Phytophthora on Castanea sativa Mill. (sweet chestnut)
Imprint

The open access series „JKI Data Sheets – Plant Diseases and Diagnosis“ is a publication that publishes original papers, pathogen descriptions, findings and reports on biotic and abiotic causes of crop diseases and crop damage.

All manuscripts submitted for publication in the JKI Data Sheets are peer-reviewed by at least two independent referees while the anonymity of author(s) is preserved.

All contributions are made available under the Creative Commons licence. This allows you to use and distribute the whole work or parts of the work at no charge as long as you use it only for noncommercial purposes, name the author(s) and source(s) and do not modify the work.

Publisher/Editor-in-Chief:

Dr. Georg F. Backhaus, Präsident und Professor
Julius Kühn-Institut, Bundesforschungsanstalt für Kulturpflanzen
Erwin-Baur-Str. 27
D-06484 Quedlinburg
Deutschland

Managing Editor:

Dr. Olaf Hering, Informationszentrum und Bibliothek
Julius Kühn-Institut
Königin-Luise-Str. 19
D-14195 Berlin
Deutschland
E-Mail: redaktion.datasheets@jki.bund.de

Submission of manuscripts:

Please go to the journal’s website at http://pub.jki.bund.de/

ISSN:

2191-1398

DOI

10.5073/jkispdd.2013.081
Importance of Castanea sativa

European (or sweet) chestnut (*Castanea sativa* Mill.) is the only native species of the genus *Castanea* in Europe. The natural distribution range of *C. sativa* is probably located in the region of Asia Minor jutting out across the Black Sea region to the western Caucasus. Currently, this species is widely distributed from Western to Eastern Europe (http://www.discoverlife.org) in areas with mean annual precipitation higher than 600 mm, short drought season, and slightly acidic soils (pH 4.5-6.5) (Urbisz & Urbisz, 2007).

In Europe, the cultivation of *C. sativa* has a long tradition (Conedera *et al.*, 2004). This species has a great rural economic value due to its edible fruits and excellent wood with optimal technological characteristics. Moreover, chestnut stands play an important agro-ecological role, e.g. protection against fire and erosion, habitat for wildlife, and recreation areas.

For commercial nut production, different cultivars (cultivated varieties) have been developed, including hybrids between European and Japanese chestnut (*C. crenata*). Cultivars differ in many characteristics as, for example, size and organoleptic properties of the nuts.

Phytophthora species

From European chestnut trees in forests and nurseries affected by ink disease several *Phytophthora* species have been isolated, either from tissue of symptomatic trees, from the soil, or from streams draining the stands. However, *P. cambivora* and *P. cinnamomi* are the two species most commonly associated with the disease in Europe and considered the most pathogenic to *C. sativa*.

<table>
<thead>
<tr>
<th>Phytophthora species</th>
<th>Recovered from</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>cinnamomi</td>
<td>Symptomatic trees, soil</td>
<td>Akilli et al., 2012; Crandall et al., 1945, Vettraino et al., 2001; Vettraino et al., 2005</td>
</tr>
<tr>
<td>cactorum</td>
<td>Soil</td>
<td>Vettraino et al., 2001; Vettraino et al., 2005</td>
</tr>
<tr>
<td>cryptogea</td>
<td>Symptomatic trees, soil</td>
<td>Vettraino et al., 2005; Perlerou et al., 2010</td>
</tr>
<tr>
<td>gonapodyides</td>
<td>Stream beds</td>
<td>Vettraino et al., 2001</td>
</tr>
<tr>
<td>megasperma</td>
<td>Soil</td>
<td>Vettraino et al., 2005</td>
</tr>
<tr>
<td>nicotianae</td>
<td>Soil</td>
<td>Vannini et al., 2010</td>
</tr>
<tr>
<td>plurivora¹</td>
<td>Soil</td>
<td>Akilli et al., 2012; Vettraino et al., 2001, Vettraino et al., 2005</td>
</tr>
<tr>
<td>pseudosyringae</td>
<td>Symptomatic trees, soil</td>
<td>Pintos Varela et al., 2007; Scanu et al., 2010; Vannini et al., 2010</td>
</tr>
<tr>
<td>syringae</td>
<td>Soil</td>
<td>Vettraino et al., 2005</td>
</tr>
</tbody>
</table>

¹previously reported as *P. citricola*

Most *Phytophthora* species isolated from European chestnut stands affected by ink disease have a wide host range. Therefore, it cannot be excluded that they infect other tree species in the surroundings.
Disease symptoms (see figures)

Ink disease caused by Phytophthora species is one of the most destructive diseases affecting European chestnut (Vannini & Vettraino, 2001). It causes root and collar rot of adult trees and of seedlings in nurseries, plantations, and forests. Symptoms and dieback occur both on single plants and in groups of trees. The most common symptoms are:

Crown: chlorotic leaves reduced in size, thinning of the crown, and immature husks remaining on the tree after leaf-fall. Wilting can be followed by a quick or a progressive death depending on the environmental conditions.

Stem: flame shaped dark necrosis evident on the root collar under the bark. On young trees the flame shape is visible as depressed, slightly cracked areas at the base of the stem without debarking. Cortical lesions can be associated to black exudates which gave the name to the disease.

Roots: root rot

Possibility of Symptom Confusion

Symptoms caused by the ink disease can be easily distinguished from those induced by Cryphonectria parasitica, the causal agent of chestnut blight (Heiniger & Rigling, 1994). Unlike Phytophthoras, C. parasitica is mostly associated with extensive necrosis (cankers) of the bark of trunk and branches and does not affect the roots. The plant part distal to the canker wilts and dies and below the cankers trees typically produce numerous epicormic shoots. Adventitious shoots may also develop from the basis of chestnut trees killed by C. parasitica but not by Phytophthoras.

Disease development

Usually, the first symptoms are visible in the crown, followed sometimes by bleeding, mainly at the stem base.

In adult trees, disease symptoms can develop over years and can remain undetected at the beginning of the disease. In contrast, infected seedlings in nurseries or plantations undergo a rapid or gradual wilting of the leaves.

The impact of ink disease depends not only on host susceptibility but also on the environmental conditions influencing the spread and survival of the pathogens as well as host predisposition. High precipitation (above 1000 mm/year) could be a useful index in order to classify areas at risk for ink disease.

P. cinnamomi is a thermophilic species (Benson, 1982) and its winter survival is severely endangered by cold temperatures. Global warming could result in a better survival of the pathogen and, thus, in a higher impact of ink disease.
Diagnosis

It is not possible to identify a *Phytophthora* infection only by disease symptoms. Different diagnostic techniques like direct isolation, molecular and serological methods help to identify *Phytophthora* as the cause of the tree disease and to specify the *Phytophthora* species. Information on *Phytophthora* diagnosis on trees or in general are given for example in http://forestphytophthoras.org/key-to-species, http://www.phytophthoradb.org, http://phytophthora-id.org/ and in Martin *et al.* (2012).

Please contact your national authorities (see next chapter) for help with diagnosis.

What to do in case trees are suspected to be infected?

Contact your responsible national authorities, for example:

Austria:
- Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BWF)
 Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BWF)
 Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria; http://www.bfw.ac.at/
- Österreichische Agentur für Gesundheit und Ernährungssicherheit
 Austrian Agency for Health and Food Safety, Institute for Sustainable Plant Production
 Spargelfeldstraße 191, 1220 Vienna; http://www.ages.at

Belgium:
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques
 Life Sciences Department, Walloon Agricultural Research Centre
 Rue de Liroux 4, B-5030 Gembloux;
 Anne CHANDELIER | a.chandelier@cra.wallonie.be
- Instituut voor Landbouw- en Visserijonderzoek (ILVO), Eenheid Plant - Gewasbescherming
 Institute for Agricultural and Fisheries Research, Plant Sciences Unit – Crop Protection - Gewasbescherming
 Burg. van Gansberghelaan 96 bus 2, 9820 Merelbeke
 Kurt HEUNGENS | kurt.heungens@ilvo.vlaanderen.be

Bulgaria:
- Българска Агенция по безопастност на храните: Централна лаборатория по карантина на растенията
- Агробиоинститут, Селскостопанска Академия бул. 8, Драган Цанков № 8, София 1164
 Biotic Stress Group, AgroBioInstitute, Agricultural Academy
 8 Dragan Tsankov blvd., 1164 Sofia
 Славчо Славов, sbslavov@abi.bg
 Slavtcho SLAVOV | sbslavov@abi.bg

Czech Republik:
- Výzkumný ústav Silva Taroucy pro krajinu a okrasné zahradnictví, v.v.i
 The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Publ. Res. Institute
 Květnové náměstí 391, Průhonice, 252 67, Praha západ
 Matěj PANÈEK | panek@vukoz.cz
Denmark:
- NaturErhvervstryrelsen, Ministeriet for Fødevarer, Landbrug og Fiskeri
 The Danish AgriFish Agency, http://www.naturenrhverv.fvm.dk
- Institut for Geovideneskab og Naturforvaltning, Det Natur- og Biovidenskabelige Fakultet,
 Københavns Universitet
 Department of Geosciences and Natural Resource Management, Faculty of Science, University of
 Copenhagen | www.ign.ku.dk

Finland:
- Elintarvikeeturvallisuusvirasto Evira, Kasvinterveysysikkö
 Finnish Food Safety Authority Evira, Plant Health Mustialankatu 3, FI-00790 Helsinki
 http://www.evira.fi/portal/fi/kasvit/viljely_ ja_tuotanto/metsanviljely/valvonta/
- Metsäntutkimuslaitos
 Finnish Forest Research Institute
 P.O. Box 18, FI-01301 Vantaa
 Anna RYTÖNEN | anna.rytkonen@metla.fi
- Maa- ja elintarvikeetalouden tutkimuskeskus MTT
 Agrifood Research, MTT
 FI-31600 Jokioinen
 Päivi PARIKKA | paivi.parikka@mtt.fi

France:
- Services Régionaux de l’Alimentation (SRAL) des Directions Régionales de l’Alimentation, de
d’Agriculture et de la Forêt (DRAAF)
 Regional Plant Protection services
 http://agriculture.gouv.fr/suivi-de-la-sante-des-forets
 http://agriculture.gouv.fr/services-deconcentres
- Laboratoire de Santé végétaux, unite de Mycologie, ANSES
 French Agency for Food, Environmental and Occupational Health & Safety (ANSES)- Plant
 Health Laboratory, unit of mycology
 Domaine de Pixérécourt Bat E., 54220 Malzéville, France; http://www.anses.fr/PNTC01.htm;
 Nathalie SCHENCK | Nathalie.schenck@anses.fr
 Renaud IOOS | renaud.ioos@anses.fr
- Pôle interrégionaux du Département de la santé des forêts:
 Regional forest health survey organisation:
 http://agriculture.gouv.fr/departement-de-la-sante-des-forets

Germany:
- Pflanzenschutzdienstellen der Bundesländer, Adressenliste siehe:
 regional plant protection services, address list see: http://www.jki.bund.de/de/startseite/unser-
service/linksammlung.html
- Julius Kühn Institut – Bundesforschungsanstalt für Kulturpflanzen (JKI), Institut für Pflanzen-
schutz in Gartenbau und Forst (JKI-GF)
 Julius Kühn Institut - Federal Research Center for Cultivated Plants (JKI),
 Institute for Plant Protection in Horticulture and Forestry (JKI-GF)
 Messeweg 11/12, 38104 Braunschweig, Germany
 http://www.jki.bund.de
 Sabine WERRES | sabine.werres@jki.bund.de
Latvia:
Valsts augu aizsardzības dienests

Netherlands:
Nationaal Referentie Centrum,
Nederlandse Voedsel- en Warenautoriteit (NVWA)
National Reference Centre, NPPO
Netherlands Food and Consumer Product Safety Authority
Ministry of Economic Affairs, Agriculture and Innovation Postbus 9102, 6700 Hc Wageningen, Nederland
Johan MEFFERT | j.p.meffert@minlnv.nl

Norway:
Bioforsk Plantehelse
Norwegian Institute for Agricultural and Environmental Research,
Plant Health and Plant Protection Division
Høgskoleveien 7, 1432 Ås, Norway;
Venche TALGØ | venche.talgo@bioforsk.no

Poland:
Instytut Ogrodnictwa
Research Institute of Horticulture, Dept. of Ornamental Plant Protection
Konstytucji 3 Maja 1/3, 96-100 Skierniewice
Leszek B. ORLIKOWSKI | leszek.orlikowski@inhort.pl

Portugal:
- Instituto Nacional de Investigação Agrária e Veterinária-UEIS-SAFSV
 National Institute for Agrarian and Veterinarian Research
 Quinta do Marquês, Av. da República, Nova Oeiras, 2780-505 Oeiras
 Ana Cristina MOREIRA & Amélia LOPES | cristina.moreira@iniav.pt ; amelia.lopes@iniav.pt
- Direção Geral de Alimentação e Veterinária
 Directorate General of Food and Veterinary
 Tapada da Ajuda, Ed. 1, 1349-018 Lisboa
 Paula CARVALHO | pcarvalho@dgav.pt

Romania:
Institutul de Cercetari si Amenajari Silvice - ICAS,
Forest Research and Management Institute
Statiunea Brasov; Cloșca 13, 500040, Brasov, Romania,
Danut & Florentina CHIRA | florichr@yahoo.com, chira@rdsbv.ro
Serbia:
- Институт за шумарство, Одељење за заштиту шума
 Institute of Forestry, Department of Forest Protection Kneza Višeslava 1
 11030 Belgrade, Serbia www.forest.org.rs
- Institut za nizijušumberstvo i životnu sredinu, Zaštita šuma
 Institute of Lowland Forestry and Environment, Forest Protection Antona Čehova 13,
 21000 Novi Sad, Serbia
 www.ilfe.org

Slovenia:
 Kmetijski inštitut Slovenije Agricultural Institute of Slovenia Hacquetova 17, 1001 Ljubljana,
 Slovenia Alenka MUNDA | alenka.munda@kis.si

Spain:
 Grupo de Investigación en Hongos Fitopatógenos, Instituto Agroforestal Meditarráneo,
 Universitat Politècnica de València
 Polytechnic University of Valencia (UPV), Mediterranean Agroforestal Institute (IAM),
 Research group on Plant Pathogenic fungi
 Camino de Vera s/n, 46022 Valencia, Spain
 Ana Mª PéREZ-SIERRA | aperesi@eaf.upv.es

Sweden:
 SLU, Institutionen för Skoglig Mykologi och Växtpatologi
 Dept. of Forest Mycology and Plant Pathology
 Box 7026, 750 07 Uppsala
 Jan STENLID | Jan.Stenlid@slu.se

Switzerland:
 Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL)
 Competence Center of Forest Protection (WSL)
 http://www.wsl.ch/dienstleistungen/waldschutz/index_EN

Turkey:
- Çankırı Karatekin Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Çankırı, Türkiye
 Çankırı Karatekin University, Faculty of Science, Department of Biology, Çankırı, Turkey
 Seçil AKILLI | secilakilli@gmail.com
- Ankara Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü, 06100, Kalaba, Ankara, Türkiye
 Agricultural Faculty of Ankara University, Department of Plant Protection 06100, Kalaba, Ankara,
 Turkey
 Salih MADEN | salihmaden@hotmail.com

United Kingdom:
- Tree Health Diagnostic & Advisory Service, Forest Research, Northern Research Station, Roslin,
 Midlothian EH25 9SY; ddas.nrs@forestry.gsi.gov.uk
- Tree Health Diagnostic & Advisory Service, Forest Research, Alice Holt Lodge, Wrecclesham,
 Farnham, Surrey GU10 4LH; ddas.ah@forestry.gsi.gov.uk
Management and control

Water (i.e. rainfall, dew deposition, and irrigation) is the main environmental factor favoring the spread of ink disease. Therefore, disease management requires, whenever possible, an accurate water management. For example, on sites subjected to waterlogging, drainage and aeration of the soil should be improved (Turchetti & Maresi, 2008). Silvicultural (e.g. reduction of competition among trees) and horticultural (e.g. optimum nutrition) practices aiming to improve health of the trees have also shown to be beneficial for controlling ink disease. To reduce the spread of *Phytophthora* species through contaminated soil, the access to infected chestnut stands may be limited, especially during wet periods.

In Italy, the use of an integrated control protocol including the injection of potassium phosphonate water solution in trunks of healthy or slightly infected chestnut trees has proven to prevent infection or reduce the severity of symptoms (Gentile *et al.*, 2009; Vettraino *et al.*, 2010). Before using any kind of chemicals please contact your national authorities (e.g. plant health service).

In several European countries, hybridization programs have been initiated in order to select hybrids (using *C. sativa*, *C. crenata* and *C. mollissima*) that are highly tolerant to ink disease (Ramos Guedes-Lafargue *et al.*, 2005). The most common French hybrid cultivars are “Marsol” (CA07), “Maraval” (CA74), “Ferosacre” (CA90), “Marigoule” (CA15) and “Marlhac” (CA118) (Salesses *et al.*, 1993).

Quarantine recommendation

The *Phytophthora* species associated with ink disease of European chestnut are not listed on the European and Mediterranean Plant Protection Organisation (EPPO) lists (http://www.eppo.int/QUARANTINE/quarantine.htm).
Literatur used

Links to further information

Phytophthora in the Forests: http://forestphytophthoras.org/

Acknowledgement

The data sheet was prepared within the Working Group 1 of the European COST Action FP0801 (http://www.cost.eu/domains_actions/fps/Actions/FP0801).

Authors

Simone PROSPERO¹, Andrea VANNINI², Anna Maria VETTRAINO²

¹ Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; simone.prospero@wsl.ch

² DIBAF-University of Tuscia, S.Camillo de Lellis, 01100 Viterbo, Italy; vettrain@unitus.it
Disease symptoms of *Phytophthora* on *Castanea sativa* (sweet chestnut)

Left: Chestnut coppice stand heavily affected by ink disease (*P. cambivora*) (1)

Right: Thinned crown of a young chestnut tree (1)

Dark necrosis on the basis of a young chestnut tree (2)

Photos: (1) – S. PROSPERO, (2) – A.M. VETTRAINO