 1000 simulations is taken, and the mean 
across all pathways is calculated.

Results

As a test of function and demonstration of the sim-
plicity of the interface, the Switch Genes from the Table of 
Palumbo et al. (2014) were used to compare gene function 
identification. The VIT accession numbers were input into 
the Web interface (Fig. 1). Soon thereafter the results were 
emailed (Fig. 2). Note that the categories are similar to those 
identified in the Gene Ontology by Palumbo, but more spe-
cific. For example, the four genes identified as being related 
to Carbohydrate Metabolic Process in the Gene ontology 
are in more specific pathways in VitisNet: vv10010G-
lycolysis (VIT_14s0068g01760, VIT_14s0060g00420), 
vv10620Pyruvate_metabolism (VIT_09s0002g06420, 
VIT_14s0060g00420), and vv10052Galactose_metabolism 
(VIT_07s0005g01680). However, some of these genes are 
also associated with other, less obvious, pathways through 
VitisNet: vv10290Valine_leucine_and_isoleucine_biosyn-
thesis (VIT_14s0060g00420), vv10071Fatty_acid_metab-
olism (VIT_14s0068g01760), vv10252Alanine_and_aspar-
tate_metabolism (VIT_14s0060g00420), and vv10350Ty-
rosine_metabolism (VIT_14s0068g01760).  The increased 
specificity and wider range of functional annotation is a 

byproduct of the level of the Gene Ontology used in the 
Palumbo et al. analysis. The Gene Ontology also allows 
for a single gene to be associated with multiple terms at 
different levels of specificity. This should not be taken as 
a criticism of the Palumbo results, as the number of terms 
the Gene Ontology will indirectly associate with those four 
genes is somewhat staggering. Indeed, Palumbo et al. picked 
an excellent level of Gene Ontology to focus on for those 
gene functions. Also note that two of the non-carbohydrate 
related pathways were insignificant by FET and all four were 
insignificant by permutations. The author would deem these 
four VitisNet pathways to most likely be spurious pathway 
associations. However, it would be worth considering the 
relationships between all seven VitisNet pathways, as they 
clearly have some overlaps.

Simulated data sets of randomly sampled grape genes 
were used to identify any unpredictable effects such as 
structure between pathways impacting permutation results.  
As the size of each gene set increased from 50 to 1250, the 
mean number of hits across pathways increased linearly 
(r2 = 0.988). It was also observed in the simulations that 
some pathways are more likely to appear significant than 
others. This may be due in part to some data pathways having 
more genes than others, or those same pathways including 
genes that are also in other pathways, making these pathways 
commonly associated with each other. The latter would be 
the complex structural effects such as was observed in the 
previously discussed Gene Ontology study. The logarithmic 
distribution in Fig. 3 is similar to what would be expected 
if there is no effect of pathway structure (e.g. each gene 
belongs to only one pathway). Therefore, it appears that 
the overlap in genes between pathways is not unpredictably 
impacting results as was observed previously in the Gene 
Ontology results (Osier et al. 2004).

The ten pathways with highest mean hits (number of 
times significant by FET for a given gene set size) are pre-
sented in the Table. In general, these are broad categories 
which obviously have many genes associated with them. In 
addition, the categories are well studied in Vitis, meaning 
it is more likely that we have identified the functions of a 
large number of genes in these categories. Given the large 
number of genes in these pathways, they also have more 
overlaps with more pathways. Therefore, it is not unexpected 

T a b l e

The top ten most common pathways by simulation hits across gene set sizes

Accession Name Genes in
pathway

Mean
hits

vv23010 Ribosome 612 671.7
vv40006 Cell wall 518 627.9
vv34627 R_proteins_from_Plant-pathogen interaction 472 591.8
vv50101 Channels and pores 450 587.4
vv44810 Regulation of actin cytoskeleton 397 546.2
vv50109 Incompletely characterized transport systems 383 537.9
vv10500 Starch and sucrose metabolism 373 527.8
vv10190 Oxidative phosphorylation 383 526.1
vv34626 Plant-pathogen interaction 360 515.7
vv44110 Cell cycle 355 508.1
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Fig. 1: Entry of Palumbo et al. (2014). VIT accessions into the VitisPathways interface.

that any randomly picked gene is more likely to belong to 
these pathways than to others, which results in more hits 
by chance.

Discussion

VitisPathways is already being used by scientists re-
searching Vitis (Majumdar et al. 2015). Key summaries 
and rankings of pathways allow researchers to develop and 
prioritize new hypotheses focused on the most robust path-
way sets. In the future, the relationships between significant 
pathways, due to shared genes, will be presented to the user 
to identify larger biological networks and further refine 
hypothesis generation.

For the genes in the Table and other terms with large 
numbers of associated genes, interpretation of a significant 

result should be viewed with a small degree of caution and 
in the context of the experiment. For example, in a study of 
plant tumorigenesis, pathway vv44110 (Cell_cycle), a term 
with 355 associated genes, would make sense. However, in a 
study of grape sugar content, the same term should be given 
more scrutiny before declaring the result to be meaningful. 
As was suggested in the reanalysis of the Palumbo et al. data 
set, if a large pathway has overlaps with other pathways, it 
would be worth considering whether interaction between 
these pathways impacts the experimental condition. A fu-
ture release of VitisPathways will detail minimal distances 
between pathways associated with user data, making these 
inter-pathway relationships clear to users.

As discussed in Methods, the entire gene list is used 
to create permuted sets because experimental data may 
also have any genes from the same pool. It should be noted 
that this assumption may be violated if only custom gene 
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lists are considered in the experiment generating the gene 
list (e.g. custom microarray). Under such conditions, all 
statistical results should be considered suspect. However, 
with modern full transcriptome methods such as RNA-Seq, 
there will be no problem.

The statistical and interpretation considerations should 
be the same for any pathway analysis which uses VitisNet 
as its knowledgebase. The results suggest that the observed 
relationships are due to the internal structure of the know-
ledgebase, and not the method of analysis. Given that other 
metabolomic knowledgebases have similar structure, as 
differences in metabolic pathways should be minimal, results 
should extend to other grape and non-grape knowledgebases, 
such as GrapeCyc or AraCyc (https://www.arabidopsis.org/

biocyc/). However, it would be worth further study to test if 
these concerns are general across species. This would require 
extensive simulation.

Conclusions

Pathway analyses can be a very useful tool to com-
prehend large scale patterns among genes deemed to be 
significantly differentially expressed. However, some path-
ways are more likely to be identified by these methods than 
others, especially as the number of genes analyzed increases. 
Therefore, pathway analysis should be treated as a tool for 
further hypothesis generation and not necessarily given as 
much weight as the results of formal inference. Although 
permutation-based correction of FET p-values can be useful 
in identifying false leads, secondary validation of genes 
in highlighted pathways and mechanisms of interaction is 
critical. VitisPathways provides the analytical methods in 
a single, freely available tool with easily utilized interface 
to guide understanding of experimental results and new 
hypothesis generation in Vitis genetics.
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