Teilflächenspezifische Beregnung: Entwicklung von Beregnungsapplikationskarten und einer dynamischen Steuerung für Kreisberegnungsmaschinen

Autor/innen

  • Aboutaleb Hezarjaribi Institut für Anwendungstechnik im Pflanzenschutz

Abstract

Einleitung: Ein Management Konzept für nachhaltige und effiziente Nutzunglandwirtschaftlicher Maßnahmen ist bekannt als teilflächenspezifische Landwirtschaft (PA – Precision Agriculture). Wird das teilflächenspezifische Konzept im Bewässerungsmanagement eingesetzt, wird es teilflächenspezifische Bewässerung genannt (PI – Precision Irrigation). Bei der teilflächenspezifische Bewässerung kann die Bewässerung zwischen den Bereichen eines Feldes auf Grund der Variabilität der Bodeneigenschaften oder dem Anbau von verschiedenen Pflanzen auf dem selben Feld variieren. Die räumliche Veränderung der nutzbaren Feldkapazität als Primärfaktor bedingt die räumliche Veränderung der Bewässerungshöhe und der Bewässerungsfrequenz. Die Bewässerungssysteme verteilen das Wasser bis heute gleichmäßig, so dass die Flächen teilweise überbewässert oder unterbewässert sind. Bezogen auf dieses Problem ist die teilflächenspezifische Beregnung geeignet, das Wasser an der richtigen Stelle zum richtigen Zeitpunkt unter Benutzung des richtigen Bewässerungssystems auszubringen. Folglich sind die Schlüsselziele dieser Arbeit: a) die Abgrenzung von Beregnungsmanagementzonen (IMZs – Irrigation Management Zones) unter Nutzung von sensorbasierten Messungen der elektrischen Leitfähigkeit (ECa – depth-weighted apparent soil electrical conductivity) des Bodens mit EM38 und VERIS 3100, b) die Entwicklung und Evaluierung einer teilflächenspezifischen mobilen Tropfbewässerung und c) Auswertung von drahtlosen  Bodenfeuchtesensoren (EnviroSCAN) und der klimatischen Wasserbilanz (AMBAVModell) zur Bestimmung der Bodenfeuchte bzw. der Bewässerungshöhe.
Material und Methoden: EC25-Daten (ECa bei 25° C) wurden unter Verwendung von EM38 und VERIS 3100 Geräten bei Feldkapazität auf einem 16,6 ha großen Feldstück der FAL, Braunschweig, Deutschland, gemessen. Die ECa Daten wurden im Sekundenintervall mit zwei bis drei Metern Messabstand und in Reihenabständen von etwa vier bis sechs Metern gemessen. Zur Erstellung der EC25- und Bodenfeuchte Karten wurde die Software ArcView genutzt, nachdem die Messdaten mit Hilfe des sphärischen Kriging-Verfahren interpoliert wurden. 29 Kalibrierungspunkten wurden mit Hilfe von DGPS lokalisiert, um die beste sensorbasierte Methode zur Abgrenzung der Beregnungsmanagementzonen zu bestimmen. Bodenproben wurden in 0 - 60 cm Tiefe entnommen. Der zweite Bogen der Kreisberegnungsmaschinen wurde für die teilflächenspezifische mobile Tropfbewässerung umgerüstet. Eine kontrollierte Wassermenge konnte, durch Installierung einer Pulstechnik mit Magnetventilen (SV – Solenoid Valve), einem Computer gesteuerten Programm (PLC – Programable Logic Control) und Auswechseln der Düsen durch Siplast Tropfrohre ausgebracht werden. Ein Teil des Feldversuches wurde durch EnviroSCAN Bodenfeuchtesensoren gesteuert und der andere Teil wurde durch das AMBAV-Modell gesteuert, um die Beregnungshöhe zu bestimmen. Die hydraulische Genauigkeit der Siplast Tropfrohre wurde im Labor bei unterschiedlichen Wasserdrücken von 50, 100, 150 und 200 kPa untersucht.
Ergebnisse und Diskussion: Die Untersuchung zeigt, dass EC25-Daten von verschiedenen gewerblichen Sensoren auf Grund der unterschiedlichen Gewichtung der Tiefe quantitativ unterschiedlich sind. Das höchste Bestimmtheitsmaß wurde zwischen EM38_h und EM38_v (R2 = 0,55) gefunden. In dieser Arbeit wurde ein gutes Bestimmtheitsmaß zwischen nFK und den VERIS 3100 Werten gefunden. Eine Kalibrierungsgleichung zur Abschätzung der nFK von VERIS 3100-sh zeigte eine hohe Ähnlichkeit zu den nFK Daten auf und hatte das höchste Bestimmtheitsmaß (R2 = 0,77). Die Bestimmtheitsmaße zu EM38-v- und EM38-h-Daten waren niedrig und anscheinend nicht ausreichend, um die räumliche Variabilität der nFK reflektieren zu können. Ein Grund kann die größere Messtiefe von EM38 sein. Sechs Beregnungsmanagementzonen (IMZ1: 99 bis 105, IMZ2: 105 bis 116, IMZ3: 116 bis 127, IMZ4: 127 bis 138, IMZ5: 138 bis 149 und IMZ6: 149 bis 152 mm/60 cm) wurden als optimale Anzahl an Beregnungsmanagementzonen auf dem Versuchsfeld, basierend auf den fuzzy-k-Mittelwerten (Boydell and McBratney, 1999) der zufälligen Einteilung, erkannt. Es wurde gefolgert, dass unter konventioneller Beregnung IMZ1 und IMZ2 überbewässert und IMZ4, IMZ5 und IMZ6 unterbewässert wurden. Das entwickelte Konzept der Pulsbewässerung hat sich als eine zuverlässige Technik bewährt. Die Wasserapplikationsmenge war direkt proportional zur Öffnungsdauer des Ventils, und das System war in der Lage, die Wassermenge entsprechend des Bewässerungspulses zu variieren. Weiterhin war es in der Lage, 15 Reihen mit jeweils 15 Düsen zu steuern. Es gab keine offenkundigen Probleme mit dem gepulsten Wasserabgabesystem in den durchgeführten Feldversuchen. Die Kreisberegnungsmaschinengeschwindigkeit und Pulstechnik zur Bereitstellung verschiedener Wassermengen hatten einen geringen nachteiligen Einfluss auf die Gleichmäßigkeit der Beregnungshöhe. Die Gleichmäßigkeitskoeffizienten wurden durch sinkende Pulszeiten und steigende Kreisberegnungsmaschinengeschwindigkeiten gesenkt. Die Kontrolleinheit war wie erwartet in der Lage die Bodenfeuchtedaten mittels Fernmesstechnik von dem EnviroSCAN Sensor zum zentralen Modem zu senden. Obwohl der EnviroSCANBodenfeuchtigkeitssensor empfindlich und kompliziert zu benutzen und zu kalibrieren ist, wurden die Bodenfeuchtigkeitsdaten fast störungsfrei von der Kontrolleinheit empfangen, gespeichert und zum Mobiltelefon gesendet. Für die Übertragung auf den PC wurde die Software „Kurznachricht Pro 2.2“ genutzt. Anschließend wurde die differenzierte Bewässerungshöhe kalkuliert. Die Ergebnisse zeigen, dass die EnviroSCAN-Sensoren in der Lage sind, den Verlauf der Bodenfeuchte während der Wachstumsperiode erfolgreich zu verfolgen. Weniger gut arbeitet der Sensor, um die Feuchtigkeitsverhältnisse auf sandigen Böden (unter 40 cm Tiefe), trotz bodenspezifischer Kalibrierung zu bestimmen. Während dessen hat sich das AMBAV-Modell als eine Alternative zum kostenintensiven EnviroSCAN erwiesen, das in der Lage ist, die Bodenfeuchtigkeit in der Wurzelzone der Graspflanzen als eine preiswerte und verlässliche Methode zu simulieren. Das Tropfbewässerungssystem sollte auf verlässlichen Testergebnissen und nicht auf Herstellerangaben beruhen. Die Laborexperimente zeigten, dass der Einfluß des Betriebsdrucks auf den Durchfluss am Siplast Tropfer hoch signifikant war und der Tropferdurchfluß stark vom Betriebsdruck abhing. Die CV-Werte wurden auf dem ISO-Standard basierend als gut eingestuft. Aus den Laborexperimenten wurde herausgefunden, dass der in-line Siplast Tropfer eine hohe Ausbringungsgleichmäßigkeit und einen geringen Variationskoeffizienten aufweist. Das Rohrmaterial des Siplast Tropfer ist hart und unflexibel. Es sollte nach weiteren Produkten gesucht werden, die flexibler sind und somit die Kulturen schonen. Die ökonomische Analyse dieser Arbeit zeigt, dass der Kapitalbedarf pro Hektar unter teilflächenspezifische mobile Tropfbewässerung um etwa 338 € und 250 € höher liegt als bei entsprechender Tropfbewässerung in Deutschland und im Iran. Die jährlichen Fixkosten sind geringer, als bei der Tropfbewässerung (111 und 128 [€/(ha x Jahr)] in Deutschland oder im Iran). Obwohl die teilflächenspezifische mobile Tropfbewässerung teurer ist als die Beregnung mit Kreisberegnungsmaschinen, verursacht sie weniger Wasser- und Energiekosten als die Kreisberegnungsmaschinen und hat das Potenzial den Ertrag qualitativ und quantitativ, sowie den landwirtschaftlichen Gewinn zu steigern. Die Ergebnisse zeigen, als wichtige Folge des Verfahrens, dass die teilflächenspezifische mobile Tropfbewässerung nicht notwendiger Weise eine wassersparende Technologie ist, aber es kann den Wasserbedarf optimieren. Der Energiebedarf kann um 70 % und der Wasserbedarf kann um 25 % durch die teilflächenspezifische mobile Tropfbewässerung gegenüber der Kreisberegnungsmaschine gesenkt werden. Die Modellbetrachtungen zeigten, dass durch die teilflächenspezifische mobile Tropfbewässerung im Vergleich mit der konventionellen Kreisberegnungsmaschine bei Salat, Zuckerrübe,  Kartoffel und Erdbeere etwa 575, 378, 462 und 588 kWh Energie pro Hektar gespart werden können.
Schlussfolgerung: Die sensorbasierte Messung der elektrischen Leitfähigkeit bei Feldkapazität von nicht salzigen Böden ist eine preiswerte, schnelle und das Bodengefüge nicht zerstörende Alternative, um die Beregnungsmanagementzone räumlich abzugrenzen und ist den Methoden der Bodenprobenahme und Luftbildauswertung vorzuziehen. Feldstudien mit größeren Bewässerungssystemen und Felder mit verschiedenen Bodentypen, Topographie oder Pflanzenbeständen sind weiterhin zu untersuchen, um die Genauigkeit des Bewässerungskonzeptes zu validieren. Vor dem Hintergrund, dass teilflächenspezifische Bewässerung in den Anfängen steckt und eine weitere Verbreitung dieser Technologie zu erwarten ist, könnten die zusätzlichen Kosten für industrielle Ausrüstungsteile gesenkt werden. Beträchtliche Forschung und Entwicklung ist noch nötig, um die möglichen Vorteile der teilflächenspezifischen Beregnung und der Flüssigdüngung besser zu realisieren, um ein positives ökonomisches Ergebnis für den Erzeuger zu sichern.

Downloads

Veröffentlicht

2011-10-25

Ausgabe

Rubrik

Dissertation