Phytophthora on Alnus spp. (alders)
Imprint

The open access series „JKI Data Sheets – Plant Diseases and Diagnosis“ is a publication that publishes original papers, pathogen descriptions, findings and reports on biotic and abiotic causes of crop diseases and crop damage.

All manuscripts submitted for publication in the JKI Data Sheets are peer-reviewed by at least two independent referees while the anonymity of author(s) is preserved.

All contributions are made available under the Creative Commons licence. This allows you to use and distribute the whole work or parts of the work at no charge as long as you use it only for noncommercial purposes, name the author(s) and source(s) and do not modify the work.

Publisher/Editor-in-Chief: Dr. Georg F. Backhaus, Präsident und Professor Julius Kühn-Institut, Bundesforschungsanstalt für Kulturpflanzen Erwin-Baur-Str. 27 D-06484 Quedlinburg Deutschland

Managing Editor: Dr. Olaf Hering, Informationszentrum und Bibliothek Julius Kühn-Institut Königin-Luise-Str. 19 D-14195 Berlin Deutschland E-Mail: redaktion.datasheets@jki.bund.de

Submission of manuscripts: Please go to the journal’s website at http://pub.jki.bund.de/

ISSN: 2191-1398

DOI 10.5073/jkispdd.2013.079
The genus *Alnus* (*Betulaceae*) includes thirty-five species distributed across northern hemisphere (http://www.discoverlife.org). There are four species native to Europe: *A. incana* (grey alder), *A. cordata* (Italian or Corsica alder), *A. glutinosa* (common or black alder) and *A. viridis* (green alder). In addition, *A. rubra* native to North America has been extensively planted in some European countries (Claessens, 2003). *Alnus* sp. plays important ecological roles. It is a pioneer genus, tolerant of high ground water levels and periodic flooding. *A. glutinosa* is the most common species and is present throughout Europe up to 1800 m.

It is well adapted to wet sites and plays a vital role in riparian ecosystems as the root system helps to stabilise riverbanks reducing the effect of erosion (Webber et al., 2004). Black alder has a beneficial effect on soil (porosity, symbiosis with *Frankia*), on water quality (filtration, purification) and also on fauna. It contributes to increase the biodiversity of birds and insects and its root system allows fish to shelter. *Alnus incana* is widely distributed in central and eastern Europe. In the south, it grows mainly in mountain areas. As it is a root sprout pioneer that tolerates both dry conditions and flooding, *A. incana* is very important for improving the stability of slopes and river-banks (Jung & Blaschke, 2004).

Phytophthora species

The *Phytophthora* species attacking alders are mainly of the *P. alni* complex, i.e. *P. alni* subsp. *alni*, *P. alni* subsp. *multiformis* and *P. alni* subsp. *uniformis*. It has been shown that *P. alni* subsp. *alni* is a hybrid between *P. alni* subsp. *multiformis* and *P. alni* subsp. *uniformis* (Brasier et al., 2004; Ioos et al., 2006). *P. alni* subsp. *alni* is the most common species while both parental taxons are far less commonly isolated on declining alders (Streito, 2003; Jung & Blaschke, 2004; Aguayo et al., 2012). Moreover, the *P. alni* complex is specific to the *Alnus* genus (in particular *A. cordata* and *A. glutinosa*) and the hybrid species shows a higher aggressiveness than both parental species (Brasier & Kirk, 2001; Santini et al., 2003).

Moreover, there have been a few records of other *Phytophthora* species on *A. glutinosa* in Europe. The most frequently recorded are *P. citricola*, *P. cactorum* and *P. gonapodyides* and rarely *P. megasperma* and *P. pseudosyringae*. These species have been isolated from stem base, main roots or fine roots (Streito, 2003). However, it is usually considered that these species are not the causal agent of the alder decline.

Disease symptoms (see figures)

Phytophthora alni can attack fine and major roots or tree collar. The most common symptoms are (Streito, 2003):

- **Crown**: small leaves, yellow discoloration of the leaves, sparse foliage, dieback of the crown, early and often excessive fructification. Usually the whole crown shows the disease symptoms.

- **Stem base**: tarry or rusty spots necroses on the surface of the bark with occasional bleeding. Flame-shaped inner bark lesions mainly at the stem base; similar lesions or necroses can be observed on major roots.

Stem and fine roots are directly infected by *P. alni*. Then, the fine-root system is partially reduced by the pathogen that leads to a dieback of the crown.
Possibility of Symptom Confusion

The disease symptoms on the stem base or roots presented in the previous chapter are not specific only for *P. alni* infection. *Phytophthora* sp. cited above, *Armillaria* sp., other fungi like Diaportales or *Hypoxylon* sp., bacteria (*Erwinia alni*), insects (*Cryptorhynchus lapathi*) or frost-cracks can induce similar symptoms (stem base lesion, necrotic roots, tarry spots with dark bleeding (Cech & Hendry, 2003).

It is considered that these micro-organisms or insects affect alders as secondary pathogen. In addition, abiotic damage as wounds due to fencing wire girdling the trunk of alder or drought periods can affect the crown leading to appearance of small yellowish leaves and sparse foliage (Cech & Hendry, 2003).

Disease development

Disease development strongly depends on the alder size. Survival analysis was performed from a 10-years survey of *A. glutinosa* population from a section of river in eastern France (Elegbede *et al.*, 2010; Marçais, unpublished results). The study shows that seedlings (less than 1 cm diameter at breath (dbh) height) are quickly killed: the median time from recruitment into the study (when seedling reached 1.3 m high) and first sign of infection (either canker or crown decline) was of 2 years and the median time between first infection and death was of 4 years.

By contrast, the decline is much more progressive for larger trees, with median time between infection and death of more than 10 years. Mortality of large trees occurs but is not really frequent (only 2-5% of trees over 0.5 m² dbh died in a 10 year period). Recovery of strongly infected alder trees is been frequently observed and appears to be linked with poor pathogen winter survival. Indeed, *P. alni* subsp. *alni* lacks viable survival spores such as chlamydomospores or oospores and may thus suffer severe population crash during cold winters.

Diagnosis

It is not possible to identify a *Phytophthora* infection only by disease symptoms. Different diagnostic techniques like direct isolation, molecular and serological methods help to identify *Phytophthora* as the cause of the tree disease and to specify the *Phytophthora* species. Information on *Phytophthora* diagnosis on trees or in general are given for example in http://forestphytophthoras.org/key-to-species, http://www.phytophthoradb.org, http://phytophthora-id.org/ and in Martin *et al.* (2012).

Please contact your national authorities (see next chapter) for help with diagnosis.
What to do in case trees are suspected to be infected?

If *P. alni* has already been detected on alders or in soil, we can consider that all typical symptomatic trees located in the same stand are infected by *P. alni* without performing new diagnosis. If not, fresh active inner bark necroses have to be collected at the margin of the lesions. Pieces of bark are stored in a plastic bag containing sterile water or river water. Samples can also be wrapped in damp paper during storage. Then, the material has to be quickly sent to the laboratory for analysis. Isolation success greatly depends on the age of the lesions and on the storage conditions (Streito, 2003).

Contact your responsible national authorities, for example:

Austria:
- Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BWF)
 Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW)
 Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria; http://www.bfw.ac.at/
- Österreichische Agentur für Gesundheit und Ernährungssicherheit
 Austrian Agency for Health and Food Safety, Institute for Sustainable Plant Production
 Spargelfeldstraße 191, 1220 Vienna; http://www.ages.at

Belgium:
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques
 Life Sciences Department, Walloon Agricultural Research Centre
 Rue de Liroux 4, B-5030 Gembloux;
 Anne CHANDELIER | a.chandelier@cra.wallonie.be
- Instituut voor Landbouw- en Visserijonderzoek (ILVO), Eenheid Plant -Gewasbescherming
 Institute for Agricultural and Fisheries Research, Plant Sciences Unit – Crop Protection - Gewasbescherming
 Burg. van Gansberghelaan 96 bus 2, 9820 Merelbeke
 Kurt HEUNGENS | kurt.heungens@ilvo.vlaanderen.be

Bulgaria:
- Българска Агенция по безопасност на храните: Центра̀лна лаборатория по карантина на растенията
- Агробиоинститут, Селскостопанска Академия бул 8, Драган Цанков № 8, София 1164
 Biotic Stress Group, AgroBioInstitute, Agricultural Academy
 8 Dragan Tsankov blvd., 1164 Sofia
 Славчо Славов, sbslavov@abi.bg
 Slavtcho SLAVOV | sbslavov@abi.bg

Czech Republik:
Výzkumný ústav Silva Taroucy pro krajinu a okrasné zahradnictví, v.v.i
The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Publ. Res. Institute
Květnové náměstí 391, Průhonice, 252 67, Praha západ
Matěj PANEK | panek@vukoz.cz
Denmark:
- NaturErhvervstryrelsen, Ministeriet for Fødevarer, Landbrug og Fiskeri
 The Danish AgriFish Agency, http://www.naturerhverv.fvm.dk
- Institut for Geovideneskab og Naturofvervaltning, Det Natur- og Biovidenskabelige Fakultet,
 Københavns Universitet
 Department of Geosciences and Natural Resource Management, Faculty of Science, University of
 Copenhagen | www.ign.ku.dk

Finland:
- Elintarviketurvallisuusvirasto Evira, Kasvinterveysyksikkö
 Finnish Food Safety Authority Evira, Plant Health Mustialankatu 3, FI-00790 Helsinki
 http://www.evira.fi/portal/fi/kasvit/viljely_ka туotanto/metsanviljely/valvonta/
- Metsäntutkimuslaitos
 Finnish Forest Research Institute
 PO. Box 18, FI-01301 Vantaa
 Anna RYTKÖNEN | anna.rytkonen@metla.fi
- Maa- ja elintarviketalouden tutkimuskeskus MTT
 Agrifood Research, MTT
 FI-31600 Jokioinen
 Päivi PARIKKA | paivi.parikka@mtt.fi.

France:
- Services Régionaux de l’Alimentation (SRAL) des Directions Régionales de l’Alimentation, de
 l’Agriculture et de la Forêt (DRAAF)
 Regional Plant Protection services
 http://agriculture.gouv.fr/suivi-de-la-sante-des-forets
 http://agriculture.gouv.fr/services-deconcentres
- Laboratoire de Santé végétaux, unite de Mycologie, ANSES
 French Agency for Food, Environmental and Occupational Health & Safety (ANSES)- Plant
 Health Laboratory, unit of mycology
 Domaine de Pixérécourt Bat E., 54220 Malzéville, France; http://www.anses.fr/PNTC01.htm;
 Nathalie SCHENCK | Nathalie.schenck@anses.fr
 Renaud IOOS | renaud.ioos@anses.fr
- Pôle interrégionaux du Département de la santé des forêts:
 Regional forest health survey organisation:
 http://agriculture.gouv.fr/departement-de-la-sante-des-forets

Germany:
- Pflanzenschutzdiensten der Bundesländer, Adressenliste siehe:
 regional plant protection services, address list see: http://www.jki.bund.de/de/startseite/unser-
 service/linksammlung.html
- Julius Kühn Institut – Bundesforschungsanstalt für Kulturpflanzen (JKI), Institut für Pflanzen-
 schutz in Gartenbau und Forst (JKI-GF)
 Julius Kühn Institut - Federal Research Center for Cultivated Plants (JKI),
 Institute for Plant Protection in Horticulture and Forestry (JKI-GF)
 Messeweg 11/12, 38104 Braunschweig, Germany
 http://www.jki.bund.de
 Sabine WERRES | sabine.werres@jki.bund.de
Greece:

- Ινστιτούτο Δασικών Έρευνών, 570 06 Βασιλικά, Θεσσαλονίκη, Ελλάς
 Forest Research Institute, 570 06 Vassilik, Thessaloniki, Greece
 http://www.fri.gr, Στέφανος ΔΙΑΜΑΝΤΗΣ | info@fri.gr
- Ινστιτούτο Μεσογειακών Δασικών Οικοσυστημάτων και Τεχνολογίας Δασικών Προϊόντων, Τέρμα Αλκμάνος, 115 28 Ιλίσια, Αθήνα, Ελλάς
 Institute of Mediterranean Forest Ecosystems & Forest Products Technology, Terma Alkmans, 115 28 Ilisia, Athens, Greece
 http://www.fria.gr, Παναγιώτης ΔΙΑΜΑΝΤΗΣ | panagiotis@fria.gr

Hungary:

- Megyei Kormányhivatalok Növény- és Talajvédelmi Igazgatóságai
 Regional offices of NFCSO, Directorate of Plant Protection and Soil Conservation
 http://www.nebih.gov.hu/elerhetosegek
- MTA ATK Növényvédelmi Intézet
 Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences
 Herman Ottó u. 15, H-1022 Budapest, Hungary;
 József BAKONYI | bakonyi.jozsef@agrar.mta.hu

Ireland:

- Department of Agriculture, Food and the Marine, Horticulture and Plant Health Division
 Backweston Agri-Campus, Celbridge, Co. Kildare, Ireland
 oliver.mcevoy@agriculture.gov.ie

Italy:

- COSVIR XI - Servizio fitosanitario centrale
 Italian Phyto Sanitary Service
 cosvir11@pec.politicheagricole.gov.it, http://www.politicheagricole.it/flex/cm/pages/ServeLB0L.php/L/IT/IDPagina/2341
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia
 DIBAF-Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia
 Via S. Camillo de Lellis snc
 01100 Viterbo- Italy
 Anna Maria VETTRAINO | vettrain@unitus.it
- Dipartimento di Gestione dei Sistemi Agroalimentari e Ambientali
 Sezione Patologia vegetale, Università di Catania
 Department of Agri-food and Environmental Systems Management, University of Catania
 Via Santa Sofia, 100 95123 Catania Italy
 Santa Olga CACCIOLA | olgacacciola@unic.it
Latvia:
Valsts augu aizsardzības dienests

Netherlands:
Nationaal Referentie Centrum,
Nederlandse Voedsel- en Warenautoriteit (NVWA)
National Reference Centre, NPPO
Netherlands Food and Consumer Product Safety Authority
Ministry of Economic Affairs, Agriculture and Innovation Postbus 9102, 6700 Hc Wageningen, Nederland
Johan MEFFERT | j.p.meffert@mininv.nl

Norway:
Bioforsk Plantehelse
Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division
Høgskoleveien 7, 1432 Ås, Norway;
Venche TALGØ | venche.talgo@bioforsk.no

Poland:
Instytut Ogrodnictwa
Research Institute of Horticulture, Dept. of Ornamental Plant Protection
Konstytucji 3 Maja 1/3, 96-100 Skierniewice
Leszek B. ORLIKOWSKI | leszek.orlikowski@inhort.pl

Portugal:
- Instituto Nacional de Investigação Agrária e Veterinária-UEIS-SAFSV
 National Institute for Agrarian and Veterinarian Research
 Quinta do Marquês, Av. da República, Nova Oeiras, 2780-505 Oeiras
 Ana Cristina MOREIRA & Amélia LOPES | cristina.moreira@iniav.pt ; amelio.lopez@iniav.pt
- Direção Geral de Alimentação e Veterinária
 Directorate General of Food and Veterinary
 Tapada da Ajuda, Ed. 1, 1349-018 Lisboa
 Paula CARVALHO | pcarvalho@dgav.pt

Romania:
Institutul de Cercetari si Amenajari Silvice - ICAS,
Forest Research and Management Institute
Statiunea Brasov; Cloșca 13, 500040, Brasov, Romania,
Danut & Florentina CHIRA | florichr@yahoo.com, chira@rdsbv.ro
Serbia:
- Институт за шумарство, Одељење за заштиту шума
 Institute of Forestry, Department of Forest Protection Kneza Višeslava 1
 11030 Belgrade, Serbia www.forest.org.rs
- Институт за низијско шumarство и животну средину, Заšтита šума
 Institute of Lowland Forestry and Environment, Forest Protection Antonà Čehova 13,
 21000 Novi Sad, Serbia
 www.ilfe.org

Slovenia:
 Kmetijski inštitut Slovenije Agricultural Institute of Slovenia Hacquetova 17, 1001 Ljubljana,
 Slovenia Alenka MUNDA | alenka.munda@kis.si

Spain:
 Grupo de Investigación en Hongos Fitopatógenos, Instituto Agroforestal Mediterráneo,
 Universitat Politècnica de València
 Polytechnic University of Valencia (UPV), Mediterranean Agroforestal Institute (IAM),
 Research group on Plant Pathogenic fungi
 Camino de Vera s/n, 46022 Valencia, Spain
 Ana Mª PÉREZ-SIERRA | aperesi@eaf.upv.es

Sweden:
 SLU, Institutionen för Skoglig Mykologi och Växtpatologi
 Dept. of Forest Mycology and Plant Pathology
 Box 7026, 750 07 Uppsala
 Jan STENLID | Jan.Stenlid@slu.se

Switzerland:
 Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL)
 Competence Center of Forest Protection (WSL)
 http://www.wsl.ch/dienstleistungen/waldschutz/index_EN

Turkey:
- Çankırı Karatekin Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Çankırı, Türkiye
 Çankırı Karatekin University, Faculty of Science, Department of Biology, Çankırı, Turkey
 Seçil AKILLI | secilakilli@gmail.com
- Ankara Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü, 06100, Kalaba, Ankara, Türkiye
 Agricultural Faculty of Ankara University, Department of Plant Protection 06100, Kalaba, Ankara, Turkey
 Salih MADEN | salihmaden@hotmail.com

United Kingdom:
- Tree Health Diagnostic & Advisory Service, Forest Research, Northern Research Station, Roslin,
 Midlothian EH25 9SY; ddas.nrs@forestry.gsi.gov.uk
- Tree Health Diagnostic & Advisory Service, Forest Research, Alice Holt Lodge, Wrecclesham,
 Farnham, Surrey GU10 4LH; ddas.ah@forestry.gsi.gov.uk
Management and control

Operations to manage the disease or to restore riparian ecosystem have to be carefully conducted in order to avoid any contamination from diseased trees or soil toward healthy stands. The felling or winching out of affected trees is not recommended as such approaches are highly destructive to riparian habitat or riverbanks and are undoubtedly ineffective (Gibbs, 2003). Indeed, severe declining trees produce far less inoculum than moderate declining or asymptomatic but infected trees (Elegbede et al., 2010). Coppicing is a traditional method of managing riparian alder. It encourages the regeneration of new growth (Gibbs, 2003; Webber et al., 2004). The number and health status of shoots depend on the conditions of trees at the time of coppicing. Not surprisingly, more vigorous shoots regenerate from the stumps of healthy trees compared with diseased trees (Webber et al., 2004).

Few data are available on the effectiveness of chemical treatment. However, given the location of the host population (riparian ecosystem), fungicides cannot be used as a sustainable solution (Gibbs, 2003).

No consistent evidence of variation in host resistance to *P. alni* was observed on 15 European provenances of *A. glutinosa* (Webber et al., 2004). Despite these results, a search for resistant individuals is to be commended (Gibbs, 2003). Host resistance programs are in progress in Belgium on hundreds of trees (Chandelier, unpublished data). Finally, survival analysis on larger alders and recovery rate of strongly affected mature alders show encouraging results for the maintenance of the species (see chapter Disease development).

Quarantine recommendation

The *P. alni* complex is not listed in the European and Mediterranean Plant Protection Organisation (EPPO) lists (http://www.eppo.int/QUARANTINE/quarantine.htm).
Literature used

Links to further information

Phytophthora in the Forests: http://forestphytophthoras.org/

Acknowledgement

The data sheet was prepared within the Working Group 1 of the European COST Action FP0801 http://www.cost.eu/domains_actions/fps/Actions/FP0801.

Authors

Benoit MARÇAIS, Claude HUSSON

INRA, UMR1136 INRA Université de Lorraine «Interactions Arbres/Micro-organismes», IFR110 EFABA, Centre INRA de Nancy, 54280 Champenoux, France;

marcais@nancy.inra.fr, claude.husson@nancy.inra.fr
Disease symptoms of *Phytophthora alni* on *Alnus glutinosa*

Left: Diseased coppice of alder along a river
Central: Declining alder surrounded by healthy trees
Right: Small yellowish leaves

Left: Stem base necroses on mature tree with tarry exudate
Central: Tarry or rusty spots at the stem base
Left: Flame-shaped inner bark lesion

Photos: C. HUSSON